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Advancing the Software Systems of 
Environmental Knowledge Infrastructures

Markus Stocker

15.1  Introduction

To acquire data about the environment is a core task of environmental infra-
structures. Acquired data are for selected properties of certain elements of 
the environment, such as the temperature of air or the height of seedlings—
where temperature and height are the properties of the elements air and 
seedlings, respectively. Data result in measurement, the “process of empiri-
cal, objective, assignment of numbers to properties” (Finkelstein, 1982). 
Measurement is repeated as the properties of elements are monitored in time 
and space (Meijers, 1986).

Environmental infrastructures often employ environmental sensor net-
works (Hart and Martinez, 2006) to automate data acquisition. Sensors 
automate monitoring, that is, automatically repeat measurement. A sensor 
generally monitors one property over time. A sensor system, with multiple 
sensors as its constituent parts, enables monitoring of multiple properties 
over time. Networked sensor systems, deployed at multiple locations, enable 
monitoring of properties over time and space.

CONTENTS

15.1 Introduction ................................................................................................ 399
15.2 Case Studies ................................................................................................ 401

15.2.1 Atmospheric New Particle Formation ........................................402
15.2.2 Plant Disease Outbreaks ...............................................................404

15.3 Approaches .................................................................................................406
15.4 Challenges ................................................................................................... 413
15.5 Opportunities ............................................................................................. 415
15.6 Conclusion .................................................................................................. 418
Acknowledgment ................................................................................................ 419
References ............................................................................................................. 419



400 Terrestrial Ecosystem Research Infrastructures

Acquired data are processed to gain information about the environment, 
and information is transferred into knowledge. These tasks are typically 
performed manually by human agents. Environmental infrastructures thus 
consist of technical agents as hardware and software, for example, sensors 
and databases, and human agents, for example, technicians, engineers, and 
scientists. Environmental infrastructures are thus sociotechnical systems 
(Fox, 1995), consisting of technical and social subsystems. To increase human 
knowledge and understanding of the environment is arguably the primary 
aim of these sociotechnical systems. We thus speak of environmental knowl-
edge infrastructures and of environmental knowledge research infrastruc-
tures if they serve primarily research. Edwards (2010) defined knowledge 
infrastructures as “robust networks of people, artifacts, and institutions 
that generate, share, and maintain specific knowledge about the human and 
natural worlds.” Environmental knowledge infrastructures focus on gener-
ating, sharing, and maintaining specific knowledge primarily about natural 
worlds. Being “networks of people, artifacts, and institutions,” Edwards also 
underscores the sociotechnical character of knowledge infrastructures.

Especially in large-scale environmental knowledge infrastructures (Kratz 
et al., 2006; Keller et al., 2008; Michener et al., 2011), data acquisition, curation, 
access, and processing are increasingly often left to technical subsystems as 
they enable automation, for example, data acquisition by means of sensors 
or data management by means of databases. The technical subsystems of 
environmental knowledge infrastructures are thus data-based systems. In 
contrast, data analysis and interpretation, that is, the acquisition of informa-
tion from data and transfer of information into knowledge, are carried out 
by social subsystems, often with little support from technical subsystems.

We envision that the technical subsystems, in particular software systems, 
of future environmental knowledge infrastructures will advance from data-
based systems to knowledge-based systems. The technical subsystems of 
future environmental knowledge infrastructures may thus more actively 
support human agents in information acquisition and support the curation 
of machine interpretable knowledge and automated knowledge processing. 
We thus envision future environmental knowledge infrastructures with 
knowledge-based technical subsystems.

In this chapter, we present the environmental knowledge infrastructures 
of two case studies and underscore the sociotechnical character of the infra-
structures. We discuss the kinds of information the infrastructures acquire 
from data; the agents and methods involved in information acquisition and 
transfer of information into knowledge; and the kinds of resulting knowl-
edge. We then present methods and technologies that enable technical 
subsystems of environmental knowledge infrastructures to more actively 
support human agents in—or altogether automate—information acquisi-
tion and support the curation of machine interpretable knowledge and thus 
automated knowledge processing. The discussed approaches are presented 
as possible building blocks toward knowledge-based technical subsystems.
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Information and knowledge are about the environment monitored by the 
environmental knowledge infrastructure. Information is acquired from data 
about the monitored environment. Other information and knowledge types 
are obviously relevant to environmental knowledge infrastructures, for 
example, information about technical agents, workflows, or data. These are 
however not of concern here.

Other authors have discussed the idea of knowledge-driven sociotechni-
cal systems that learn from scientific data. For instance, Peters et al. (2014) 
present the architecture of a Knowledge Learning and Analysis System 
that aims at being “a knowledge-driven, open access system that ‘learns’ 
and becomes more efficient and easier to use as streams of data, and the 
number and types of user interactions, increase.” Peters et al. discuss the 
integration of hypothesis-driven and data-intensive machine learning sci-
entific approaches. Ganguly et al. (2007) propose a framework for knowl-
edge discovery on environmental data in scientific applications. Naturally, 
knowledge infrastructures—in particular also infrastructures that employ 
environmental sensor networks—are not limited to scientific applications. 
For instance, Parmiggiani and Monteiro (2016) discuss a knowledge infra-
structure developed at a Norwegian oil and gas company and note that the 
infrastructure based on environmental monitoring attempts “to abstract the 
datasets into general representations of environmental risk that make sense 
for the oil and gas professionals.” In contrast to these works for high-level 
architectural and system descriptions and analysis, this chapter discusses 
the application of concrete software methods and technologies that enable 
the development and implementation of knowledge-based technical subsys-
tems in environmental infrastructures.

15.2  Case Studies

Environmental knowledge infrastructures are sociotechnical systems con-
sisting of technical and social subsystems. Hardware and software are 
agents of technical subsystems, while humans and communities are agents 
of social subsystems. While data acquisition and the curation and processing 
of data are fundamental to environmental knowledge infrastructures, data 
are merely intermediate products from which infrastructures acquire infor-
mation and transfer information into knowledge.

We present the environmental knowledge infrastructures of two case 
studies that underscore the sociotechnical character of the infrastructures 
and highlight how their overall aim is to acquire information, transfer infor-
mation into knowledge, and curate and process knowledge. For each case 
study, we describe the relevant data, information, and knowledge as well 
as the technical and social agents involved in data processing, information 
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acquisition, transfer of information into knowledge, and knowledge curation 
and processing. The case studies were originally developed in Stocker (2015).

15.2.1  Atmospheric New Particle Formation

The first case study is in aerosol science for the study of atmospheric new 
particle formation. The environmental knowledge infrastructure is thus a 
research infrastructure, and Stocker et al. (2014a) discuss the case study in 
more details.

Atmospheric new particle formation is an atmospheric phenomenon 
whereby new particles are formed and over time grow in size (Kulmala 
et al., 2004). The phenomenon has been documented in a wide variety 
of environments all over the world (Kulmala et al., 2004) and is studied 
because aerosol particles are known to scatter sunlight and influence qual-
ity of life, for instance, by affecting human health (Pope III et al., 2002). 
The scattering of radiation has a cooling effect on the climate (Solomon 
et al., 2007). The study of new particle formation is thus relevant to climate 
change research.

The environmental knowledge infrastructure involves the Finnish Station 
for Measuring Ecosystem–Atmosphere Relations (Hari and Kulmala, 2005, 
SMEAR), in particular the station located at the Puijo observation tower in 
Kuopio, Finland. This station is part of SMEAR IV, which is itself part of the 
wider SMEAR network with stations located in Eastern Lapland, Hyytiälä, 
Helsinki, and Kuopio.

The station consists of sensing devices for the monitoring of aerosols, 
weather, and atmospheric gases (Leskinen et al., 2009). Of interest here is the 
Differential Mobility Particle Sizer (DMPS) utilized to monitor the particle 
size distribution of polydisperse aerosols. A DMPS consists of a Differential 
Mobility Analyzer (DMA) and a Condensation Particle Counter (CPC). The 
particles of polydisperse aerosols are first classified according to diameter 
size by the DMA and then counted by the CPC (Kulkarni et al., 2011). The 
instrument measures the particle number concentration (cm−3) for 40 dis-
crete diameter sizes in the range of 7–800 nm, on average five times per hour.

In studying atmospheric new particle formation, a core task for the envi-
ronmental knowledge infrastructure is to identify and classify individual 
events, that is, instances of the atmospheric phenomenon, as they occur in 
time and space. Different classification schemes have been proposed to char-
acterize individual events (Dal Maso et al., 2005; Hamed et al., 2007; Vana 
et al., 2008). The identification and classification of events occur on processed 
DMPS data and are performed by human agents, in particular aerosol 
scientists.

Data acquisition in this environmental knowledge infrastructure, in par-
ticular measurement by the DMPS and collection over the network, is largely 
automated by the hardware and software agents of the technical subsys-
tem. In contrast, the extraction of information about new particle formation 
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events, the transfer of such information into knowledge, and the curation 
and processing of knowledge are performed by aerosol scientists and are—
with the exception of software for statistical computing and reporting, that 
is, MATLAB® and Excel—hardly supported by the technical subsystem of 
the infrastructure.

Acquired data undergo an inversion from sensor data in (V) to particle 
number concentration in (cm−3) (Wiedensohler et al., 2012). Such data pro-
cessing is implemented in MATLAB. The resulting data are curated as text 
files consisting of an m × n data matrix, where m is the number of measure-
ments over 24 h (1 day) for 40 particle diameter sizes and n = 41 (includes 
the timestamp). The daily text files are stored on a file system accessible to 
researchers. The technical subsystem of the environmental knowledge infra-
structure largely automates these steps.

Researchers access processed data and create data products that support 
them in the visual assessment of new particle formation events on a par-
ticular day and location (Hamed et al., 2007). MATLAB is the software agent 
used to create figures for visual assessment. The figures display time (24 h) 
on the x-axis and particle number concentration for the 40 measured particle 
diameter sizes of monitored polydisperse aerosol on the y-axis. A color gra-
dient is used to represent low-to-high concentration. On a day during which 
a clearly visible event occurred, the figure displays a characteristic so-called 
banana shape, reflecting the high concentration of very small particles that 
grow in diameter size over time.

Having identified a new particle formation event, aerosol scientists char-
acterize the event. Among the extracted features, scientists may classify the 
event, for instance, based on its visual clarity, obtain an estimate for event 
start and end times, and compute formation and growth rates (Hamed et al., 
2007). Acquired information about events is recorded and Excel is the soft-
ware agent used for the curation of information. At a minimum, information 
includes the day at which an event occurs and the event class.

By recording information about a particular event of atmospheric new 
particle formation in the columns of an Excel row, the scientist creates a 
knowledge object about the event. The knowledge object integrates contex-
tual information about the event and is curated in Excel. In this environ-
mental knowledge infrastructure, we may further specialize the object as 
a situational knowledge object. Barwise and Perry (1980) and Devlin (1991) 
suggested that a situation is a structured part of reality that an agent man-
ages to individuate. New particle formation events are objects in parts of 
reality, that is, connected regions of space–time (Barwise and Perry, 1981). 
They are thus objects in situations. The environmental knowledge infra-
structure individuates structured parts of reality and is thus the agent that 
individuates situations.

Scientists utilize the recorded knowledge objects in further analysis, for 
example, to compute the monthly frequency of event classes, seasonal dif-
ferences in hourly mean total particle concentration between event and 
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nonevent days, or monthly mean event duration, formation, and growth 
rates (Hamed et al., 2007). Knowledge objects are thus processed. The results 
of such analysis are presented as figures and tables and are discussed in 
the natural language text of scientific journal articles. More abstractly, the 
results of such analysis are new information integrated into existing knowl-
edge structures (Aamodt and Nygård, 1995).

Clearly, the infrastructure is an environmental knowledge infrastructure. 
Beyond acquiring, curating, and processing data about particle size distri-
bution of polydisperse aerosols, the environmental infrastructure extracts, 
curates, and processes information and knowledge about events of atmo-
spheric new particle formation. The infrastructure’s aim is to increase human 
knowledge and understanding of atmospheric new particle formation.

The environmental knowledge infrastructure is furthermore a socio-
technical system as technical and social subsystems collaborate to attain 
the infrastructure’s aim to increase human knowledge and understanding 
of atmospheric new particle formation. The technical subsystem consists 
of hardware and software agents. Hardware agents include the DMPS, 
communication links, and computers. Software agents include MATLAB, 
custom MATLAB scripts, and Excel. While hardware and software agents 
certainly do serve toward data processing and analysis, their role is pri-
marily in data acquisition, curation, and access. The social subsystem 
consists of aerosol scientists and technicians. Human agents are involved 
in data acquisition, curation, and access, but the role of human agents, in 
particular scientists, is in data analysis, information acquisition, transfer 
of information into knowledge, and knowledge curation and processing. 
The technical subsystem of the environmental knowledge infrastructure is 
a data-based system and as such primarily concerned with tasks required 
prior to data analysis. The social subsystem builds on the data-based sys-
tem and extends it with functionality for data analysis and interpretation. 
The social subsystem thus turns the infrastructure into a knowledge-based 
system.

15.2.2  Plant Disease Outbreaks

The second case study is in precision agriculture, for the assessment of (acute) 
disease outbreaks in plants. The environmental knowledge infrastructure 
serves agricultural advisors to farmers, and Stocker et al. (2016) discuss the 
case study in more details.

Plant disease is a threat to plant growth, quality, harvest, and thus eco-
nomic return. Hence, farmers need to monitor disease progress to deter-
mine the right time when plants need to be protected, for example, by 
spraying chemical agents. Various factors other than disease progress influ-
ence decisions to protect plants, for example, regulations, utilized protective 
agent, or protection history. Decision-making thus depends on knowl-
edge, that is, integrated information. Indeed, modern precision agriculture 
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405Advancing the Software Systems

is “intrinsically information intensive” (Fountas et al., 2006). Farmers are 
guided by agricultural advisors, and together they are part of the social sub-
system of an environmental knowledge infrastructure designed to support 
decision-making.

Agricultural advisors rely on computer models and systems that sup-
port them in information acquisition. In this case study, agricultural advi-
sors utilize a mechanistic model for estimating disease pressure. Disease 
pressure is computed as the cumulative value ARt = ARt−1 + DR, where ARt 
is the accumulated disease pressure value on day t and DR is the change 
on a given day. DR is constructed from a base risk value modified by daily 
modifiers. The base risk depends on the susceptibility of the selected crop 
and farming history. The daily modifiers are computed from data for 
the weather on the given day, specifically average temperature, humid-
ity, wind, and the amount of rainfall. Diseases included in the model are 
Pyrenophora teres, Pyrenophora tritici-repentis, and Stagonospora nodorum and 
follow this general disease pressure model. How the base risk or the daily 
modifiers are used, however, depends on the disease, as all diseases react 
to changes in the environmental variables in a unique manner. The model 
updates disease pressure once per day.

Agricultural advisors operate weather stations as part of the environmen-
tal knowledge infrastructure to monitor a range of environmental proper-
ties, including temperature, relative humidity, wind speed, and cumulative 
precipitation. The weather stations are part of the SoilWeather Wireless 
Sensor Network (WSN) (Kotamäki et al., 2009). Each weather station is a sen-
sor system and consists of several sensing devices. Observation data can be 
accessed via a Web service. Observation data are complemented with sea-
sonal data for the agricultural parcels in the region observed by the infra-
structure. Such data include the preceding crop, current crop, current crop 
susceptibility, tillage method, and seeding date.

The environmental knowledge infrastructure utilizes data to compute dis-
ease pressure for the region observed by the infrastructure. The results are 
(daily) maps that display disease pressure as color-coded spatial features. 
Given such maps, agricultural advisors can monitor the progress of disease 
pressure in the region and obtain information about disease pressure that 
exceeds the threshold for which outbreaks are expected. Knowledge about 
possible outbreaks is obviously of interest to farmers.

The infrastructure is clearly an environmental knowledge infrastructure. 
As in the previous case study, beyond acquiring, curating, and processing 
data about weather parameters and agricultural parcels, the infrastructure 
acquires, curates, and processes knowledge about disease outbreaks. The 
infrastructure’s aim is to inform decision-making.

The environmental knowledge infrastructure is again a sociotechnical sys-
tem as technical and social subsystem collaborate to attain the infrastruc-
ture’s aim. Among other devices and systems, the SoilWeather WSN is an 
important hardware component of the technical subsystem. The technical 
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subsystem is primarily tasked with data acquisition, curation, and access; it 
is therefore a data-based system. The social subsystem consists, primarily, 
of agricultural advisors and farmers. Their primary role is, as in the previ-
ous case study, in information acquisition and transfer of information into 
knowledge, as well as decision-making. Their involvement in lower-level 
tasks such as data acquisition, curation, and access is minor. While data-
based functionality is largely automated—in particular, the continuous 
acquisition of data via SoilWeather, the management of data by the database, 
and the access to data by the Web service—knowledge-based functionality 
is “implemented” by human agents. Most importantly, the technical sub-
system of the infrastructure is not involved in knowledge curation. Indeed, 
knowledge about outbreaks is only implicit in the color-coded spatial fea-
tures of maps for disease pressure. The technical subsystem does not have 
explicit representations of knowledge about outbreaks. Knowledge is thus 
not curated by the technical subsystem.

In the following section, we present software methods and technologies 
that can advance the data-based technical subsystems of state-of-the-art 
environmental knowledge infrastructures into knowledge-based systems. 
As a result, the technical subsystems of future environmental knowledge 
infrastructures will more actively support information acquisition, transfer 
of information into knowledge, as well as knowledge curation, access, and 
processing.

15.3  Approaches

We have presented the environmental knowledge infrastructures of two 
case studies to highlight how infrastructures acquire information about a 
monitored environment, transfer information into knowledge, and curate 
and process knowledge. We argued that the infrastructures are knowledge-
based sociotechnical systems because social and technical subsystems 
collaborate to further human knowledge and understanding about the envi-
ronment. We highlighted that in state-of-the-art environmental knowledge 
infrastructures it is because of social subsystems that the infrastructures are 
knowledge-based systems. Technical subsystems are prevalently data-based 
systems and provide the social subsystems with little support for informa-
tion acquisition from data, transfer of information into knowledge, and 
knowledge curation and processing.

Our claim is that the technical subsystems of future environmental knowl-
edge infrastructures will advance from data-based systems to knowledge-
based systems. In other words, the technical subsystems will more actively 
support, and possibly largely automate, the execution of higher-level tasks 
currently mostly carried out by social subsystems.
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As the data volumes acquired and processed by environmental knowl-
edge infrastructures steadily increase—and as infrastructures become more 
interoperable, thus facilitating data fusion—this advancement is arguably a 
necessity. Daily visual extraction of situational knowledge about new par-
ticle formation events by an aerosol scientist is feasible for a single location. 
However, the task becomes increasingly expensive as new particle formation 
is to be identified at more locations. Furthermore, as the identification and 
characterization of new particle formation events are relatively straightfor-
ward and repetitive tasks, it makes good sense to automate them.

In this section, we present how information acquisition, transfer of infor-
mation into knowledge, and knowledge curation and processing may be 
implemented by the technical subsystems of environmental knowledge 
infrastructures. We present relevant software methods and technologies.

We distinguish data, information, and knowledge and do so following 
the Data–Information–Knowledge model proposed by Aamodt and Nygård 
(1995). According to the model, data are syntactic entities. The syntactic enti-
ties resulting in the process of measurement, for example, sensor data for 
particle number concentration, are a kind of data relevant here. Data are 
input to an interpretation process. Information, according to the model, is 
interpreted data, that is, data with meaning or semantic entities, and is the 
output of an interpretation process. The semantic entities resulting in the 
process of information acquisition, for example, identified atmospheric new 
particle formation, are a kind of information relevant here. Finally, knowl-
edge is learned information, that is, information incorporated into an existing 
body of knowledge. A situational knowledge object that integrates informa-
tion about a new particle formation event (situation) is a kind of knowledge 
relevant here. Knowledge is itself a semantic entity, one that relates semantic 
entities.

To execute information acquisition, the technical subsystems of environ-
mental knowledge infrastructures require one or more software agents 
designed to extract information from data. Technical subsystems must be 
able to control and execute the agents. Agents implement an interpretation 
process. Data are input to agents and information is the output.

Software agent design follows a model. Two model types are of partic-
ular interest: data driven and physically based. Data-driven models, also 
known as empirical models, may be supervised, that is, trained by labeled 
examples. Preconceived knowledge about the modeled phenomenon does 
not influence model development. In contrast, physically based models, also 
known as mechanistic models, are developed to include some degree of 
understanding about the processes underlying the modeled phenomenon. 
Mulligan and Wainwright (2004) provide an overview of (environmental) 
models and modeling and discuss in more depth the characteristics of vari-
ous model types.

For the aerosol science case study, the technical subsystem of the envi-
ronmental knowledge infrastructure could employ a supervised data-driven 
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software agent trained with labeled examples for processed daily particle 
number concentration data and corresponding information for whether or 
not new particle formation occurred during the day. Given a data-driven 
agent trained with such labeled examples, the technical subsystem can 
then automate the classification of new input data to output information for 
identified new particle formation. In other words, equipped with a trained 
data-driven agent, the technical subsystem of the environmental knowledge 
infrastructure can automate the task otherwise carried out visually by a sci-
entist. The degree of confidence in the accuracy of automated classification 
can be estimated empirically and can hint at how well the technical subsys-
tem will perform—or how carefully the automated assessment ought to be 
curated by the scientist.

For the case study in agriculture, the technical subsystem of the environ-
mental knowledge infrastructure could employ a software agent that imple-
ments the presented mechanistic model. The agent uses preconceived expert 
knowledge about plant disease infection development, current observation 
data for weather parameters, and seasonal data about the crop, pathogen, 
and agricultural parcel in an equation that estimates daily disease pres-
sure. The technical subsystem can execute the agent to generate information 
about disease outbreaks, that is, situations in which disease pressure exceeds 
defined thresholds.

In both environmental knowledge infrastructures, data-driven and physi-
cally based agents have the same purpose: to automate data interpretation. 
Software agents enable the technical subsystems to automate information 
extraction in environmental knowledge infrastructures. The automated 
assessment by technical subsystems is accurate to a certain degree. Extracted 
information thus needs to be curated by the social subsystem. Of particular 
interest is quality control of extracted information.

A description for what an environmental knowledge infrastructure 
observes, for example, a description for an event of new particle formation, 
generally involves different kinds of information. What infrastructures 
observe is located in space and time. Descriptions thus involve information 
for temporal and spatial locations, for example, timestamp, latitude, and lon-
gitude. A symbolic identifier for the observed phenomenon, for example, a 
character string for an instance of new particle formation, is information that 
enables reference to the observed phenomenon in a description. Descriptions 
also characterize the observed phenomenon, for example, describe the class 
of new particle formation and the duration of the event. Characterization 
results in additional information.

Descriptions for what an environmental knowledge infrastructure 
observes are thus structures that relate information. We call such struc-
tures knowledge objects. Knowledge objects integrate information in a 
body of knowledge. A particular type of knowledge object is the situational 
knowledge object. It is a description of a situation. Other knowledge object 
types, for example, for descriptions of processes, are of interest as well. 

D
ow

nl
oa

de
d 

by
 [

M
ar

ku
s 

St
oc

ke
r]

 a
t 1

2:
29

 0
8 

M
ar

ch
 2

01
7 
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The integration of information in a knowledge object follows a pattern. 
Technical subsystems may implement such patterns to automate the inte-
gration of information in knowledge objects. Situation theory (Devlin, 1991) 
provides a pattern for integrating information about a situation in a situ-
ational knowledge object.

In addition to models for information extraction and patterns for infor-
mation integration into knowledge objects, technical subsystems of envi-
ronmental knowledge infrastructures also require a framework for the 
representation of knowledge objects. The framework provided by the 
Semantic Web (Berners-Lee et al., 2001) and its technologies is one approach 
to equip technical subsystems of environmental knowledge infrastructures 
with functionality for knowledge representation.

The Web Ontology Language (W3C OWL Working Group, 2012) is a core 
technology of the Semantic Web. In information science, ontology is clas-
sically defined by Gruber (1993) as “an explicit specification of a concep-
tualization.” Guarino et al. (2009) provide a succinct analysis of Gruber’s 
definition. Some authors have extended Gruber’s definition (Borst, 1997; 
Studer et al., 1998) while others have provided alternatives (Neches et al., 
1991; Swartout et al., 1996; Hendler, 2001). For the purpose here, an ontol-
ogy is a document that specifies the concepts and relations of some domain 
so that the semantics of specified terms are interpretable by both software 
and human agents. To specify concepts and relations we need a language 
with formal semantics. Today, the Web Ontology Language (OWL) is 
arguably the de facto standard ontology language. It is also the language 
adopted here for knowledge representation in environmental knowledge 
infrastructures.

OWL language constructs support the formal specification of the seman-
tics of concepts and relations as class axioms and property axioms, respec-
tively. For instance, the language enables us to state that C and D are classes 
and that they are equivalent or that Q is an inverse property of the prop-
erty P. The language also supports the specification of individuals. Concept 
assertions and role assertions specify the class membership and property 
values of individuals, respectively. For instance, we can state that a and b 
are individuals. The concept assertion C(a) states that the individual a is a 
member (instance) of the class C; D(b) thus states that b is a member of D. 
The role assertion P(a,b) states that the individuals a and b are related by 
property P. Given that Q is inverse of P it holds that Q(b,a).

Ontologies are a means for the social subsystems of environmental 
knowledge infrastructures to convey the semantics of relevant concepts 
and relations to technical subsystems. As a result, the two subsystems 
share term semantics. For software agents that implement the language, 
C(a) is not merely a string. If the social subsystem states that C is a subclass 
of B (formally C ⊑ B), then software agents automatically conclude B(a). 
Ontologies are also a means for the technical subsystems of environmen-
tal knowledge infrastructures to convey social subsystems information 
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objects automatically acquired in data interpretation and knowledge 
objects resulting from automated information integration. Ontologies are 
thus a key component for the representation of knowledge communicated 
between the technical and social subsystems of environmental knowledge 
infrastructures.

Information objects extracted from data by technical subsystems are 
semantic entities and, specifically, entities of an OWL ontology. Given the 
class axiom NewParticleFormation ⊑ AtmosphericPhenomenon, the 
technical subsystem of our environmental knowledge infrastructure repre-
sents the symbolic identifier f for observed new particle formation as the 
class assertion NewParticleFormation(f). The class assertion is an infor-
mation object and a semantic entity of an OWL ontology. Information objects 
for locations in time and space are represented similarly as members of a 
class and with property values. For the representation of time and space, 
there exist ontologies that both the technical and the social subsystems can 
adopt. A candidate ontology for time is OWL-Time (Hobbs and Pan, 2006), 
which, among other terms, provides definitions for Instant and Interval. 
For space, an infrastructure may adopt GeoSPARQL (Perry and Herring, 
2012), which provides definitions for spatial Feature and Geometry.

Knowledge objects resulting from information objects automatically inte-
grated by technical subsystems following determined integration patterns 
are also ontological semantic entities. For the particular case of situational 
knowledge objects, describing situations observed by an environmental 
knowledge infrastructure, we may adopt the Situation Theory Ontology 
(STO) (Kokar et al., 2009). An event s for NewParticleFormation(f) may 
thus be represented as the assertion Situation(s). The definition of the 
class Situation in the STO follows the Situation Theory developed by 
Barwise and Perry (1981) and Devlin (1991), which specifies how information 
about an observed situation is integrated in a situational knowledge object.

In the Semantic Web, the Resource Description Framework (RDF) 
(Cyganiak et al., 2014) is the data model utilized to encode the axioms and 
assertions of OWL ontologies. Originally conceived as a model of data about 
Web resources (Lassila and Swick, 1999), RDF can be utilized as a model of 
data about any resource, including physical objects, abstract concepts, or any 
entity that can be named by a Uniform Resource Identifier (URI) (Berners-
Lee et al., 2005). The RDF statement is at the core of the framework and is a 
triple consisting of a resource, a property, and the value for the property of 
the resource. These are the subject, the predicate, and the object of the state-
ment, respectively. According to the framework, the concept assertion C(a) 
is encoded as the triple <a,type,C> and the role assertion R(a,c) as the 
triple <a,R,c>, whereby a, type, C, and R are URIs and c may be a URI or 
a literal value, such as a string.

The subjects, predicates, and objects of two or more statements can share 
the same URI. Such statements join over the shared identifier. Common joins 
are subject–subject and object–subject. The former are statements about the 
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same subject resource. It can be easily seen that a set of statements form 
a directed labeled graph of subject and object nodes related by predicates, 
which act as vertexes directed from the subject to the object. Adding a new 
statement for an existing resource is akin to expanding the graph with an 
additional vertex. Two resources can be related by simply adding a new ver-
tex to the graph. The flexibility of the graph data structure is arguably one of 
the interesting features of RDF.

Figure 15.1 is an example situational knowledge object for a new particle 
formation event, represented using the discussed Semantic Web technolo-
gies. Clearly visible is the directed labeled graph structure of the knowledge 
object. Object semantics are interpretable by the technical subsystem of 
environmental knowledge infrastructures. To facilitate machine readability 
of knowledge objects, infrastructures can adopt one of several syntaxes for 
RDF, such as RDF/XML (Gandon and Schreiber, 2014).

There exist several RDF database systems, which generally also imple-
ment the SPARQL Protocol and RDF Query Language (SPARQL; Harris and 
Seaborne, 2013) to support querying, updating, or deleting RDF statements 
managed by the database. For popular programming languages, libraries are 
available to support reading, processing, and writing RDF data (e.g., Beckett, 
2002; Broekstra et al., 2002; Carroll et al., 2003). Libraries designed for pro-
grammatic interaction with OWL ontologies, specifically, are available for 
some programming languages (e.g., Horridge and Bechhofer, 2009). Some 
software packages for statistical computing also support loading RDF data.

SPARQL supports formulating queries with complex graph patterns. The 
language thus enables us to formulate queries for knowledge objects meet-
ing certain criteria. For instance, an agent may interrogate an RDF database 
for events (situations) of strong new particle formation that occurred in 2015 
in a particular region of Finland, with perimeter determined by the coordi-
nates of a polygon geometry. As the subsystems commit to a shared ontol-
ogy, agents of two or more subsystems understand how information about 
situations is represented; that “strong” is a category of the classification by 
Hamed et al. (2007); that “2015” is a date–time interval; and that we are con-
straining our search for situations that occurred within the given polygon 
geometry. In other words, agents involved in knowledge acquisition repre-
sent acquired knowledge objects according to the same ontology used by 
agents that access knowledge objects. The semantics of relevant terms are 
specified externally to agents.

Together, these technologies enable environmental knowledge infrastruc-
tures with technical subsystems that (1) acquire information from data using 
data-driven or physically based models, (2) integrate information into knowl-
edge objects according to patterns, and (3) formally and explicitly represent 
knowledge objects. The technologies thus facilitate the curation, access, and 
processing of knowledge objects in technical subsystems of environmental 
knowledge infrastructures. Such technical subsystems are knowledge-based 
systems.
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15.4  Challenges

Earth and environmental science research communities have recently started 
to systematically study environmental research infrastructures. Based on an 
analysis of six infrastructures of the European Strategy Forum on Research 
Infrastructures (ESFRI)—that is, ICOS, EURO-Argo, EISCAT-3D, LifeWatch, 
EPOS, and EMSO*—Chen et al. (2013b) present a reference model for envi-
ronmental research infrastructures. The reference model, called ENVRI-RM, 
structures identified and shared functionality of environmental research 
infrastructures into subsystems—namely, data acquisition, data curation, 
data access, data processing, and community support—and captures the 
requirements of the “archetypical” environmental research infrastructure 
from three viewpoints: science, information, and computational. The science 
viewpoint describes the requirements for “the people who perform their 
tasks and achieve their goals as mediated by the infrastructure” (Chen et al., 
2013a). The information viewpoint describes the requirements for informa-
tion handled by the infrastructure. The computational viewpoint describes 
the requirements for expected computational objects and the interfaces by 
which they interact.

The ENVRI-RM makes evident that state-of-the-art environmental 
research infrastructures are data-based systems and are thus modeled as 
such. Indeed, following the ENVRI-RM, technical subsystems are expected 
to support data acquisition, in particular with sensors; data curation, in data-
bases and on storage systems; data access, for example, via Web portals; and 
data processing. This is despite that, beyond data, information and knowl-
edge are arguably more important products of environmental research 
infrastructures. While data analysis and data mining are functionality of the 
ENVRI-RM data processing subsystem, it is unclear how the reference model 
and, thus, state-of-the-art environmental research infrastructures account 
for information and knowledge resulting from data analysis and mining. 
Accounting for knowledge objects, and their life cycle in environmental 
knowledge infrastructures, is important because the formal and explicit 

*The Integrated Carbon Observation System (ICOS) aims at quantifying and understanding 
the greenhouse gas balance of Europe and neighboring regions (https://www.icos-ri.eu/); 
EURO-Argo is the European contribution to Argo, a global ocean observing system (http://
www.euro-argo.eu/); EISCAT-3D primarily aims at investigating how the Earth’s atmo-
sphere is coupled to space (https://eiscat3d.se); LifeWatch aims at biodiversity and ecosystem 
research (http://www.lifewatch.eu/); the European Plate Observing System (EPOS) aims at 
developing a more holistic understanding of the processes underlying Earth’s dynamics 
(https://www.eposip.org/); and the European Multidisciplinary Seafloor and water-column 
Observatory (EMSO) aims at long-term, high-resolution, (near) real-time monitoring of envi-
ronmental processes including natural hazards, climate change, and marine ecosystems 
(http://www.emso-eu.org/).
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representation of such objects enables automation in knowledge curation, 
access, and processing. Moreover, knowledge representation rests on meth-
ods and technologies different from those widely utilized for the representa-
tion of data objects, for example, tabular or relational data structures.

One of the expectations for the ENVRI-RM is to mature and serve as a 
blueprint for the implementation of environmental research infrastructures. 
The aim is harmonization and interoperability. The commitment by infra-
structures toward the reference model is arguably a key requirement for 
its success. However, gaining such commitment is challenging. As experi-
ence shows, alone the commitment to a particular schema and format for 
data management and exchange is challenging to achieve (see, for instance, 
the brief account by Edwards et al. (2011) on the adoption of the Ecological 
Metadata Language in the Long-Term Ecological Research program).

Proposals for extending the ENVRI-RM with functionality for informa-
tion acquisition, transfer of information into knowledge, knowledge repre-
sentation, curation, access, and processing have recently been suggested in 
the literature (e.g., Stocker et al., 2015b). However, advancing the reference 
model and implementations to include such functionality presents major 
challenges. First, at the community level, a shift is needed toward under-
standing, modeling, and implementing environmental infrastructures as 
knowledge-based systems. Clearly, data are only an intermediary product 
in ICOS, EMSO, and other infrastructures—including those that serve pur-
poses other than scientific research (e.g., Stocker et al., 2014b; Parmiggiani 
and Monteiro, 2016). For instance, ICOS acquires and processes gas flux 
observation data but is interested in information and knowledge about 
strong and weak carbon sinks and sources, for example, forests and cities. 
Using real-time data processing, EMSO is interested in early warning of tsu-
nami (Best et al., 2014), a situated real-world phenomenon about which the 
technical subsystem of an early warning system ought to provide near real-
time integrated information. As knowledge-based systems require first con-
solidated architectures and implementations for the lower-level data layers, 
it is expected that the advancement toward environmental knowledge infra-
structures with knowledge-based technical subsystems will require time, 
significant resources, and commitment from interdisciplinary teams involv-
ing at least earth and environmental scientists and computer and informa-
tion engineers and specialists.

Second, at the technical level, introducing new methods and technologies 
for knowledge-based systems further complicates already complex infra-
structures. The successful design, implementation, and testing of software 
agents that implement data-driven or physically based models for informa-
tion extraction are mostly a nontrivial task. The deployment of validated 
software agents into an environmental knowledge infrastructure typically 
comes with further technical challenges, such as near real-time execution of 
the agent, interface requirements, and performance issues. Ontology engi-
neering and the implementation of knowledge-based systems with Semantic 
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Web technologies also require a specialized set of skills. For the case of 
research infrastructures, scientists familiar with these methods and tech-
nologies are arguably few.

Conversely, engineers capable of addressing technical challenges typically 
lack the science understanding. Such understanding is, however, required for 
information acquisition model development, ontology development, as well 
as for knowledge-based system application development, for example, appli-
cations for knowledge processing. Given an arbitrary environmental knowl-
edge infrastructure, an important question engineers will typically have is 
what kind of information and knowledge are of interest to the infrastructure. 
The effort of building and maintaining environmental knowledge infra-
structures is thus inherently an interdisciplinary endeavor where human 
agents in scientist and engineer roles need to collaborate. Unfortunately, 
interdisciplinary collaboration in science is plagued by what Edwards et al. 
(2011) call “science friction,” “the difficulties encountered when two scientific 
disciplines working on related problems try to interoperate.” Science friction 
“resists and impedes” and poses significant challenges to development.

Currently, a practical challenge is to build compelling case studies that 
demonstrate the architecture, implementation, and capabilities of environ-
mental knowledge infrastructures with knowledge-based technical subsys-
tems, in particular research infrastructures. Such case studies will highlight 
the significant opportunities in environmental knowledge infrastructures 
with advanced knowledge-based technical subsystems. We discuss some of 
the opportunities next.

15.5  Opportunities

We set forth the vision of future environmental knowledge infrastruc-
tures with knowledge-based technical subsystems that more actively sup-
port human agents in information acquisition, transfer of information into 
knowledge, as well as knowledge curation, access, and processing. We have 
also argued that, thanks to the employed technologies, technical subsystems 
may partially automate such tasks.

It is important to underscore that automation is to some degree and it is to 
support human agents in these tasks. The social subsystem of environmen-
tal knowledge infrastructure remains critical. Software agents for informa-
tion acquisition need to be developed, for example, a supervised data-driven 
agent needs to be trained with labeled examples; acquired knowledge needs 
to be quality controlled; and knowledge serves toward decision-making. 
Labeling, quality control, and decision-making are generally performed, 
or at least supervised, by human agents. Hence, in environmental knowl-
edge infrastructures, social and knowledge-based technical subsystems 
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collaboratively learn from the wealth of data acquired and curated by the 
infrastructures. Collaborative learning in environmental knowledge infra-
structures using the presented methods and technologies comes with sev-
eral interesting opportunities.

One of the most interesting aspects of environmental knowledge infra-
structures with knowledge-based technical subsystems is that acquired 
knowledge objects are machine readable and interpretable. Consider our two 
case studies. Knowledge about new particle formation events is recorded in 
Excel, and the results of statistical analysis are described in scientific articles, 
using tables, figures, and natural language text. In our second case study, 
knowledge about plant disease outbreaks is equally implicit, in the images 
for regional maps and the color scheme used to inform human agents about 
the acuteness of outbreaks in the region. Knowledge encoded in these forms 
is hardly machine processable. It is implicit in higher-level data products. 
Presented with an intuitively designed map, a human agent can effortlessly 
extract information and knowledge conveyed by the image. Unfortunately, 
the same cannot be said for technical agents. As a consequence of encoding 
information and knowledge implicitly in higher-level data products, human 
agents need to manually extract information from articles, for example, to 
perform a meta-analysis. Another practice is to attempt to algorithmically 
extract the characteristics of spatial features by processing image pixels (e.g., 
Epitropou et al., 2015; Stocker et al., 2015a).

As noted earlier, to delegate information acquisition and the transfer of 
information into knowledge to the technical subsystems of environmental 
knowledge infrastructures is particularly useful when such processes are 
well defined and repeated. The more often they are repeated in space–time, 
the greater is arguably the benefit of automation as it frees human agents 
from carrying out the processes manually. Automation can also eliminate 
subjective bias by individual human agents in manual assessment.

The distinction between data, information, and knowledge is not clear-cut. 
The knowledge objects curated by an environmental knowledge infrastruc-
ture may arguably be data to other systems. More concretely, knowledge 
objects generally relate data of primitive types, for example, numbers, which 
an agent may want to access and process further. Hence, data related in 
knowledge objects may become elements of a dataset in another system. 
However, from a technical perspective, the distinction can be more obviously 
made based on data structure. Data in an environmental knowledge infra-
structure are often structured as dataset, where the columns most commonly 
represent variables and rows are observations with values for the variables. 
In contrast, graphs are more suited to structure information in knowledge 
objects as graphs integrate by linking objects. Any node in a graph can be 
flexibly expanded with further vertexes to nodes. If new information is avail-
able for a particular knowledge object, it can be integrated by accordingly 
expanding the corresponding graph. If the class of new particle formation 
has not been assessed for a particular event, the graph corresponding to 
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the knowledge object simply has fewer vertexes compared to the one corre-
sponding to a new particle formation event for which the class was assessed. 
Knowledge objects, in particular also those of the same type, can thus have 
varying types and counts of relations to objects without resulting into struc-
tures filled with Null values. New vertexes between existing nodes can also 
be added or removed flexibly. Hence, when an environmental knowledge 
infrastructure uncovers a new relation, the corresponding objects are simply 
linked by a new relationship.

RDF is a suitable data model to represent graphs and is thus arguably an 
interesting framework for the representation of knowledge objects curated 
by knowledge-based technical subsystems of environmental knowledge 
infrastructures. RDF addresses the syntactic interoperability of knowledge 
objects, while OWL addresses their semantic interoperability by formally 
restricting the meaning of terms to the one intended. Being a Web technol-
ogy, RDF has further interesting aspects. Curated knowledge objects, as well 
as the information objects they integrate, are referred to by URI. They are 
thus globally identifiable and can be linked across distributed environmen-
tal knowledge infrastructures. Another potentially interesting aspect is the 
association of URIs with persistent identifiers (Hakala, 2010), such as Digital 
Object Identifiers, to enable location-independent reference to knowledge 
objects. Doing so could facilitate the citation of knowledge about environ-
mental phenomena, for example, a hurricane, described by environmental 
research infrastructures. The human agents of the social subsystem respon-
sible for the acquisition and curation of cited knowledge could be credited 
for their work.

Curated knowledge objects can be processed in various ways. An 
important type of processing is visualization. Environmental phenom-
ena observed by environmental knowledge infrastructures are generally 
located in space–time. Knowledge about observed phenomena can thus be 
visualized along these two dimensions. For instance, situational knowledge 
for disease outbreaks in agriculture can be visualized for outbreak develop-
ment over time and space. Given the commitment of situational knowledge 
objects to ontologies and underlying theories, such as Situation Theory, con-
sumer applications that visualize situational knowledge in space–time can 
trivially extract spatial and temporal information from situational knowl-
edge objects and utilize the information in processing for visualization. As 
a result, the environmental knowledge infrastructure visualizes knowledge 
for situations of disease outbreaks rather than data underlying situational 
knowledge acquisition, such as data for current weather, from which human 
agents have to draw knowledge about outbreaks manually. Furthermore, as 
knowledge is explicitly represented by knowledge-based technical subsys-
tems, environmental knowledge infrastructures avoid having information 
and knowledge only implicit in higher-level data products. Explicitly rep-
resented knowledge can be reused for purposes other than those originally 
intended.
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Knowledge processing forms other than visualization are also of inter-
est. Consumers can fuse knowledge independently acquired and curated by 
two or more environmental knowledge infrastructures (e.g., Stocker et al., 
2015a). The retrieval of knowledge from multiple infrastructures practically 
amounts to executing a federated SPARQL query (Prud’hommeaux and 
Buil-Aranda, 2013) over the distributed SPARQL services provided by the 
infrastructures. Automated reasoning, including rule-based reasoning, is a 
further possibility in knowledge processing. Interesting to evaluate is also 
the potential of curated knowledge for the empirical parameterization of 
high-level models, such as agent-based or Bayesian models.

15.6  Conclusion

For environmental infrastructures, in particular research infrastructures, 
we have highlighted that, beyond the acquisition and processing of data, 
they generate information and transfer information into knowledge. We 
thus argued that environmental (research) infrastructures are environ-
mental (research) knowledge infrastructures. The emphasis on knowledge is 
important as it underscores that data are merely intermediate products in 
environmental infrastructures and that state-of-the-art architectural models, 
such as the ENVRI-RM, may want to reflect this aspect in order to represent 
environmental (research) infrastructures more holistically.

Discussing the environmental knowledge infrastructures of two case 
studies, we highlighted how the infrastructures are sociotechnical sys-
tems, that is, systems composed of technical and social subsystems. We 
highlighted how the technical subsystems are predominantly involved in 
lower-level functionality of the infrastructure, in particular data acquisi-
tion and curation, and how technical subsystems often to a great extent 
automate such functionality, for example, by means of environmental sen-
sor networks and database systems. In contrast, the social subsystems are 
more actively involved in higher-level functionality of the infrastructure, 
that is, information acquisition, transfer of information into knowledge, 
and knowledge curation and processing. Functionality executed by social 
subsystems is not as automated as functionality executed by technical 
subsystems.

Of particular interest to well-defined information acquisition processes 
that are executed frequently over space–time, we discussed methods and 
technologies that could advance the technical subsystems of state-of-the-art 
environmental (research) infrastructures from data-based to knowledge-
based systems. We argued that knowledge-based technical subsystems 
can better support the social subsystems of infrastructures in information 
acquisition, transfer of information into knowledge, and knowledge curation 
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and processing. In some cases, knowledge-based technical subsystems may 
largely automate such functionality.

The most important aspect of knowledge-based technical subsystems is 
their ability to represent acquired knowledge objects formally and explic-
itly. Knowledge about the environment observed by infrastructures is hence 
accessible and interpretable not just for social subsystems but for technical 
subsystems as well. This is in stark contrast to how knowledge is curated, 
accessed, and shared via higher-level data products such as digital maps, 
figures, tables, or natural language text typically generated by state-of-the-
art environmental infrastructures. Knowledge conveyed via such higher-
level data products is implicit and hardly accessible for technical subsystems.

We discussed some of the challenges and opportunities that lay on the 
path toward environmental (research) infrastructures with knowledge-
based technical subsystems. An important challenge is the additional com-
plexity of knowledge-based methods and technologies, added to already 
complex infrastructures. One of the most interesting opportunities for the 
research community may be the possibility of associating persistent identi-
fiers to knowledge descriptions for discovered environmental phenomena—
thus making such knowledge objects citable.
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