

Next frontier in open earth science: Interoperable information about observed environments

Markus Stocker

PANGAEA

Data Publisher for Earth & Environmental Science MARUM

Center for Marine Environmental Sciences University of Bremen Germany

Twitter: @envinf

Email: mstocker@marum.de

ORCID: orcid.org/0000-0001-5492-3212

Open Science

- ... is more than Open Data [EGU 2017]
- Principles, open ...
 - Access and Data
 - Source and Methodology [Kraker et al.]
 - Peer Review and Educational Resources [Open Science as a Practice]
 - Reproducible Research, Science Evaluation, Science Policies, Science Tools [FOSTER]
- The Open Definition: defines "openness" in relation to data and content
- Freely used, modified, and shared by anyone for any purpose

... and Open Methodology

Open Data is great

but

we need to take a closer look at information

734546 0 1 0 0 0 0 0 0 0 0 1

```
[] a lode:Event;
  Iode:atTime [
     time:inXSDDateTime "2011-02-12"
  smear:hasClassification [
     rdfs:label "Class Ib";
```

Open Semantic Content or

Meaningful structured data

Semantic content about the observed environment derived from primary observational data by research communities

collected, or received Acquisition Researchers use Data are enhanced data and produce with metadata Use Curation new data **ENV RI** Data Lifecycle Data are transformed, Data are made accessible Publishing **Processing** collated, analysed to researchers

Data are generated,

Data are generated, collected, or received

Data use

- Scientists interpret observational data
- For their meaning in the context of research investigations
- Result is semantic information about the observed environment
- Semantic information is meaningful and truthful structured data

Concern I

Meaning gained in interpretation is lost when information is recorded

Concern II

Lack of curation in interpretation means research is not reproducible

Use case


```
734544 0 0 0 0 0 0 0 1 0 0 0 1
734545 0 0 0 0 0 0 0 0 1 0 0 1
734546 0 1 0 0 0 0 0 0 0 0 0 1
734547 0 0 0 0 0 0 0 0 1 0 0 1
734548 0 0 0 0 0 0 0 1 0 0 0 1
734549 0 0 0 0 0 0 0 1 0 0 0 1
734550 0 0 0 0 0 0 0 0 1 0 0 1
734551 0 0 0 0 0 0 0 0 1 0 0 1
734552 0 0 1 0 0 0 0 0 0 0 0 1
734553 0 0 0 0 0 0 0 0 1 0 0 1
734554 0 0 0 0 0 0 0 1 0 0 0 1
734555 0 0 0 0 0 0 0 0 1 0 0 1
```

MATLAB datenum

Class Ib event

Record *meaning* gained in interpretation

from smear.datafetcher import fetchdata
from smear.dataplotter import plotdata

Fetch and plot concentration data for the given time and location
from SmartSMEAR, https://avaa.tdata.fi/web/smart
plotdata(fetchdata('2013-04-04', 'Hyytiälä'))


```
from factory import record, event

# Record information about the new particle formation event
record(event('2013-04-04', 'Hyytiälä', '11:00', '19:00', 'Class Ia'))
```

from processing.visualization import map
from factory import events

Visualize the locations of events on a map
map(events())


```
from processing.description import describe
from factory import events

# Describe an event in plain English text
describe(events('2013-04-04', 'Hyytiälä'), format='text')
```

A Class Ia event occurred at Hyytiälä (FI) [http://www.geonames.org/656888/hyytiaelae.html] on 2013-04-04 starting at 11:00 and ending at 19:00.

```
from processing.description import describe
# Describe an event with information in machine readable format
```

describe(events('2013-04-04', 'Hyytiälä'), format='rdf')

from factory import events

```
<http://pangaea.de/eb1ad69f11aecd2449f6d5741c3b8ac3> a lode:Event ;
   smear:hasClassification smear:ClassIa ;
    lode:atPlace <http://sws.geonames.org/656888/>;
    lode:atTime <http://pangaea.de/92be5465a05cc56156422d6cdb4603e1> ;
    lode:inSpace <http://pangaea.de/7f885190eb43154e01c97f814b287a4b> .
<http://pangaea.de/3ca2edb9bb13c998a0ea94082aa592dd> a time:Instant ;
   time:inXSDDateTime "2013-04-04T11:00:00+03:00"^^xsd:dateTime .
<http://pangaea.de/7f885190eb43154e01c97f814b287a4b> a sf:Point,
       wgs84:SpatialThing;
   geosparql:asWKT "POINT (24.29077 61.84562)"^^geosparql:wktLiteral .
<http://pangaea.de/92be5465a05cc56156422d6cdb4603e1> a time:Interval ;
    time:hasBeginning <http://pangaea.de/3ca2edb9bb13c998a0ea94082aa592dd>;
   time:hasEnd <http://pangaea.de/cc87885836375b64bf023a6bcd5ad814> .
<http://pangaea.de/cc87885836375b64bf023a6bcd5ad814> a time:Instant ;
   time:inXSDDateTime "2013-04-04T19:00:00+03:00"^^xsd:dateTime .
<http://sws.geonames.org/656888/> a gn:Feature,
       DUL:Place;
   gn:countryCode "FI"^^xsd:string ;
   gn:locationMap <http://www.geonames.org/656888/hyytiaelae.html> ;
   gn:name "Hyytiälä"^^xsd:string ;
   wgs84:lat "61.84562";
   wgs84:long "24.29077" .
```


European Research
Infrastructure for the
observation of Aerosol,
Clouds, and Trace gases

http://www.actris.eu

@ACTRISRI

Establishing WG, From Observational Data to Information (D2I WG)

Take aways

- We need Open *Meaningful* Data, semantic content
- In particular about the observed environment
- Make sure meaning gained in interpretation is explicit
- Use semantic technologies for formal representation
- Jupyter notebooks for open methodology