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Abstract Over the past decades, sensor networks have
been deployed around the world to monitor over time
and space a large number of properties appertaining to
various environmental phenomena. A popular example is
the monitoring of particulate matter and gases in ambi-
ent air undertaken, for instance, to assess air quality and
inform decision makers and the public. Such infrastructure
can generate large amounts of data, which must be pro-
cessed to derive useful information. Infrastructure may be
for environmental research, specifically. In order to reduce
duplication and improve interoperability, efforts have been
initiated more recently that aim at abstract architectural
descriptions of infrastructure that supports the acquisi-
tion, curation, access, and processing of measurement and
observation data. The ENVRI Reference Model (ENVRI-
RM) is an example for an abstract architectural description
of infrastructure tailored for environmental research. We
briefly summarize ENVRI-RM and provide an overview of
its subsystems, functionality, and viewpoints. We highlight
that its primary focus is on the data life-cycle in envi-
ronmental research infrastructure. As our contribution, we

Communicated by: H. A. Babaie

< Markus Stocker
markus.stocker @uef.fi

Mauno Ronkkd
mauno.ronkko @uef.fi

Mikko Kolehmainen
mikko.kolehmainen @uef.fi

Research Group of Environmental Informatics, Department
of Environmental Science, University of Eastern Finland,
P.O. Box 1627, 70211, Kuopio, Finland

extend ENVRI-RM with functionality for the acquisition of
knowledge from data, and the curation, access, and process-
ing of knowledge. The extension, which we name +K, aims
at addressing the knowledge life-cycle in environmental
research infrastructure. We present the +K subsystems and
functionality, and discuss the extension from ENVRI-RM
viewpoints. We argue that the +K extension can be superim-
posed on ENVRI-RM to form the ENVRI-RM+K model for
the ‘archetypical’ knowledge-based environmental research
infrastructure that addresses both data and knowledge life-
cycles. We demonstrate the application of the extension to a
concrete use case in aerosol science.
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Introduction

Environmental research infrastructure, also known as envi-
ronmental cyberinfrastructure, are complex and distributed
hardware and software systems that collect environmen-
tal monitoring data and manage such data (primarily)
for research. The development of environmental research
infrastructure is on the agenda of EU and national funding
bodies, in particular also in the US. Transatlantic collabo-
rations, such as COOPEUS,! further underscore the interest
in environmental research infrastructure.

Environmental research infrastructure often builds on
environmental sensor networks (Martinez et al. 2004; Hart
and Martinez 2006) which is hardware infrastructure that

Uhttp://www.coopeus.eu/

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s12145-015-0230-6-x&domain=pdf
mailto:markus.stocker@uef.fi
mailto:mauno.ronkko@uef.fi
mailto:mikko.kolehmainen@uef.fi
http://www.coopeus.eu/

48

Earth Sci Inform (2016) 9:47-65

produces data. Software infrastructure then provides ser-
vices that support the acquisition of data produced by envi-
ronmental sensor networks, and the curation, access, and
processing of data. The National Ecological Observatory
Network (Keller et al. 2008), the Global Lake Ecological
Observatory Network (Kratz et al. 2006), and the Polar
Cyberinfrastructure (Li et al. 2014) are just a few recent
examples for diverse environmental research infrastructure
that have been designed and (are being) deployed.

In Finland, the Station for Measuring Ecosystem-
Atmosphere Relations> (SMEAR) is an example for
an environmental sensor network that primarily serves
research (Hari and Kulmala 2005). SMEAR started its
operations in 1991 with measurements for SO, in Eastern
Lapland. The station quickly grew to include several other
locations and environmental phenomena, including weather,
aerosols, photosynthesis, and solar radiation. Today, data
collected by SMEAR are used towards various research
purposes, including the study of atmospheric new parti-
cle formation (Dal Maso et al. 2005). Software systems
have been developed to manage and visualize SMEAR data
(Junninen et al. 2009). Another national example is Soil-
Weather, a wireless sensor network that aims at provid-
ing “temporally and spatially accurate information, data
services and (real-time) applications for water monitoring
and agriculture on river basin and farm scales” (Kotaméki
et al. 2009).

Such hardware and software systems have historically
been constructed ad hoc, designed for a specific problem.
This has lead to great heterogeneity among them, which is
now hindering their integration, in particular the integration
of data. Furthermore, individual systems have addressed
common technical challenges independently, resulting in
duplication of effort.

The EU FP7 Common Operations of Environmen-
tal Research Infrastructures (ENVRI) project’ aimed at
addressing these concerns by developing data and software
components and services common to six European Strategy
Forum on Research Infrastructures (EU ESFRI) environ-
mental research infrastructures. These are the Integrated
Carbon Observation System (ICOS); the European contri-
bution to the Argo program for global ocean monitoring
(EURO-Argo); the European Incoherent Scatter Scientific
Association for the study of the atmosphere in the Fenno-
Scandinavian Arctic and its coupling to space (EISCAT-
3D); the E-Science European Infrastructure for Biodi-
versity and Ecosystem Research (LifeWatch); the Euro-
pean Plate Observing System (EPOS); and the European
Multidisciplinary Seafloor & Water Column Observatory

Zhttp://www.atm.helsinki.fi/SMEAR/
3http://envri.eu/
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(EMSO). ENVRI aimed at identifying computational char-
acteristics common to environmental research infrastruc-
ture, develop an understanding of requirements, support and
accelerate the construction of infrastructure, secure inter-
operability between infrastructures, avoid duplication of
effort, and enable the reuse of resources and experiences
(Chen et al. 2013a, b).

The ENVRI Reference Model (ENVRI 2013), hereafter
ENVRI-RM, is arguably the primary result of the ENVRI
project. ENVRI-RM is “a common ontological framework
and standard for the description and characterization of
computational and storage infrastructures” and provides “a
universal reference framework for discussing many com-
mon technical challenges facing all of the ESFRI envi-
ronmental research infrastructures” (Chen et al. 2013b).
ENVRI-RM was a collaborative effort between several
institutions, including Cardiff University, University of
Edinburgh, European Environment Agency, and University
of Amsterdam. The reference model is publicly available*
and its latest version is V1.1 of August 30, 2013.

ENVRI-RM addresses challenges that are common to
state-of-the-art environmental research infrastructure, in
particular challenges related to the acquisition of (streamed)
data; the management and archiving of acquired data in
databases and on storage infrastructure; the discovery and
access of data from distributed data archives; the integra-
tion, harmonization, and publication of data; the processing
of data in scientific workflows and for visualization, sta-
tistical analysis, and data mining; and the construction of
linked, distributed, software and hardware infrastructure.
Chen et al. (2013b) note that ENVRI-RM is the first model
of its kind, and the authors underscore the urgency of a
reference model for environmental research infrastructure,
in particular because it is “[o]nly by adopting a good refe-
rence model [that the community can] secure interopera-
bility between infrastructures, enable reuse, share resources
and experiences, and avoid unnecessary duplication of
effort.”

ENVRI-RM makes evident that the six EU ESFRI envi-
ronmental research infrastructures are primarily concerned
with data, and services for data acquisition, curation, access,
and processing. This conclusion is arguably more widely
applicable to environmental research infrastructure other
than the six analyzed within ENVRI.

As our contribution, we propose to extend ENVRI-
RM with functionality for the acquisition of knowledge
from data, and the curation, access, and processing of
knowledge. Our claim is that, beyond data, environmen-
tal research infrastructure can, and perhaps should, manage

“http://www.envri.eu/rm
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knowledge derived from processed data curated within the
infrastructure. The result is knowledge-based environmental
research infrastructure.

We begin with a short overview of ENVRI-RM. We then
present the proposed ENVRI-RM extension, and discuss
some technical aspects of the extension. Finally, we demon-
strate the application of the extension to a concrete use case
in aerosol science.

Reference model

This section provides readers with a summary of the
ENVRI Reference Model (ENVRI 2013). The purpose
of the summary is to build the context for the subse-
quently presented extension to ENVRI-RM, and to high-
light that data is the primary concern of ENVRI-RM.
We first discuss how ENVRI-RM divides environmen-
tal research infrastructure into subsystems and partitions
common functionality amongst the subsystems. Then we
discuss the three viewpoints—science, information, and
computational—from which ENVRI-RM is defined.

Reference model subsystems

ENVRI-RM divides the ‘archetypical’ environmental
research infrastructure into five subsystems: data acquisi-
tion, data curation, data access, data processing, and com-
munity support. Figure 1 represents the ENVRI-RM subsys-
tems graphically. The subdivision broadly follows the data
life-cycle in environmental research infrastructure. Accord-
ing to ENVRI (2013), the data life-cycle “begins with the
acquisition of raw data from a network of integrated data
collecting instruments.” Instruments are understood broadly
to include both devices and human observers. Acquired
raw data is then pre-processed and curated within the
infrastructure. Curated data is made accessible, to humans

Datg

Fig. 1 The ENVRI-RM subsystems

and services. Data access enables data to “be extracted
from parts of the infrastructure and made subject to data
processing.” Community support is orthogonal to, and cuts
across, the other four subsystems (Chen et al. 2013a).

ENVRI-RM identifies common functionality, which is
partitioned amongst the five subsystems. The reference
model includes a graphical representation of functional-
ity partitioning (ENVRI 2013) and determines a minimal
model consisting of “fundamental functionality necessary
to describe a functional environmental research infrastruc-
ture” (Chen et al. 2013b). Data collection is an example for
a functionality of the data acquisition subsystem. Its role
is to collect data, typically in form of digital values, from
instruments, and pre-process data to associate timestamps
and metadata. Data discovery and access is an example for
a functionality of the data access subsystem. Its role is to
retrieve, using appropriate search technologies, requested
data from data resources of the infrastructure.

Reference model viewpoints

ENVRI-RM is defined from three viewpoints: science,
information, and computational. Figure 2 represents the
ENVRI-RM viewpoints and relations graphically. Each
viewpoints describes environmental research infrastructure
from a perspective. The three viewpoints are linked and
together define the reference model.

The science viewpoint “intends to capture the require-
ments for an environmental research infrastructure from
the perspective of the people who perform their tasks
and achieve their goals as mediated by the infrastructure”
(ENVRI 2013). (Unless stated otherwise, this paper quotes
ENVRI 2013.) A broad categorization of people associated
with environmental research infrastructure considers sci-
entists who use the infrastructure; technicians who build,
maintain, and operate the infrastructure; and managers who
govern and administer the infrastructure.

The viewpoint defines five communities: data acquisi-
tion, data curation, data publication, data service provision,
and data usage. Each community is described for sets of
relevant community roles and behaviours. Communities
interact with subsystems. A particular agent, for instance a
scientist, can be a member of several communities.

A role in a community “is a prescribing behaviour that
can be performed any number of times concurrently or suc-
cessively.” Roles can be active or passive. Active roles are
associated with human agents. Passive roles are associated
with non-human agents. For example, sensor and observer
are roles in the data acquisition community. Sensor is a
passive role and observer is an active role.

A behaviour of a community “is a composition of actions
performed by roles normally addressing separate [research
activity] requirements.” For example, data collection is a
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Fig.2 The ENVRI-RM
viewpoints with the main aspects
described by the reference model

Servi bjects

behaviour of the data acquisition community. It is performed
by a data collector, an active role. The composition of
actions of the behaviour includes (1) obtaining digital val-
ues from a sensor or an observer and (2) associate consistent
timestamps and necessary metadata.

The information viewpoint provides “a common abstract
model for the shared information handled by the infras-
tructure.” Furthermore, it “describes how the state of the
data evolves as [a result] of computational operations” and
“defines the constraints on the data and the rules governing
the processing of such data.”

The reference model presents various aspects of the
information viewpoint, notably components and dynamic
schemata. The components aspect defines, in particu-
lar, collections for information objects and information
action types. Information objects model information entities
manipulated by the system. Information actions types model
information processing in the system. Actions are associated
with information objects. Objects are participants in actions.
As an illustrative example, a measurement result is an infor-
mation object, namely data processed by the system. Check
quality is an information action type used to verify the qual-
ity of data, and is associated with the measurement result
information object. Thus, measurement result participates in
the check quality action type.

@ Springer
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Dynamic schemata, a second aspect of the informa-
tion viewpoint, “specify how the information evolves as
the system operates.” The evolution of information begins
with specifications for the design of measurement (which
includes the scientific question) and the method of mea-
surement (which includes site selection). The execution
of measurement generates measurement result information
objects. They are stored as persistent data, and subsequently
enriched, reviewed, published, queried, processed. Thus,
dynamic schemata specify a system’s data life-cycle. Life-
cycle steps can be traced to obtain data provenance infor-
mation about used objects, produced objects, and applied
actions.

The computational viewpoint specifies “the major com-
putational objects expected within an [environmental]
research infrastructure and the interfaces by which they
can be interacted with.” The ‘archetypical’ environmen-
tal research infrastructure has a brokered service-oriented
architecture. Functionality is thus encapsulated by service
objects. Service objects control resources, and access to ser-
vice objects is managed by brokers. Computational objects
encapsulate functionality, which is exposed through inter-
faces. They exchange messages through operation interfaces
(server or client) and deliver data through stream interfaces
(producer and consumer).
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Computational objects are organized along the five sub-
systems. Users interact with an environmental research
infrastructure via a scientific gateway, a computational
object of the community support subsystem. A Web
community portal is a typical scientific gateway. Scientific
gateways deploy virtual laboratories, which mediate inter-
action between particular groups of users and infrastructure
subsystems. As an example for a particular type of vir-
tual laboratory, experiment laboratories mediate interaction
between curated data and data processing facilities. They
support researchers in the deployment of datasets for pro-
cessing and in the acquisition of results from computational
experimentation.

Data acquisition is handled by instrument controllers.
Instrument controllers encapsulate functionality of instru-
ments or, more generally, (raw) data sources, and are man-
aged by acquisition services. Acquisition services ensure the
policy-conforming delivery of data into the infrastructure.

Data curation is handled by data store controllers. Data
store controllers encapsulate functionality for the persis-
tence and management of datasets, and are managed by
curation services. The data transfer service, a type of cura-
tion service, provides data transporters to manage the move-
ment of data. For instance, raw data collectors manage
the movement of data from instruments to data stores, i.e.
from the data acquisition subsystem to the data curation
subsystem.

Data access is handled by data brokers. Data brokers
act as intermediaries for access to data of the data curation
subsystem. Brokers verify and validate access requests. Val-
idated requests are forwarded to the relevant data curation
service.

Data processing is handled by process controllers. Pro-
cess controllers represent computational functionality of
execution resources, and are managed by coordination
services. Coordination services delegate processing tasks
registered by the data processing subsystem to execu-
tion resources, coordinate workflows, and initiate task
execution.

In addition to describing the computational objects and
interactions relevant to subsystems, the ENVRI-RM also
describes interactions between computational objects of dif-
ferent subsystems. For instance, raw data collection relies
on coordination between the data acquisition subsystem
and the data curation subsystem, in particular between
acquisition service and data transfer service computational
objects.

Reference model extension

ENVRI-RM focuses on data, their acquisition, cura-
tion, access, and processing. We extend ENVRI-RM to

model the acquisition of knowledge from data, and the
curation, access, and processing of knowledge. The ENVRI-
RM extension is itself a model and is called +K, which
stands for plus knowledge. The extension is inspired by
ENVRI-RM, in the sense that it reuses some of the mod-
elling choices made for ENVRI-RM. Furthermore, it can be
superimposed on ENVRI-RM. The result of such superim-
position is the ENVRI-RM+K model.

Extension subsystems

The +K extension introduces four subsystems: knowledge
acquisition, knowledge curation, knowledge access, and
knowledge processing. Figure 3 illustrates the four +K
subsystems.

The knowledge acquisition subsystem acquires knowl-
edge from data. Knowledge acquisition is a process and con-
sists of three sub processes: information attainment, infor-
mation mapping, and knowledge composition. Information
is attained from data. Attained information is mapped to
atomic entities of a conceptual model. Mapped information
is composed to structured entities of a conceptual model, i.e.
composed knowledge. While a structured entity is knowl-
edge, the atomic entities constituents of the structured entity
are information. For instance, knowledge acquisition may
attain a threshold 7 from data; map the threshold 7 to a rule
atom a that requires the variable v to exceed f,i.e.a : v > f;
and compose the rule atom a to arule a A b — ¢, whereby
a A b and c are the rule antecedent and rule consequent,
respectively. The threshold ¢ is attained information; the
rule atom a is mapped information, an atomic entity of a
conceptual model; and the rule is composed knowledge, a
structured entity of a conceptual model.

Aamodt and Nygard (1995) proposed a definitional
framework for the concepts of data, information, and
knowledge within the context of an agent decision-making

Knowl

Knowl

Know|

Kno

ation
cess

Fig. 3 The knowledge acquisition, knowledge curation, knowledge
access, and knowledge processing subsystems of the +K extension to
ENVRI-RM
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process. The framework can be utilized to describe the dif-
ferences between data, information, and knowledge in the
ENVRI-RM+K model. According to Aamodt and Nygérd,
data are syntactic entities with no meaning; information
is interpreted data, i.e. data with meaning; and knowledge
is learned information, i.e. “information incorporated in
an agent’s reasoning resources,” in other words informa-
tion incorporated in an existing body of knowledge. Given
sensor time-series data for the measured concentration of
nutrients such as nitrogen and phosphorous in Finnish lakes,
the sensor data are data, the threshold that distinguishes
nutrient poor and nutrient rich lakes is information, and
rules that classify a lake into nutrient poor or rich are knowl-
edge. Aamodt and Nygard’s Data-Information-Knowledge
model includes three processes argued to be fundamental
to “transforming data into information, deriving other infor-
mation, and acquiring new knowledge.” Interpretation is the
process that transforms data into information. Elaboration
is the process that derives new information. Learning is
the process that acquires new knowledge. The interpreta-
tion process takes data as input, in particular sensor data,
and returns mapped information as output. For instance,
an interpretation process may utilize a clustering technique
to obtain from data the threshold that distinguishes nutri-
ent poor and nutrient rich lakes, and map the threshold to
a rule atom. Interpretation is thus relevant to knowledge
acquisition in the +K model. The elaboration process takes
information as input and returns information as output. The
process derives new information from existing information,
i.e. derives atomic entities from existing atomic entities of
a conceptual model, and is thus relevant to knowledge pro-
cessing in the +K model. The learning process integrates
“new information into an existing body of knowledge, in
a way that makes it potentially useful for later decision
making.” The process is thus relevant to knowledge acqui-
sition, as well as knowledge processing, in the +K model.
The rule atom for the threshold is composed to a rule, and
is integrated into an existing body of knowledge, which
in the +K model is curated within the knowledge curation
subsystem.

The knowledge curation subsystem facilitates quality
control and preservation of knowledge. It also handles the
representation of knowledge. The subsystem can curate var-
ious types of knowledge, specifically terminological and
assertional knowledge. Terminological knowledge includes
foundational knowledge, such as a the fact that sensing
devices are sensors and thus physical objects, and domain
knowledge, such as domain rules. In the +K model, asser-
tional knowledge is primarily knowledge about a particular
volume of reality monitored in space-time.

The knowledge access subsystem is concerned with the
presentation and delivery of knowledge products. Retrieval
of knowledge is enabled by query and search tools that

@ Springer

support human or software agents in knowledge discovery.
Knowledge discovery is achieved by inspecting knowledge
or by following semantic relations. For example, knowledge
can be inspected to discover defined sensing devices. Given
adiscovered sensing device, it is possible to follow semantic
links to discover the property that is observed by the sensing
device.

The knowledge processing subsystem handles knowl-
edge reasoning, visualization, and analysis. The subsys-
tem can include generalized and specialized services, e.g.
for statistical analysis or visualization of knowledge. For
instance, a knowledge processing subsystem may provide
a service that visualizes what is known about a particular
volume of reality along temporal and spatial dimensions.

Extension functionality

Each of the four +K subsystems for the acquisition, cura-
tion, access, and processing of knowledge addresses a range
of concerns by implementing certain functionality. Figure 4
illustrates how +K functionality is partitioned amongst the
four +K subsystems.

The knowledge acquisition subsystem is primarily con-
cerned with the attainment of information from data, the
mapping of attained information to atomic entities of a con-
ceptual model, and the composition of mapped information
to structured entities of a conceptual model.

There are three modes in which the knowledge acqui-
sition subsystem can attain information from data: acqui-
sition, extraction, and collaborative. In acquisition mode,
it is human agents (actors) that attain information from
data. In extraction mode, it is software agents that attain
information from data. In collaborative mode, human and
software agents attain information from data collabora-
tively. The distinguishing factor is in the procedure used
to attain information from data, in particular the type of
agents involved in the procedure. In extraction mode, the
procedure is automated and involves software agents, exclu-
sively. In acquisition mode, the procedure is not automated
and involves human agents. In collaborative mode, the pro-
cedure is semi-automated and involves both human and
software agents.

The procedure is limited to the task of attaining infor-
mation from data and does not extend to related tasks that
are typically necessary to design or implement (software)
agents involved in the procedure. For instance, a software
agent based on a supervised machine learning algorithm
typically involves human agents in the design phase, e.g. in
the preparation of a labelled dataset used to train the soft-
ware agent. However, the (trained) software agent automates
the task of attaining information from data. Information is
thus attained in extraction mode. A software agent based
on a supervised machine learning algorithm may also be in
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Fig. 4 The +K functionality
and its partitioning amongst the
four +K subsystems

Knowledge

collaborative mode with human agents. For example, this is
the case when it is known that the performance of the soft-
ware agent is insufficient and its result needs to be reviewed
by a human agent.

Resulting from the information attainment process is
attained information. Attained information is, generally, a
value of primitive data type, such as a number or a string.
For instance, the label returned in machine learning clas-
sification is a value and is attained information. Attained
information is subsequently mapped to atomic entities of
a conceptual model. Resulting from the information map-
ping process is mapped information. For instance, attained
information may be mapped to an individual, instance of a
concept. The information attainment and information map-
ping processes are constituents of Aamodt and Nygard’s
data interpretation process. Mapped information is subse-
quently composed to structured entities of a conceptual
model. Resulting from the knowledge composition process
is composed knowledge. Generally, it is specifying rela-
tions between mapped information that results in composed
knowledge. Composed knowledge is itself an individual,
instance of a concept. The knowledge composition process
integrates information into an existing body of knowl-
edge and can thus be understood as Aamodt and Nygard’s
learning process.
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The primary concerns of the knowledge curation sub-
system are knowledge quality checking, knowledge storage
and preservation, knowledge representation, and knowledge
identification. Knowledge quality checking detects and cor-
rects (or removes) inconsistent or inaccurate knowledge. It
may be implemented by software agents, human agents,
or collaboratively. Knowledge storage and preservation
deposits (over the long-term) knowledge according to
specified policies and makes knowledge accessible on
request. It is supported by a knowledge store. Knowl-
edge representation represents knowledge consistently with
relevant conceptual models. It is supported by appropri-
ate languages and technologies. Knowledge identification
assigns global unique identifiers to knowledge.

The primary concerns of the knowledge access sub-
system are knowledge discovery and retrieval as well as
knowledge publication. Functionality for knowledge dis-
covery and retrieval uses suitable search technology to
retrieve requested knowledge from a knowledge resource.
The knowledge resource is, generally, the system associated
with the knowledge storage and preservation functional-
ity, and can be a distributed system of knowledge stores.
The knowledge publication functionality provides clean,
well-annotated, anonymity-preserving knowledge in a suit-
able format, and by following specified publication and
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sharing policies. A publication policy may specify knowl-
edge to be publicly accessible or restricted. Knowledge may
be published for download, typically over the Web. Access
may also be supported via (Web) Application Programming
Interfaces (API).

The knowledge processing subsystem is concerned with
various forms of knowledge processing, in particular knowl-
edge visualization and analysis as well as different types
of reasoning. Generally, assertional knowledge is located in
time and space. Knowledge can thus be visualized along
these two dimensions. Time lines and maps can support such
visualization. Knowledge analysis generally depends on the
domain and problem, which thus define the particular meth-
ods of interest in knowledge analysis. For instance, given
knowledge for drivers travelling roads, statistical analysis
can be used to compute summary statistics, such as mean
driving speed and standard deviation. Given knowledge for
the spatio-temporal location of drivers and knowledge for
the spatio-temporal location of storms, reasoning can infer
knowledge for spatio-temporal locations in which drivers
are at higher risk, implied by storms and drivers that overlap
in space-time.

Extension viewpoints

Following the approach used for ENVRI-RM, we define the
+K extension from the science, information, and computa-
tional viewpoints.

Science viewpoint

The science viewpoint intends to capture the require-
ments for the +K extension from the perspective of peo-
ple, researchers in particular and citizens more generally.
The +K extension defines five communities: knowledge
acquisition, knowledge curation, knowledge publication,
knowledge service provision, and knowledge usage. Each
community is described for its roles and behaviours.

The knowledge acquisition community is who attains
information from data, maps attained information to atomic
entities of a conceptual model, and composes mapped infor-
mation to structured entities of a conceptual model.

Key roles in the knowledge acquisition community
include the expert, attainer, mapper, and composer. Expert
is an active role and is either a domain expert or a com-
puter expert. Domain experts are scientists and researchers
in earth and environmental science, or a related field of sci-
ence. The domain expert is the primary source of domain
knowledge. She defines the knowledge acquisition prob-
lems and provides contextual information relevant to knowl-
edge acquisition. Computer experts implement, deploy, and
maintain sensing devices and sensor networks as well as
computer and software systems. The computer expert is the
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primary source of technical knowledge and is the person
responsible for extending conceptual models and software
in order to implement knowledge acquisition problems.
Domain experts collaborate with computer experts. It is pos-
sible for an individual expert to be both a domain expert and
a computer expert. Information is attained from data by an
attainer, an active or a passive role exerted by an agent that
attains information from data. Of primary interest here is
the passive role of attainer, i.e. the extractor. Extractors are
software agents that can attain information automatically
or in collaboration with human agents. In collaborative
mode, the extractor automatically attains information which
is, however, subsequently revised by human agents—
specifically, by a knowledge curator. The mapper and the
composer are generally passive roles because these tasks
can be automated. In the science viewpoint, the knowl-
edge acquisition subsystem represents a passive role of the
knowledge acquisition community.

Key behaviours of the knowledge acquisition community
include method specifications, knowledge acquisition, con-
ceptual model extension, and software extension. Knowl-
edge acquisition consists of three behaviours: information
attainment, information mapping, and knowledge compo-
sition. These behaviours are performed by the three roles
attainer, mapper, and composer, respectively. Methods are
specified for knowledge acquisition, and attainment, map-
ping, and composition in particular. The complexity of
knowledge acquisition often requires interdisciplinary col-
laboration in method specification, involving both domain
and computer experts. Conceptual model and software
extension are behaviours performed by computer experts.
Conceptual model extension includes the alignment of
domain concepts and relations with those of foundational
conceptual models. Software extension includes the design,
implementation, testing, and deployment of software agents
required for knowledge acquisition.

The knowledge curation community is who curates,
maintains and archives knowledge. Key roles in the knowl-
edge curation community include the knowledge curator,
knowledge representer, knowledge identifier, and knowl-
edge store. The knowledge curator is an active role, a human
agent who verifies the quality of knowledge, preserves and
maintains knowledge as a resource, and prepares various
required knowledge products. The knowledge representer is
a passive role, a software agent that uses languages and tech-
nologies to represent knowledge. The knowledge identifier
is a passive role, a software agent that creates and assigns
identifiers to knowledge. The knowledge store is a passive
role, a software agent that persists and preserves knowledge.
It is most obviously implemented by a knowledge base. In
the science viewpoint, the knowledge curation subsystem
represents a passive role of the knowledge curation commu-
nity. Relevant roles in the knowledge curation community
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are also the storage administrator and the storage, defined
as part of the ENVRI-RM data curation community.

Key behaviours in the knowledge curation community
include knowledge quality checking, knowledge represen-
tation, knowledge identification, knowledge persistence,
knowledge preservation, knowledge replication, knowledge
product generation. Quality checking is typically performed
by an active role, specifically a knowledge curator who
detects and corrects (or removes) inconsistent or inaccurate
knowledge. However, akin to data quality checking, soft-
ware agents may quality check knowledge to some degree.
The required degree of quality control largely depends
on the performance of knowledge acquisition. Knowledge
product generation is a behaviour performed by a knowl-
edge curator who generates knowledge products against
requirement specifications and standardized formats and
descriptions. Knowledge representation, identification, and
persistence are behaviours performed by corresponding
roles (representer, identifier, and store, respectively). In
practice, these behaviours may be performed by one or more
software agents. Knowledge preservation is also concerned
with the preservation of provenance information, in par-
ticular information about the agents and methods involved
in knowledge acquisition and processing. Knowledge repli-
cation is a behaviour performed by a storage administra-
tor who creates, deletes, and maintains the consistency of
copies of knowledge sets on multiple storage devices.

The knowledge publication community is who assists
knowledge publication, discovery and access. Key roles in
the knowledge publication community include the knowl-
edge publication repository and knowledge consumer. The
knowledge publication repository is a passive role, a facility
for the deposition of published knowledge. Knowledge can
be published in various forms, e.g. files for download or an
endpoint for query. Knowledge consumers are roles exerted
by human or software agents that receive and use knowledge
published by knowledge publication repositories. In the sci-
ence viewpoint, the knowledge access subsystem represents
a passive role of the knowledge publication community. A
relevant role in the knowledge publication community is
also the semantic mediator, defined as part of the ENVRI-
RM data publication community.

Key behaviours in the knowledge publication community
include knowledge publication and knowledge discovery
and access. Knowledge publication is a behaviour per-
formed by a knowledge publication repository that provides
clean, well-annotated, anonymity preserving knowledge.
Knowledge discovery and access is a behaviour enabled by a
knowledge access subsystem that retrieves requested knowl-
edge from a knowledge resource by using suitable search
technology.

The knowledge service provision community is who pro-
vides various services, applications and software tools used

to process knowledge. Key roles in the knowledge service
provision community include the knowledge provider and
software engineer. The knowledge provider is an active
or a passive role, an agent that provides knowledge to be
used, primarily in processing. The software engineer is an
active role, a person who implements services, applications,
and software tools for knowledge processing. Knowledge
processing (e.g. in visualization, reasoning, or analysis)
can require domain program logic. Hence the role of
software engineers. In the science viewpoint, the knowl-
edge processing subsystem represents a passive role of the
knowledge service provision community. Relevant roles in
the knowledge service provision community are also the
service provider, service registry, capacity manager, and
service consumer, defined as part of the ENVRI-RM data
service provision community.

Software implementation and knowledge processing are
behaviours of the knowledge service provision community.
Software implementation is a behaviour performed by a
software engineer. Knowledge processing is a behaviour
performed by a service provider that processes knowledge.
Other relevant behaviours, such as service registration and
service composition, overlap with those of the ENVRI-RM
data service provision community.

The knowledge usage community is who makes use
of knowledge and service products, and transfers knowl-
edge into understanding. The roles and behaviours in the
knowledge usage community are the same as those of the
ENVRI-RM data usage community. Relevant roles include
the scientist or researcher, technologist or engineer, edu-
cator, policy or decision maker, industrialist or consultant,
media, citizen, and the general public. Notably, the scien-
tist in the knowledge usage community is a role different
from the domain expert in the knowledge acquisition com-
munity. Compared to the former, the latter performs a role
in knowledge acquisition, for instance in its specification.
Naturally, an individual person may be a scientist in the
knowledge usage community as well as a domain expert in
the knowledge acquisition community.

Information viewpoint

The information viewpoint intends to provide an abstract
model for the shared information objects that are relevant
to the +K extension by specifying their types and relations
between types. The information viewpoint discusses the
following aspects of the extension: components, dynamic
schemata, static schemata, subsystem schemata.

Components The components aspect of the information
viewpoint organizes the elements that are relevant to the
extension into four groups: information objects, information
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action types, information object instances, and knowledge
states.

Information objects are defined to capture three types
of information relevant to the extension. The first type of
information captured by information objects, i.e. meta infor-
mation of knowledge collections, includes specifications
for knowledge acquisition, knowledge curation, knowledge
access, and knowledge processing. Such specifications are
documents and are created by experts. They result from
collaboration between domain and computer experts. A
specification for knowledge acquisition describes the type
of data objects involved in, and the type of knowledge
objects resulting from, knowledge acquisition. Such spec-
ification includes information about the methods used in
information attainment, e.g. information about the algo-
rithms, information for how attained information objects are
mapped to atomic entities of a conceptual model, and infor-
mation for how mapped information objects are composed
to structured entities of a conceptual model. A specification
for knowledge curation documents what is known about the
quality of knowledge acquisition, e.g. the performance of
involved algorithms, and thus the requirements for quality
checking. The specification details the type of knowledge
store, including information about its deployment, con-
figuration, and connection. A specification for knowledge
access describes how knowledge can be accessed and how
knowledge is published. A specification for knowledge
processing documents for what purpose knowledge is pro-
cessed and how processing is achieved, in particular the
involved (software) agents.

The second type of information captured by information
objects, i.e. data and knowledge processed by the system,
includes the types of data objects, attained and mapped
information objects, and composed knowledge objects. Data
objects are the input to knowledge acquisition. Attained
information objects are the result of information attain-
ment. Generally, attained information objects are values of
some primitive data type. For instance, the label returned
in machine learning classification is an attained information
object. Attained information objects are mapped to atomic
entities of a conceptual model. The result are mapped infor-
mation objects. For instance, an attained information object
can be mapped to an individual, instance of a class of
the conceptual model. Finally, mapped information objects
are composed to structured entities of a conceptual model.
The result are composed knowledge objects. Composed
knowledge generally consists of information attained by one
or more extractors, mapped to atomic entities of a con-
ceptual model, and structured by relations among mapped
information.

The third type of information captured by informa-
tion objects, i.e. information used for the management of
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knowledge, includes information for knowledge provenance
used to trace state changes of knowledge in its life-cycle.

Information action types model how knowledge is pro-
cessed in the system. Four action types are concerned with
the creation of specifications for knowledge acquisition,
curation, access, and processing. The most fundamental
information action type is arguably to perform knowl-
edge acquisition, which consists of three information
action types—for information attainment and mapping,
and knowledge composition. Another fundamental infor-
mation action type is to represent composed knowledge,
according to the syntax and semantics of knowledge rep-
resentation languages. Various information action types are
for the management of knowledge, in particular to store,
check the quality, and query knowledge. Another important
information action type is concerned with the process-
ing of knowledge obtained from one or more knowledge
resources. Each of these actions changes the state of knowl-
edge objects. Some of the ENVRI information action types
are also relevant to the extension. Examples include carry
out backup, to replicate knowledge to an additional knowl-
edge storage; assign unique identifier, to obtain a unique
identifier and associate it to knowledge objects; build con-
ceptual models, generally in form of domain concepts that
extend foundational concepts.

Information objects may exist as multiple instances. One
purpose of instances is to record knowledge state changes as
effects of actions. For instance, a knowledge object result-
ing in knowledge acquisition is in state acquired, and as
effect of the process knowledge action the knowledge object
is in state processed. Various knowledge states are relevant
to the extension. The state objects are in during knowledge
acquisition can be recorded using the three states attained,
mapped, and composed. Of particular interest is the knowl-
edge state processed, of which inferred is a specialization.

Dynamic schemata Knowledge acquisition must be spec-
ified and implemented before it can be performed. At a
minimum, the specification must detail what data objects
are relevant to information attainment; the methods involved
in information attainment; how attained information objects
are mapped to atomic entities of a conceptual model; how
mapped information objects are composed to structured
entities of a conceptual model; how conceptual models are
extended with relevant knowledge; and how software is
extended in order to implement required program logic, in
particular software agents that implement knowledge acqui-
sition. Furthermore, conceptual models and, in particular,
software extensions must be implemented.

When knowledge acquisition is implemented, it can be
carried out. The +K extension expects data objects that can
directly serve as input to information attainment, i.e. data
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objects that do not require further data processing prior to
information attainment. In practice, measurement data, i.e.
raw data collected from sensing devices, is seldom fit for
information attainment. Hence, measurement data typically
undergoes a series of data processing steps before the result-
ing data objects can serve as input to information attain-
ment. For instance, measurement data for vibration in road
pavement used to detect vehicles travelling a road section
needs to be processed from time to frequency domain before
vibration patterns can be classified (naturally, the details
depend on the method).

The result of knowledge acquisition is composed knowl-
edge. Handling of composed knowledge includes the store
knowledge action. Stored knowledge can be accessed, qual-
ity assessed, published, and processed.

Information attainment is the first step in the knowledge
life-cycle. Steps following information attainment are infor-
mation mapping and knowledge composition. Composed
knowledge objects are persisted. Persisted knowledge may
be retrieved and processed, in particular reasoned. The steps
in knowledge life-cycles can be represented as knowledge
provenance.

Static schemata Static schemata specify the state of infor-
mation objects at specific time points. Discussed are static
schemata with constraints for knowledge acquisition spec-
ification, conceptual model and software extensions, and
knowledge publication.

Constraints for knowledge acquisition specifications
determine the preconditions required for knowledge acqui-
sition implementation. The specification must record infor-
mation relevant to information attainment, information
mapping, and knowledge composition. For information
attainment, the specification must describe the type of data
object from which information is attained, the methods used
in information attainment, and the resulting type of attained
information object. Of interest is, in particular, information
about the dataset (or stream of) data objects, method con-
figuration and performance in information attainment, and
information about the data type and semantics of attained
information objects. For information mapping, the specifi-
cation must describe the conceptual model and the method
used to map attained information objects to atomic entities
of the conceptual model. Of interest is, in particular, infor-
mation about mapping rules and how mapped information
objects are aligned to the conceptual model. For knowledge
composition, the specification must describe the method
used to compose mapped information to structured entities
of the conceptual model. Of interest is, in particular, infor-
mation about composition rules that govern how mapped
information objects become composed knowledge objects.
Additionally, the specification must record how knowledge

acquisition is implemented, tested, deployed, and executed.
Of interest are, in particular, the programming languages,
unit tests, and deployment platform. Knowledge acquisition
must be implemented, tested, and deployed according to the
specification for knowledge acquisition.

Constraints for conceptual model and software exten-
sions specify the preconditions required for conceptual
model and software adoption into production. Conceptual
models must be validated before adoption. This typically
includes checking their consistency. Inconsistent conceptual
models must be revised. Similar constraints apply to soft-
ware extensions, which at a minimum must be tested using
appropriate unit tests, prior to deployment.

Constraints for knowledge publication specify the pre-
conditions required for preparing knowledge to be (pub-
licly) accessible. In particular, the constraints require that
accessible knowledge is mapped to entities of a conceptual
model, and that the conceptual model is accessible. Knowl-
edge publication also requires that a decision is made that
knowledge can be seen by the public, or by a more restricted
user community.

Subsystem schemata Subsystem schemata organize infor-
mation objects and information action types amongst the +K
subsystems.

Within the knowledge acquisition subsystem, the speci-
fication for knowledge acquisition is the information object
that results from the specify knowledge acquisition infor-
mation action type. Knowledge acquisition is performed on
data objects. Performed are in particular information attain-
ment, information mapping, and knowledge composition.
Each of these information action types results in a cor-
responding information object (the attained, mapped, and
composed information or knowledge objects, respectively).
The result of the perform knowledge acquisition action are
composed knowledge objects.

Within the knowledge curation subsystem, the specifica-
tion for knowledge curation is the information object that
results from the specify knowledge curation information
action type. The store knowledge information action type
stores knowledge objects to a knowledge store. Persisted
knowledge can be quality checked.

Within the knowledge access subsystem, the specifica-
tion for knowledge access is the information object that
results from the specify knowledge access information
action type. Knowledge is accessible as a result of the pub-
lish knowledge or the query knowledge information action
types.

Finally, within the knowledge processing subsystem,
the specification for knowledge processing is the infor-
mation object that results from the specify knowledge
processing information action type. Knowledge is processed
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as a result of the process knowledge information action
type.

The track provenance information action type is applica-
ble to all subsystems. The result of the action is a knowledge
provenance object. Provenance is particularly relevant to the
knowledge acquisition and knowledge processing subsys-
tems.

Computational viewpoint

The computational viewpoint describes the computational
objects of the +K extension and computational object inter-
faces. The computational objects of the extension are orga-
nized according to the four +K subsystems. Following
ENVRI-RM, it is considered that the extension has a bro-
kered, service-oriented architecture. Service objects encap-
sulate functionality and control resources. Brokers oversee
access to services and validate requests. Brokers may also
provide an interoperability layer to facilitate interaction
between heterogeneous components.

The knowledge acquisition subsystem provides function-
ality for attaining information from data objects, mapping
attained information to atomic entities of a conceptual
model, and composing mapped information to structured
entities of a conceptual model. Computationally, knowledge
acquisition is described as sets of information attainers,
information mappers, and knowledge composers associated
with knowledge acquisition controllers.

A knowledge acquisition controller receives and directs
data objects to attainers, attained information to mappers,
and mapped information to composers. Thus, the con-
troller orchestrates knowledge acquisition implemented by
sets of computational objects. Data objects can be pulled
by, or streamed to, knowledge acquisition controllers. A
knowledge acquisition controller returns composed knowl-
edge. Composed knowledge is subsequently forwarded to
the knowledge curation subsystem. A knowledge acquisi-
tion service supports the registration, deregistration, and
execution of knowledge acquisition controllers.

A knowledge attainer receives data objects and attains
information. Its output are attained information objects.
Generally, information is attained by means of computa-
tional models, e.g. data-driven or physically-based models.
Computational models take the role of extractors. However,
a human agent may also attain information. An infor-
mation mapper receives attained information objects and
returns mapped information objects. A knowledge com-
poser receives mapped information objects and returns
composed knowledge objects.

The knowledge curation subsystem provides functional-
ity to persist and preserve knowledge objects. Computa-
tionally, knowledge curation is handled by a set of knowl-
edge store controllers monitored and managed by a set of
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knowledge curation services, specifically knowledge anno-
tation services and knowledge transfer services.

A knowledge annotation service implements the func-
tionality required to annotate knowledge objects. The ser-
vice is primarily intended for use in knowledge quality
checking to update inconsistent or inaccurate knowledge. A
knowledge transfer service supports the registration, dereg-
istration, and execution of knowledge transporters, such as
knowledge collectors, importers, and exporters. Knowledge
objects can be pulled by, or streamed to, knowledge trans-
porters, which associate with knowledge store controllers to
persist knowledge objects. A knowledge collector receives
knowledge objects returned by one or more knowledge
acquisition services and directs knowledge objects to asso-
ciated knowledge store controllers. Knowledge importers
and knowledge exporters are intended for import and export
of knowledge objects from or to an external destination.
Knowledge objects are streamed to, or retrieved from,
knowledge store controllers.

The knowledge access subsystem provides knowledge
brokers that act as intermediaries for access to knowl-
edge objects managed by the knowledge curation subsys-
tem. Knowledge brokers intercede between the knowledge
access subsystem and the knowledge curation subsystem.
They implement the functionality required to negotiate
knowledge object transfer and requests directed at knowl-
edge curation services on behalf of agents. Knowledge
brokers are responsible for verifying the agents making
access requests and for validating those requests prior to
directing them to the relevant knowledge curation service.

The knowledge processing subsystem is computation-
ally described as a set of knowledge processing controllers
monitored and managed by a knowledge processing coordi-
nation service. The coordination service delegates process-
ing tasks obtained by the knowledge processing subsystem
to particular execution resources. A knowledge process-
ing controller encapsulates functions required for executing
resources. An execution resource is a computing platform
that can host processes.

Discussion

We have briefly summarized the ENVRI Reference Model,
ENVRI-RM. It is a model for the ‘archetypical’ environ-
mental research infrastructure, distilled through the analysis
of several concrete infrastructures. We have highlighted that
the model is primarily concerned with data, data acquired in
measurement or observation, and the curation, access, and
processing of data.

We developed an extension to ENVRI-RM for the
acquisition of knowledge from (processed) data, and the
curation, access, and processing of knowledge. We called
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the extension +K, and argued that it may be superim-
posed on ENVRI-RM to form ENVRI-RM+K, a model for
the ‘archetypical’ environmental research infrastructure that
goes beyond data to include processes that acquire knowl-
edge from data as well as processes for the representation,
persistence, retrieval, analysis, visualization, inference of
knowledge.

The purpose of this paper, and our main contribution,
is to propose a possible model for a knowledge extension
to ENVRI-RM. It is a contribution to ongoing discussions
within a community of researchers who aim at a practical
and clear architecture for environmental research infras-
tructure. We raise the question, and suggest a possible
approach, for what happens to knowledge that is obtained
in processing data curated by an environmental research
infrastructure.

ENVRI-RM includes data mining as a functionality of
the data processing subsystem. It also states that the data
service provision community is “who provides various ser-
vices, applications and software/tools to link and recombine
data and information in order to derive knowledge.” How-
ever, the model does not specify how that which results
from data mining, i.e. derived knowledge, ought to be man-
aged by an environmental research infrastructure, if at all.
Our claim is that, beyond data, an environmental research
infrastructure can, and perhaps should, manage derived
knowledge. An infrastructure that does manage derived
knowledge is a knowledge-based environmental research
infrastructure.

To evaluate the implications of managing knowledge
derived from data in a knowledge-based environmental
research infrastructure is arguably an interesting research
topic in its own right. We shortly discuss two implications
that in our opinion are particularly interesting. First, the
knowledge-based environmental research infrastructure acts
as an integrated repository and processing infrastructure for
scientific knowledge derived from data. Second, the explicit
representation of derived knowledge, i.e. machine inter-
pretable knowledge, enables the knowledge-based environ-
mental research infrastructure to use existing knowledge
and automatically perform computations on knowledge to
derive new knowledge.

ENVRI-RM underscores the importance of an integrated
repository and processing infrastructure for scientific data.
The infrastructure acts as a resource which the scientific
community can access to retrieve integrated quality scien-
tific data. The community utilizes such data in scientific
studies. The result of such studies is information, knowl-
edge, and understanding. Such results are generally commu-
nicated through scientific articles or other documents, using
natural language, figures, tables, or other means. As a result,
information and knowledge is dispersed and represented
heterogeneously. ENVRI-RM is a model for infrastructure

that addresses the problem of dispersed scientific data of
heterogeneous format and quality. The +K extension to
ENVRI-RM is a model for infrastructure that addresses the
problem of dispersed scientific knowledge of heterogeneous
format and quality. Furthermore, by representing derived
knowledge explicitly using methods in knowledge represen-
tation and reasoning the knowledge-based environmental
research infrastructure “has knowledge — it’s ‘own’ knowl-
edge — and ways of processing that knowledge” (Aamodt
and Nygard 1995). The infrastructure is thus equipped with
functionality that not just supports retrieval and discovery
of knowledge; it is also equipped with functionality that can
automatically process knowledge, including the deductive
inference of implicit knowledge.

The proposed +K extension does not address certain
important aspects. First, it does not determine technolog-
ical aspects of knowledge representation and reasoning,
knowledge representation languages, as well as related tech-
nologies for the management, retrieval, and inference of
knowledge. Second, the +K extension does not specify the
types of knowledge that are of concern to the model. We
discuss these two aspects in more details next and high-
light some concrete technological choices and knowledge
types of interest. We underscore that concrete implementa-
tions of the +K extension are not limited to the technologies
discussed here and may opt for alternatives.

The suite of technologies developed within the W3C
Semantic Web Activity’ (Berners-Lee et al. 2001)
can arguably address knowledge representation and, to
some extent, reasoning in knowledge-based environmental
research infrastructure. The Resource Description Frame-
work (RDF) is a flexible graph (meta-)data model (Lassila
and Swick 1999; Cyganiak et al. 2014b). Its basic construct,
the RDF statement, is a structure consisting of a predicate
that relates a subject to an object. Subjects and objects are
resources, either an Internationalized Resource Identifier
(IRI) (Diirst and Suignard 2005) or, in the case of objects, a
(typed) literal, such as a string or an integer. A set of RDF
statements forms an RDF graph, most intuitively visualized
by directed arcs for the predicates relating subjects with
objects. RDF was developed as a metadata model for Web
resources, such as a Web page that is the subject about which
RDF statements state something (e.g. its author). However,
RDF resources are more general and include anything to
which an IRI can be assigned, including physical things,
such as a sensing device, or abstract concepts, such as ambi-
ent air. We can thus use RDF to state what is known about
a sensing device, such as the observed property, or a par-
ticular volume of ambient air, such as temperature and rel-
ative humidity. In concrete +K implementations, RDF can
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serve as data model for knowledge acquired from processed
data.

RDF Schema (RDFS) (Brickley and Guha 2004; 2014)
and the Web Ontology Language (OWL) (W3C OWL
Working Group 2012; 2009) are languages for the descrip-
tion of the concepts and relations of conceptual models.
Descriptions have formal semantics and are axioms of
an ontology (Gruber 1993; Baader et al. 2007). RDFS
introduces the basic building blocks of a language for
constructing ontologies, such as constructs for grouping
RDF resources into classes or building class hierarchies.
OWL builds on RDFS and introduces further language
constructs, such as those for stating class equivalence or
disjointness and for complex class descriptions. OWL is
thus more expressive than RDFS. In concrete +K imple-
mentations, RDFS and OWL can support the construction
of ontologies. Knowledge acquired from processed data is
represented conformant to selected ontologies. There exist
specialized ontologies for domains of interest to knowledge-
based environmental research infrastructure, for instance the
Semantic Sensor Network ontology (Compton et al. 2012),
the RDF Data Cube Vocabulary (Cyganiak et al. 2014a),
GeoSPARQL (Perry and Herring 2012), OWL-Time (Hobbs
and Pan 2006), and the PROV-O provenance ontology (Lebo
et al. 2013).

Of interest to +K implementations that adopt RDF,
RDFS, and OWL are also RDF databases for the curation of
knowledge, SPARQL (Prud’hommeaux and Seaborne 2008)
endpoints for access to knowledge, and OWL reasoners and
rule languages for knowledge inference. There is a plethora
of software available for knowledge curation, access, and
inference. Examples include the Stardog RDF database,’
Apache Jena,” Profium Sense,® Sesame,’ Pellet (Sirin et al.
2007),10 HermiT (Shearer et al. 2008),!! and the Semantic
Web Rule Language (Horrocks et al. 2004).

The second aspect we shortly discuss is that of knowl-
edge types of concern to the +K extension. In other words,
knowledge about what is, concretely, acquired from data?
Of particular interest is arguably knowledge about envi-
ronmental phenomena observed in monitored volumes of
space-time. In other words, knowledge about a monitored
part of reality. In Situation Theory (Barwise and Perry 1980;
1981; Devlin 1991) a (structured) part of reality is called a

Shttp://stardog.com
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@ Springer

situation. The concept of situation, as developed in Situation
Theory and formalized in OWL by the Situation Theory
Ontology (Kokar et al. 2009), can thus be useful for the
representation of knowledge about monitored environmen-
tal phenomena. Knowledge is then, specifically, situational
knowledge. Applications in this context have been devel-
oped by Stocker et al. (2014b) for vehicles detected and
classified in road-pavement vibration data; Stocker et al.
(2014a) for atmospheric new particle formation detected
and classified in data for particle size distribution of poly-
disperse aerosols; (Stocker et al., Plant disease pressure
situation modelling in agriculture Computers and Electron-
ics in Agriculture, in review) for plant disease pressure in
agriculture computed from weather data using a physically-
based model; Clemente et al. (2013) for collision avoidance
of ships in harbour areas; Fenza et al. (2010) for airport
security; De Maio et al. (2012) for intrusion detection in a
video-surveilled area of a bank; Doulaverakis et al. (2011)
for security and surveillance. Relevant in this context are
also theories of situation awareness (Endsley 1995; Stanton
et al. 2006).

Naturally, knowledge about environmental phenomena
observed in monitored volumes of space-time can be for-
malized with concepts other than that of situation, as
described, in particular, in Situation Theory. A possible
alternative to the concept of situation is the concept of
event, which has been used in conjunction with Complex
Event Processing techniques (Luckham 2002) in systems
aimed at the detection of events from sensor data (Taylor
and Leidinger 2011; Llaves and Kuhn 2014). An analy-
sis that contrasts the concepts of situation and event is
beyond the scope of this paper. However, we highlight Riker
(1957) who called situations “the boundaries of events” and
events the action occurring between situations, which seems
to suggest that situations are snapshots and events make
situations transition into new situations.

An (OWL) ontology is a knowledge base composed
of a terminological box and an assertional box (Baader
et al. 2007). The terminological box consists of axioms that
describe the concepts and relations of a particular domain.
For instance, the terminological box of the Semantic Sen-
sor Network ontology specifies that a sensing device is a
subclass of the sensor and device classes. The terminolog-
ical box may also contain rules relevant to the domain. In
contrast, the assertional box consists of assertions, specifi-
cally concept and role assertions. Concept assertions state
the class membership of individuals. For instance, a con-
cept assertion may state that a particular thermometer is an
individual instance of the (SSN) sensing device class. Role
assertions state role relationships between two individuals.
For instance, a role assertion may state that a particular
thermometer observes temperature, which is a particular
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Knowledge acquired from processed data curated by
knowledge-based environmental research infrastructure
may be either terminological or assertional. In the particular
case of situational knowledge, acquired knowledge is
generally assertional, i.e. assertions about individual sit-
uations observed in volumes of space-time. However,
a knowledge-based environmental research infrastructure
may also acquire terminological knowledge from data, such
as the threshold value for an atom of a rule. This was exem-
plified, e.g., by Stocker et al. (2011) who learn from data
the threshold value for rules that classify lakes according to
nutrient status.

In addition to knowledge about environmental phenom-
ena observed in monitored volumes of space-time, of inter-
est may also be knowledge about the environmental research
infrastructure. Technicians may for instance be interested in
the state of sensors; storage administrators require informa-
tion about the state of the storage; engineers need to monitor
the IT capacity of the infrastructure. Thus, knowledge about
the environmental research infrastructure, and its compu-
tational objects in particular, is relevant to several roles of
the ENVRI-RM+K model. Some of the required knowledge
may be acquired from data curated by the infrastructure.
However, of primary interest to the +K extension is arguably
knowledge about environmental phenomena observed in
monitored volumes of space-time, rather than knowledge
about the environmental research infrastructure. This focus
is certainly evident at least in our related work.

Case study

In this section we describe how the presented +K model
applies to a case. The case is for the acquisition of situa-
tional knowledge for atmospheric new particle formation,
from data for particle size distribution of polydisperse
aerosols (Stocker et al. 2013, 2014a). We highlight the +K
subsystems and functionality most relevant to the case, and
discuss the case from the three +K viewpoints: science,
information, and computational. As it clearly involves an
environmental research infrastructure with a science com-
munity, it is arguably the most suitable case among the three
cases we have developed so far. The other two are in intelli-
gent transportation systems (Stocker et al. 2012, 2014b) and
agricultural science (Stocker et al., Plant disease pressure
situation modelling in agriculture Computers and Electron-
ics in Agriculture, in review).

During new particle formation events, newly formed
nano-sized particles grow through condensation and coag-
ulation processes (Kulmala et al. 2004). Aerosol scien-
tists study these atmospheric events for the impact of the
resulting larger particles on climate and human health.
The study of the events includes their identification and

characterization, in analysis of measurement data for parti-
cle size distribution of polydisperse aerosols.

The case employs Situation Theory and Semantic Web
technologies. Identified and characterized new particle
formation events are thus modelled as situations. Situational
knowledge is acquired from data using machine learning
classification and is represented using relevant technologies
and ontologies, in particular the Situation Theory Ontol-
ogy. The task for classifiers is to determine whether a new
particle formation event occurred during a particular day
(classes E and NE, for the identification task) and, had
an event occurred, to determine the clarity of the event as
either strong, intermediate, or weak (classes 1, 2, and 3,
respectively, for the characterization task).

Subsystems

The most relevant +K subsystems are knowledge acquisi-
tion and knowledge curation. Stocker et al. (2014a) also dis-
cuss forms of situational knowledge processing. In contrast,
the description here is limited to knowledge acquisition and
curation. In knowledge acquisition, relevant functionality is
information attainment, information mapping, and knowl-
edge composition. This process involves machine learning
classification of data to attain information, and the compo-
sition of information mapped to atomic entities of the Situ-
ation Theory Ontology to situational knowledge. In knowl-
edge curation, relevant functionality is knowledge identifi-
cation, knowledge representation, and knowledge storage.
Knowledge representation is by means of Semantic Web
technologies, in particular the Web Ontology Language.
Knowledge storage is enabled by a third-party knowledge
base.

Science viewpoint

We describe the communities that are relevant to the case
study, in particular the knowledge acquisition and knowl-
edge curation communities. Table 1 provides a schematic
overview.

Key roles in the knowledge acquisition community are
those of aerosol scientist and software engineer. Aerosol sci-
entists are domain experts and define new particle formation
identification and characterization from data for particle
size distribution to be a knowledge acquisition problem.
They provide contextual information about new particle
formation as well as access to data for particle size distribu-
tion as measured at particular locations over time. Software
engineers are computer experts who interact with aerosol
scientists to extend conceptual models with domain knowl-
edge and develop software artifacts that implement domain
program logic. Other relevant roles in the knowledge acqui-
sition community are the attainer, mapper, and composer.
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Table 1 Communities, roles, and behaviours of the science viewpoint that are of primary interest to the case study

Communities

Knowledge acquisition

Knowledge curation

Roles Behaviours

Roles Behaviours

Aerosol scientist
Software engineer Conceptual model extension
Software extension
Extractor Knowledge acquisition
Mapper

Composer

Method specification for knowledge acquisition

Knowledge representer Knowledge identification

Knowledge identifier Knowledge representation
Knowledge store Knowledge persistence

Knowledge preservation

The attainer is, specifically, an extractor. The three roles are
passive, associated with software agents.

Key behaviours in the knowledge acquisition community
include method specification for knowledge acquisition,
conceptual model and software extension, and knowledge
acquisition. Method specification for knowledge acquisi-
tion is a behaviour performed by aerosol scientists in
collaboration with software engineers. Conceptual model
and software extension are behaviours performed by soft-
ware engineers. Conceptual model extension includes, for
instance, the concept assertion that states that npf (for ‘new
particle formation’) is an instance of the class Relation,
as defined by the Situation Theory Ontology.

Key roles in the knowledge curation community are the
knowledge representer, knowledge identifier, and knowl-
edge store. The three roles are passive, associated with soft-
ware agents. The knowledge representer uses relevant OWL
ontologies and RDF to represent situational knowledge for
new particle formation events. Knowledge is identified by
means of IRIs assigned to RDF resources. The knowledge
store persists and preserves situational knowledge and is
implemented by the Stardog RDF database.

Information viewpoint

We describe the information objects and information action
types that are relevant to the case study, and the dynamic
schemata for knowledge acquisition, representation, and
persistence. Table 2 provides a schematic overview.

Knowledge acquisition is specified and implemented
before it is performed. Thus, we first determine what data
objects are relevant to information attainment; the methods
involved in information attainment; how attained informa-
tion objects are mapped to atomic entities of a conceptual
model; how mapped information objects are composed to
structured entities of a conceptual model; how conceptual
models are extended with relevant domain knowledge; and
how software is extended to implement required program
logic. We then implement and test the specified conceptual
model and software extensions.

Knowledge is acquired from dataset observations.
A dataset observation is an information object, more
accurately an instance of a type of data object with seman-
tics conformant to the concept Observation as defined
by the RDF Data Cube Vocabulary. Composed knowledge
are situations. A situation is an information object, more
accurately an instance of a type of knowledge object with
semantics conformat to the concept Situation as defined
by the Situation Theory Ontology.

Information is attained by classifying dataset observa-
tions using Multi-Layer Perceptron (MLP) artificial neural
networks, which are trained to identify and characterize new
particle formation events. Dataset observations are vectors,
and result in processing daily data for measured particle size
distribution. The daily data matrix is processed to a daily
vector using Singular Value Decomposition.

The perform information attainment information action
type classifies dataset observations. This results in an

Table 2 Information objects

and information action types of Information objects

Information action types

the information viewpoint that
are of primary interest to the
case study Dataset observation
Attained information object
Mapped information object

Situation

Specification for knowledge acquisition

Perform information attainment
Perform information mapping
Perform knowledge composition
Represent knowledge

Store knowledge

@ Springer



Earth Sci Inform (2016) 9:47-65

63

Table 3 Computational
objects of the computational
viewpoint that are of primary
interest to the case study

Computational objects Input Output
Situation engine Dataset observations Situations
Learning module Dataset observations Situations

Information attainer
Information mapper
Knowledge composer
Situation writer

Store module

Knowledge base

Dataset observations
Attained information
Mapped information
Situations
Situations

Situations

Attained information
Mapped information
Situations
Situations

Situations

attained information object, i.e. a value in {NE, 1, 2, 3}. For
values in {1, 2, 3}, the perform information mapping infor-
mation action type maps the attained information object
to an atomic entity of a conceptual model, specifically an
individual instance of the concept Value as defined by
the Situation Theory Ontology. In addition, the value for
the temporal location (i.e. the day) provided by the dataset
observation is also mapped to an individual, instance of the
concept Interval as defined by OWL-Time.

The perform knowledge composition information action
type composes the information objects ¢ and ¢ for the
event class and temporal location, respectively; the indi-
vidual npf, instance of the class Relation; an individ-
ual instance of the class Situation and an individual
instance of the class ElementaryInfon as defined by
the Situation Theory Ontology, both created at this stage,
to situational knowledge, i.e. a situation. Composition is
achieved by relating individuals so as to state that the situ-
ation supports the (elementary) infon with objects ¢ and ¢
standing in the npf-relation. In plain English, the situation
states that on day ¢ an event of new particle formation with
clarity ¢ occurred.

The represent knowledge information action type repre-
sents situations according to relevant OWL ontologies in
RDF. Finally, the store knowledge information action type
persists situations to the knowledge base.

Computational viewpoint

We describe the computational objects that are relevant to
the case study, in particular the situation engine, the situa-
tion writer, the learning module, the store module, and the
knowledge base. Table 3 provides a schematic overview.
The situation engine is a computational object of the
knowledge acquisition subsystem, more accurately a knowl-
edge acquisition controller. It obtains dataset observations
and returns situations. Its main purpose is to orchestrate
situational knowledge acquisition from data using one or
more learning modules. A learning module is a further com-
putational object of the knowledge acquisition subsystem.

It implements an information attainer, information map-
per, and knowledge composer. The information attainer is
backed by a computational model for information extrac-
tion from data. In the case presented here, we developed a
situation engine with learning module that implements an
information attainer backed by the trained machine learning
models used to classify dataset observation, and designed to
identify and characterize new particle formation.

The situation writer is a computational object of the
knowledge curation subsystem, more accurately a knowl-
edge collector that receives situations returned by one or
more situation engines, and directs situations to associated
store modules. The store module is a further computa-
tional object of the knowledge curation subsystem, more
accurately a knowledge store controller. The store module
encapsulates the interface required to interact with knowl-
edge stores. The interface supports adding, updating, and
removing situations. The knowledge store is implemented
by the Stardog RDF database, which serves as a knowledge
base for (situational) knowledge.

Conclusion

Analyzing the ENVRI Reference Model, ENVRI-RM, a
model for the ‘archetypical’ environmental research infras-
tructure and a result of the ENVRI project, we have
highlighted how ENVRI-RM is primarily concerned with
data, its acquisition, curation, access, and processing. The
model covers the data life-cycle in environmental research
infrastructure.

With data mining and analysis, ENVRI-RM includes
functionality for the processing of data aimed at obtain-
ing knowledge. However, ENVRI-RM does not cover the
knowledge life-cycle in environmental research infrastruc-
ture. In particular, ENVRI-RM does not detail knowledge
acquisition, its curation, access, and processing.

We have presented an extension to ENVRI-RM for the
acquisition of knowledge from processed data, and the
curation, access, and processing of knowledge. We named
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the extension +K, which stands for plus knowledge. The
extension aims at addressing the knowledge life-cycle in
environmental research infrastructure and describes, in par-
ticular, in more details how knowledge is acquired from
data by describing intermediate steps of information attain-
ment and mapping, and knowledge composition. We argue
that the +K model can be superimposed on ENVRI-RM
to form the ENVRI-RM+K model. In fact, some of the
ENVRI-RM model elements are directly useful to the +K
extension. ENVRI-RM+K may be understood as a reference
model for the ‘archetypical’ knowledge-based environmen-
tal research infrastructure.

To demonstrate the application of the +K model, we
have discussed the three viewpoints for a concrete case
study in which knowledge acquisition is for events of atmo-
spheric new particle formation, and knowledge is acquired
from data for particle size distribution of polydisperse
aerosols.

This work contributes to ongoing discussions in research
aimed at models and implementations of environmental
research infrastructure. In particular, it aims at moving
beyond data to consider how knowledge may be acquired
from data and managed within an environmental research
infrastructure. In discussing retrieval, discovery, and reason-
ing, the presented work also underscores some of the poten-
tial benefits of knowledge representation in environmental
research infrastructure.
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