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Roadvehicle detection and, to a lesser extent, classification have received considerable attention, in particular for the purpose
of traffic monitoring by transportation authorities. A multitude of sensors and systems have been developed to assist people
in traffic monitoring. Camera-based systems have enjoyed wide adoption over the last decade, partially substituting for more
traditional techniques. Methods based on road-pavement vibration are not as common as camera-based systems. However,
vibration sensors may be of interest when sensors must be out of sight and insensitive to environmental conditions, such as
fog. We present and discuss our work on detection and classification of vehicles by measurement of road-pavement vibration
and by means of supervised machine learning. We describe the entire processing chain from sensor data acquisition to
vehicle classification and discuss our results for the task of vehicle detection and the task of vehicle classification separately.
Using data for a single vibration sensor, our results show a performance ranging between 94% and near 100% for the
detection task (1340 samples) and between 43% and 86% for the classification task (experiment specific, between 454 and

1243 samples).

Keywords Digital Signal Processing; Machine Learning; Road Vehicle Detection and Classification; Vibration Sensors

INTRODUCTION

We describe the tasks of (a) detection and (b) classification of
road vehicles by measurement of road-pavement vibration and
by means of supervised machine learning, in particular multi-
layer perceptron (MLP) feed-forward artificial neural networks
(ANN). The presented experiments are part of a platform for
the monitoring of an operational environment. The platform is
used to develop information systems for situation awareness
and security applications. It is located at the training area of the
Emergency Services College, Kuopio, Finland. It includes sen-
sors and systems to detect chemical emissions in water, outdoor
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and indoor air, as well as sensors intended for vehicle access
control.

There has been considerable research into vehicle detec-
tion and/or classification (Gupte, Masoud, Martin, & Pa-
panikolopoulos, 2002), in particular for the purpose of traf-
fic monitoring in intelligent transportation systems (Mimbela
& Klein, 2000). A number of techniques and sensors have
been proposed, ranging among vision-based detectors (Gupte
et al., 2002; Hsieh, Yu, Chen, & Hu, 2006; Lai, Fung, & Yung,
2001; Wu, QiSen, & Mingjun, 2001); inductive loop detectors
(Gajda, Sroka, Stencel, Wajda, & Zeglen, 2001; Mimbela &
Klein, 2000), acoustic signature analysis (Kozhisseri & Bik-
dash, 2009; Nooralahiyan, Dougherty, McKeown, & Kirby,
1997; Mimbela & Klein, 2000; Takechi, Sugimoto, Mandono, &
Sawada, 2004), vehicle axle sensors (Gajda et al., 2001), pneu-
matic road tube (Mimbela & Klein, 2000), piezoelectric sensors
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(Mimbela & Klein, 2000), millimeterwave (microwave radar)
sensors (Mimbela & Klein, 2000; Nussler, Essen, & Buth,
2005), accelerometer sensors (Bajwa, Rajagopal, Varaiya, &
Kavaler, 2011), laser range sensors (Harlow & Peng, 2001),
magnetic field sensors (Haoui, Kavaler, & Varaiya, 2008; Mim-
bela & Klein, 2000), weigh-in-motion systems (Mimbela &
Klein, 2000), and infrared and ultrasonic sensors (Mimbela &
Klein, 2000). In particular for the purposes of driver assistance
(Sun, Bebis, & Miller, 2004, 2006), traffic monitoring (Hsieh
et al., 2006), and auto-toll systems (Lai et al., 2001) the appli-
cation of vision-based vehicle detection has received consider-
able attention. Vehicle detection and classification have been of
importance also to security purposes (Jackowski & Wantoch-
Rekowski, 2005; Niissler et al., 2005).

Each of the techniques has advantages and disadvantages
(Mimbela & Klein, 2000). For instance, inductive loop detectors
are insensitive to weather conditions (Harlow & Peng, 2001) but
are intrusive, have high installation and maintenance costs (Ba-
jwaet al., 2011), and may lead to inaccurate results (Kozhisseri
& Bikdash, 2009), for example, in detecting truck axles as sep-
arate vehicles (Harlow & Peng, 2001). In contrast, vision-based
systems are sensitive to environmental conditions and must be in
line of sight (Kozhisseri & Bikdash, 2009) but are nonintrusive
(Bajwa et al., 2011).

Being a more difficult task (Nooralahiyan et al., 1997), ve-
hicle classification has, compared to vehicle detection, received
less attention (Gupte et al., 2002), even though the class of a ve-
hicle is considered to be an important parameter for road-traffic
monitoring or for access control (Gajda et al., 2001).

Using vibration (accelerometer) sensors to monitor pave-
ment acceleration and magnetometer sensors for vehicle detec-
tion, Bajwa et al. (2011) propose a novel algorithm to estimate
axle count and spacing for trucks. Based on a distribution of
estimated axle spacing, the authors found in their data three
distinctive clusters that can be attributed to groups of trucks.
Hostettler et al. also studied vehicle axles detection using road-
pavement vibration (Hostettler, Birk, & Nordenvaad, 2010).
The method presented in this article relates to that discussed
by Bajwa et al. and Hostettler et al. in that the three studies
rely on road-pavement vibration induced by vehicles. Contrary
to Bajwa et al. and Hostettler et al., who developed “white
box” models, we use supervised machine learning to classify
the frequency profile of measured vibration and, thus, adopt
“black-box” modeling. Supervised machine learning has been
used for road vehicle detection and classification (Jackowski &
Wantoch-Rekowski, 2005; Nooralahiyan et al., 1997; Wu et al.,
2001).

Jackowski and Wantoch-Rekowski (2005) discuss the prob-
lem of using artificial neural networks for military vehicle
classification using ground vibration. The authors compute the
coefficients of a five-order linear predictive coding (LPC) (Gray,
2010) model from the vibration signal. LPC is a technique used
in speech processing (Nooralahiyan et al., 1997). The five coeffi-
cients are then used to train a multilayer artificial neural network

intelligent transportation systems

M. STOCKER ET AL.

with two outputs, one for light and one for heavy vehicles (>
12,000 kg).

Wu et al. (2001) extract a vehicle model consisting of 29
structural parameters corresponding to vehicles in images cap-
tured by CCD cameras. The authors compute a set of vertices
from vehicle structural parameters and the distance between
pairs of vertices, for example, the distance between two ver-
tices for the vehicle roof plane width. The computed distances
between pairs of vertices are used as features in training a multi-
layer perceptron (MLP) feed-forward artificial neural network.

Nooralahiyan et al. (1997) use a directional microphone, LPC
to extract features, and a time-delay neural network (TDNN) to
classify road vehicles based on their (speed-independent) acous-
tic signature. Aside from LPC, the authors also investigated
auditory model processing (a computational model of hearing)
and Fourier-transform digital signal processing techniques. In
addition to the supervised TDNN, the unsupervised Kohonen
network (self-organizing map, Kohonen, 1982) was also tested.

We investigate methods based on vibration data because,
contrary to vision-based techniques, vibration sensors can be
deployed in an area such that they are out of sight. Further, they
are insensitive to environmental conditions that impair visibility,
such as fog or darkness. Our experimental setting is one of low-
traffic, that is, occasional events, and a restricted-access area.
Hence, we argue that the discussed materials and methods are of
particular interest to security applications, such as monitoring
of activity in, and detection of unauthorized access to, restricted
areas. The main contributions of this study are that (a) we show
how road-pavement vibration can be utilized to reliably detect
road vehicles, and (b) to a lesser extent classify vehicles, and
(c) we describe the entire processing chain from sensor data
acquisition to validated classification results for (d) a relatively
large study including almost 2000 events acquired from 5 billion
vibration measurement values and a total amount of 1.7 TB of
data. Limitations of this study include (a) the use of only one
sensor, (b) method development and evaluation specifically for
a low-traffic road, and (c) the use of vibration data only for
summer road conditions.

MATERIALS AND METHODS

We used a CEF C3MO1 vibration sensor developed by
Control Express Finland (CEF) Oy for condition monitoring
and machinery maintenance. (CEF C3MO01 vibration sensors
are now manufactured by Webrosensor Oy as WBS CM301.)
The sensor was installed at the side of a road (62.83124357N
27.51529644E, WGS84), mounted on a metal bar that pen-
etrated approximately 1m horizontally into the ground about
0.3m below the paved road surface. Figure 1 pictures how the
sensor was installed at the side of the road. Figure 2 shows the
camera perspective over the test area; the location of the vibra-
tion sensor approximately coincided with the position of the fire
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Figurel The sensor was mounted on a metal bar that penetrated approximately
1 m horizontally into the ground about 0.3 m below the paved road surface. In
this image, the pavement extended from the upper right corner. Visible are the
sensor, the left end of the metal bar, the Ethernet cable, and a roadside marker
that located the sensor in the environment.

truck on the road. CEF C3MO1 vibration sensors measure the
acceleration of monitored objects. Specifically, in this study the
sensor was used to measure road-pavement vibration, in particu-
lar also vibration induced by vehicles. The sensor was connected
to (and was powered by) an Ethernet network. It served sam-
pled data encoded as Waveform Audio File Format (WAVE)
(IBM Corporation & Microsoft Corporation, 1991) over HTTP
(Internet Engineering Task Force, 1999).

To visually monitor the road we employed an AXIS 211W
wireless network camera with an outdoor antenna kit AXIS

1 1A

A S

Figure2 Example cameraimage that shows the test area. The vibration sensor
was installed at the right side of the road approximately where the moving fire
truck is located in the picture. The camera was positioned on top of a viewpoint
tower located near the monitored road section.

intelligent transportation systems
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211W (62.83069255N 27.51415649E, WGS84). The camera
served JPEG (ISO/IEC JTC 1/SC 29, 2009) images (640 x 480
pixels) over HTTP. Note that images were acquired for the sole
purpose of creating a labeled data set and thus are not used in
machine learning.

Software was developed in Java. We used the Modular Au-
dio Recognition Framework (MAREF, version 0.3.0) for digital
signal processing (bandpass filter and FFT). For machine
learning we used WEKA (version 3.6.5) (Hall et al,
2009). We have tested multiple data sampling methods,
preprocessing techniques, and classification algorithms. Com-
putations were performed on an Intel Core 2 central process-
ing unit (CPU) at 3.16 GHz with 8 GB RAM and an Ubuntu
11.04 Linux operating system. Thus, sensor data were pro-
cessed by a single computer and time stamps assigned to data
are assumed to be synchronized. Sensor data were stored to
a 2-TB hard disk by Samsung Electronics Co., Ltd (model
HD204UI).

The methods used to build training data sets from vibration
data are presented next. Figure 3 gives a diagram that summa-
rizes the steps.

Sensor Data Acquisition

We developed software to continuously acquire, parse, and
store both vibration and camera data. Measurement sampling
rate for the CEF C3MO1 vibration sensor was set to 2000 Hz
and measurement session duration to 600 s. A new connection
was initialized automatically at the close of a measurement ses-
sion. Vibration data were processed by means of a customized
WAVE parser. After parsing, vibration data were available as
a stream of tuples (¢, v) where ¢ is a time stamp and v a dou-
ble value for the measured acceleration at ¢. Apache Cassandra
with a customized data model for time-series data, keyed by time
UUID (Internet Engineering Task Force, 2005) at microsecond
resolution, was used to persistently store tuples (¢, v) of vibra-
tion data. JPEG images served by the AXIS 211W camera at
a variable 1-3 frames per second (depending on the available
network bandwidth) were stored as individual files to disk. The
time upon writing, in milliseconds, was used as the image file
name.

Vibration Event Localization

To software-assist the localization of vibration event(s) of
interest, Ey, that is, road-pavement vibration induced by vehi-
cles, we developed software that, in essence, implemented an
iterative window operation over vibration data stored in Apache
Cassandra. The size of the window, W, was set to 24 = 16, 384
measurement values, that is, 8.192s (at 2000 Hz). Figure 4a
shows an example of raw vibration data for a window that con-
tains an event-of-interest. In comparison, Figure 4b shows an
example of raw vibration data for a window that does not contain
an event-of-interest. We iteratively queried Apache Cassandra
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over stored vibration data

A Y

Unlabelled dataset with data
and metadata for each E
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<

crementing

r terminate Does W contain E?
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a 80-130 Hz b

Build W_F from W using
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Y
Labelled dataset construction
by manual labelling of each E

Training dataset construction
for specific experiments

Classifier

and evaluation

training

Figure 3 Overview diagram of the presented method we adopted to build traini
manner, and evaluated for specific experiments.

for data in the time interval [f;, t; + 11s]. The first 16,384
measurement values formed W;. At each iteration, #; was in-
creased by 5s, that is, ;1| = #; + 5s, in order to form the
next query interval [#; 11, f;+; + 11s], of which the first 16,384
measurement values formed W, ;.

For each W we applied a bandpass filter between 100 Hz
and 160 Hz. We refer to a filtered window as Wg. In pre-
liminary work, using manual spectrogram analysis of multiple
windows W; containing an event of interest, we discovered (a)
strong spectral density at 50 Hz, attributable to electric power,
and (b) spectral density for frequencies corresponding to road-
pavement vibration between approximately 100 Hz and 160
Hz. Thus, we applied a bandpass filter to enhance the signal
between 100 Hz and 160 Hz. Experimentally we have seen
that the filtered signal in Wg shows Ey much clearer than
in the corresponding window W for the raw vibration data.
Figure 5a shows the bandpass filtered window Wy contain-
ing an event of interest. In comparison, Figure 5b shows the
bandpass filtered window Wp not containing an event of in-
terest. We then computed Wp for Wp, that is, the frequency
profile between 100 Hz and 160 Hz, according to the discrete
Fourier transform as computed by the MARF implementation
of the fast Fourier transform (FFT) algorithm. Figure 6a shows
the frequency profile Wp for the window Wy containing an

intelligent transportation systems

ng data sets, from vibration data, for classifiers that were trained, in a supervised

event-of-interest. In comparison, Figure 5b shows the frequency
profile Wp for the window Wp not containing an event-of-
interest.

Our software decided based on Wp whether or not W may
contain an event of interest. Specifically, the implementation
sorted the values of Wp into ascending numerical order and
marked W as possibly containing an event of interest if the
last, the fifth-last, and the 10-last values were above the thresh-
old value 2. This threshold was determined experimentally
in preliminary work by inspecting numerous profiles with,
and profiles without, an event of interest (see Figure 6a and
Figure 5b). Therefore, our method was unable to discern be-
tween an event of interest, Ey, for vibration induced by vehicles
(i.e., true positives) and an event of noise, E v, for vibration not
induced by vehicles (i.e., false positives). Thus, the method
only determined (automatically) that W contained an event
E ={Ey, Ey}.

For each W marked as containing an event E, we defined,
and queried for, a new window W’ such that the variation in W’
corresponding to E was approximately centered. We computed
the filtered window W7 and the frequency profile W}, as already
described. We stored the numerical values corresponding to W',
Wy, and W}, to text files. Finally, we generated metadata for E
to keep track of the text file names corresponding to W', Wy,

vol. 20 no. 2 2016
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Figure4 Raw vibration sensor data for a window (not) containing an event of
interest. (a) Raw vibration sensor measurement data for a window W consist-
ing of 16,384 measurement values and containing an event-of-interest Ey . (b)
Raw vibration sensor measurement data for a window W consisting of 16,384
measurement values and not containing an event of interest Ey .

and W/,; time information for the interval [#;, ¢ ] defined by W';
time information for E, which is approximately #; + 4s; and the
camera image file names that overlap [#;, ¢;]. Data and metadata
for each E formed an unlabeled data set.

Labeled Data Set Construction

In amanual postprocessing step, the metadata for each E were
extended by a label, based on the camera data corresponding to
E. Thus, with this step we discerned Ey and Ey. Events Ey
were labeled according to the visually identified vehicle, such
as personal-car, bucket-digger, or fire-truck.
In contrast, events Ey were labeled as no-event. In addition,
for each Ey we added metadata on road condition (dry/rain); on
whether the vehicle came around the corner (yes/no) from/to a
side-road (see Figure 1); and on what road side (left/right) the
vehicle found itself (relative to the camera) while crossing the
sensor. A comprehensive list of vehicle labels is given in Table
1. In addition to data and metadata for W; containing an event

intelligent transportation systems

129

0.04 T T T T T T T T

0.03

0.02

0.01

-0.01

Acceleration [m!sz]
[=]

-0.02

-0.03

-0.04

Time [s]

(b)

0.04 T r T T T T

0.03 | E

0.02 - 1

0.01 | k

-0.01 | 1

-0.02 1

-0.03 i

-0.04 L " L " L 1 L L

Time [g]
Figure 5 Filtered vibration sensor data for a window (not) containing an event
of interest. (a) Window W resulting from the application of a MARF bandpass
filter between 100 Hz and 160 Hz to W containing an event of interest Ey . (b)
Window W resulting from the application of a MARF bandpass filter between
100 Hz and 160 Hz to W not containing an event of interest Ey .

E, we also included data and metadata for W; not containing an
event E (labeled background).

Training Data Set Construction

The labeled data set was used to automatically construct
experiment-specific training data sets, used to train classifiers
and to evaluate their classification performance. Somewhat dif-
ferent approaches were adopted for vehicle detection and vehicle
classification. For vehicle detection we selected samples for two
training classes, that is, the class vehicle and the class no-
vehicle, such that the two training classes were balanced
in number of samples (see Table 2). In contrast, for vehicle
classification we selected samples for an experiment-specific
number m of training classes, each consisting of a class-specific
set of vehicle labels, to form m (balanced) training classes (see
Table 4, shown later).
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Figure 6 Frequency profile for a window (not) containing an event of interest.
(a) Frequency profile Wp with components between 100 Hz and 160 Hz resulting
from the application of the discrete Fourier transform to W containing an event
of interest Ey . (b) Frequency profile Wp with components between 100 Hz and
160 Hz resulting from the application of the discrete Fourier transform to Wr
not containing an event of interest Ey .

Classifier Training and Evaluation

Experiment-specific training data sets consisted of data
rows for each selected sample and were compliant with the
WEKA ARFF file format. Each row consisted of 500 attributes
for the data of W, and 1 attribute for the corresponding,
experiment-specific, training class (e.g., no-vehicle, van-
like, heavy). Training data sets were loaded in WEKA, and
principle component analysis (PCA) was used in preprocessing
to compute the scores corresponding to the first 10 principal
components. (This threshold was determined experimentally as
having good classification performance improvement.) We thus
reduced the dimensionality from 500 to 10. For both vehicle
detection and vehicle classification tasks, the artificial neural
network consisted of 10 input neurons and 1 hidden layer with
W hidden neurons, where Iy = 10 is the number of in-
put neurons and Oy is the number of output neurons, that is,
the number of experiment-specific training classes. The learning
rate and momentum for the back-propagation algorithm were set

intelligent transportation systems
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Table 1 Labeled data set description including unique labels used and
corresponding number of samples.

Label Number Comment

Motorcycle 8

Mini-lifter 39 Small-sized vehicle similar to forklift trucks,
typically found in warehouses

Mini-cleaner 61 Small-sized cleaning vehicle with single
horizontally rotating sweeper in front

Personal-car 285

Van 167

Fire-van 81

Ambulance 30

Pickup-truck 80 Small-sized vehicle capable of transporting
light cargo

Fire-truck 57

Truck 221 Generic truck capable of transporting cargo

Bucket-digger 103

Teboil-truck 8 Trucks of the Finnish oil company Teboil

Long-vehicle 103 Trucks with a trailer of size as to give the
vehicle approximately twice the load
capacity

Background 457 No vehicle (background vibration)

No-event 196 Unexplained, Ey events

Worker 14 Walking people, En events

No-images 1 Missing camera images

Total 1911

to 0.3 and 0.2, respectively. The number of epochs was set to 500.
(Note that these settings corresponded to default WEKA config-
uration, which resulted in being fairly reasonable with respect to
classification performance.) We used 10-fold cross-validation,
meaning that the training data set was randomly partitioned into
10 disjoint and equal-sized folds, and for each fold a classifier
was trained using the other 9 folds and then tested on the fold.
Thus, samples were of the same data set but at each iteration
in cross-validation the samples used in training were different

Table 2 Vehicle detection task training dataset description including training
classes and corresponding number of samples.

Label Training class Number

Motorcycle Vehicle 687
Mini-lifter
Mini-cleaner
Personal-car
Van

Fire-van
Ambulance
Pickup-truck
Fire-truck
Truck
Bucket-digger
Teboil-truck
Long-vehicle

Background No-vehicle 653

No-event

Total 1340

vol. 20 no. 2 2016
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Table 3 Detailed accuracy by class and confusion matrix for the vehicle
detection task.

(a) Detailed accuracy by class.

TP rate FP rate Precision Recall Training class
0.934 0.054 0.943 0.934 No-vehicle
0.946 0.066 0.938 0.946 Vehicle
0.94 0.06 0.94 0.94 Weighted average
(b) Confusion matrix.
a b Training class (Number)
610 43 a = No-vehicle (653)
37 650 b = Vehicle (687)

from the samples used in testing. The 10 intermediate results
for the folds were averaged to produce the results discussed in
the next section.

RESULTS

We have collected and stored the data from both the CEF
C3MO1 vibration sensor and the AXIS 211W camera for ap-
proximately 710 h of measurement. After each measurement
session (typically a working day) we recorded the total amount
of data stored for both sensors as well as the number of mea-
surements stored for the vibration sensor. The total amount of
stored data was approximately 1.7 TB. The number of vibra-
tion measurement values stored was approximately 5 billion.
Collecting vibration data at 2000Hz for 710 h theoretically
leads to 5,112,000,000 measurement values. Experimentally, we
recorded a total of 5,004,130,000. Thus, in our experiments we
have a gap of 107,870,000 measurements, which corresponds to
approximately 15 h. This gap is due to a combination of factors
including approximate calculations, sensor reconnection every
10 min, and possibly uncovered sensor downtime. The incon-
sistency in numbers of collected and theoretical measurements
has practical consequences in that (a) we may identify vehicles
in camera images but, as we lack of the corresponding vibration
data, we must discard valuable training samples; (b) on the other
hand, in the case of missing images we may discover an event
in vibration data but are unable to label the event accordingly,
leading to further loss in training samples; (c) in a real-time
context, (temporary) unavailability of vibration data can mean
that we miss out on events; and (d) gaps in vibration data of
a few seconds can influence window processing, as we may
have insufficient data or we may be processing data that are not
sampled at a constant interval.

Our labeled data set contains 1911 samples. Table 1 provides
an overview. The data set consists of one sample with no images
(no-images); 210 samples with events of type Ey, that is,
events for vibration not induced by vehicles but rather either by
unknown factors (no-event, 196) or by people passing by the
sensor on foot (worker, 14); and 457 samples not containing

intelligent transportation systems

an event E (background). Thus, the data set consists of 1243
samples that contain an event E\y .

The training data set used for the vehicle detection task con-
tains 1340 samples and consists of two classes. Table 2 provides
an overview. The first class, vehicle, consists of 687 samples
that contain an event Ey, that is, a detected vehicle. The second
class, no-vehicle, consists of 653 samples that do not con-
tain an event. Note that we limited the number of samples per
training class to 687 in order to keep the classes approximately
balanced. Cross-validation resulted in 1260 correctly classi-
fied instances (94%). Table 3 shows the detailed accuracy by
class and confusion matrix for the detection task as reported by
WEKA.

As we noted in the second section, the training data set used
for the vehicle classification task is specific to individual experi-
ments. We performed three distinct experiments, named 2-class,
4-class, and 13-class. For the 2-class experiment we map the 13
vehicle labels to 2 training classes, one for 1 ight and the other
for heavy vehicles, by weight. This experiment is balanced,
meaning that the two training classes consist of approximately
the same number of samples (limited to 500 samples per training
class) with a total of 992 samples. For the 4-class experiment
we map a subset of the 13 vehicle labels to 4 training classes,
that is, van-1ike, truck-1like, bucket-digger, and
long-vehicle. This experiment is also balanced (limited to
120 samples per training class) with a total of 454 samples. Fi-
nally, for the 13-class experiment we map the 13 vehicle labels
to (corresponding) 13 training classes. This last experiment is
unbalanced, meaning that the number of samples per training
class is highly variable (minimum 8; maximum 285) with a total
of 1243 samples. We refer to Table 4 for detailed information on
the vehicle labels each training class consists of and the corre-
sponding number of samples, for each of the three experiments.
We found the classification performance as per cross-validation
to be 86% for the 2-class experiment, 64% for the 4-class ex-
periment, and 43% for the 13-class experiment. Table 5 shows
the detailed accuracy by class and Table 6 the confusion matrix
for the three experiments, respectively, as reported by WEKA.

Over the past decades, machine-learning and data-mining
communities have developed a large number of methods for un-
supervised and supervised machine learning (Mitchell, 1997).
In addition to MLP, we investigated the classification perfor-
mance for several other machine learning algorithms, including
RBFNetwork, NaiveBayes, and SVM. Table 7 provides an
overview. We found that, everything else being equal, the clas-
sification performance of different machine learning algorithms
is roughly comparable. For instance, for the vehicle detection
task the classification performance was for NaiveBayes 75%,
RBFNetwork 86%, and SVM 93% (MLP 94%), while for the
4-class vehicle classification task the classification performance
was for NaiveBayes 55%, RBFNetwork 60%, and SVM 65%
(MLP 64%).

We also investigated the effect of data preprocessing on clas-
sification performance, as well as the characteristics of training
datasets. PCA generally improves classification performance
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Table 4 Vehicle classification task dataset description including training class and corresponding number of samples for the 2-class, 4-class, and 13-class

experiments.

(a) 2-Class experiment (balanced).

(b) 4-Class experiment (balanced).

(c) 13-Class experiment (unbalanced).

Label Training class Number Label Training class Number Label Training class Number
Motorcycle Light 500 Motorcycle Motorcycle Motorcycle 8
Mini-lifter Mini-lifter Mini-lifter Mini-lifter 39
Mini-cleaner Mini-cleaner Mini-cleaner Mini-cleaner 61
Personal-car Personal-car Personal-car Personal-car 285
Van Van Van-like 120 Van Van 167
Fire-van Fire-van Fire-van Fire-van 81
Ambulance Ambulance Ambulance Ambulance 30
Pickup-truck Pickup-truck Pickup-truck Pickup-truck 80
Fire-truck Heavy 492 Fire-truck Truck-like 120 Fire-truck Fire-truck 57
Truck Truck Truck Truck 221
Bucket-digger Bucket-digger Bucket-digger 103 Bucket-digger Bucket-digger 103
Teboil-truck Teboil-truck Long-vehicle 111 Teboil-truck Teboil-truck 8
Long-vehicle Long-vehicle Long-vehicle Long-vehicle 103
Total 992 Total 454 Total 1243

by approximately 10%. Not surprisingly, the characteristics of
the training data set have a considerable effect on classification
performance. Obviously, one factor is the number of training
classes. As can be seen in Table 5, the classification perfor-
mance is notably different between the 2-class (86%), the 4-
class (64%), and the 13-class (43%) vehicle classification task
experiments. Balancing the data set such that all training classes
have approximately the same number of samples also affects
the classification performance. In our experiments we used bal-
anced training data sets, except for the 13-class vehicle classifi-
cation task experiment. To demonstrate the effect of balancing,
consider for instance an unbalanced data set for the 4-class
vehicle classification task experiment, consisting of 770 sam-
ples (having van-1ike and truck-1ike almost three times
more often represented than long-vehicle and bucket-
digger). The classification performance is then 72% (com-
pared to 64% using a balanced data set). Indeed, an algorithm
that always predicts (one of) the most represented class(es) may
perform very well on an evaluation data set in which one class
(or a few classes) is represented in much higher numbers than
the remaining classes. Hence, in our experiments we have kept
the training and evaluation data sets balanced (where possible).

DISCUSSION

We have described the entire processing chain from sen-
sor data acquisition to vehicle classification for the purposes
of detection and classification of vehicles by measurement of
road-pavement vibration and by means of supervised machine
learning, in particular MLP. We have presented and discussed
our results for classification performance and compared them
with the results of similar studies published in the literature.

The platform monitoring infrastructure consists of, among
other sensors, a CEF C3MO01 vibration sensor installed in the
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ground on the side of a paved road, and the necessary com-
munication network links. In addition, a camera is employed
to enable visual monitoring of vehicles. We have discussed the
methods and software used to persistently store high-frequency
and high-volume sensor data. Such historical data are used for
vibration data analysis, as well as to generate data and metadata
on events of interest required to build training data sets for super-
vised machine learning. We have presented our results for both
vehicle detection and vehicle classification tasks. Classification
performance was evaluated and presented for three experiments
with experiment-specific mappings of vehicle labels to training
classes.

The performance of the binary vehicle detection task is, at
94%, good. Considering the visibly different frequency pro-
files of windows that contain an event (Figure 6a) and windows
that do not (Figure 5b) this may not be surprising. Indeed, we
might ask why the classifier fails in 6% of the cases. As sum-
marized in Table 2, the no-vehicle training class consists
of both background and no-event labels. The label no-
event consists of samples that were (automatically) marked
as containing an event E (possibly Ey). However, in manual
postprocessing, no vehicle was visible in the set of images cor-
responding to E. The cause for the vibration remains unknown,
but in the field any object with mechanical interference with the
sensor, network cable, or metal bar is likely to induce vibra-
tion. We performed a second test for the vehicle detection task,
and this time we excluded samples labeled no-event. In this
setting, the training class vehicle consisted of 460 samples
and the training class no-vehicle consisted of 457 samples.
Note that we limited the number of samples per class to 460
in order to keep the training classes balanced. Cross-validation
resulted in 915 correctly classified instances (99.8%). Two ve -
hicle samples were wrongly classified as no-vehicle. We
performed the same test also using a 66% percentage split for
validation, in which case 100% of the validation samples were
correctly classified.
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Table 5 Detailed accuracy by class for the three vehicle classification task
experiments.

(a) 2-Class experiment.

TP rate FP rate Precision Recall Training class

0.854 0.138 0.859 0.854 Heavy

0.862 0.146 0.857 0.862 Light

0.858 0.142 0.858 0.858 Weighted average
(b) 4-Class experiment.

TP rate FP rate Precision Recall Training class

0.532 0.096 0.641 0.532 Long-vehicle

0.689 0.06 0.772 0.689 Bucket-digger

0.742 0.096 0.736 0.742 Van-like

0.583 0.237 0.47 0.583 Truck-like

0.637 0.125 0.65 0.637 Weighted average
(c) 13-Class experiment.

TP rate FP rate Precision Recall Training class

0.329 0.113 0.311 0.329 Van

0.067 0.001 0.667 0.067 Ambulance

0.647 0.154 0.477 0.647 Truck

0.705 0.269 0.438 0.705 Personal-car

0 0.001 0 0 Mini-lifter

0 0 0 0 Teboil-truck

0.709 0.047 0.575 0.709 Bucket-digger

0.099 0.028 0.2 0.099 Fire-van

0.437 0.042 0.484 0.437 Long-vehicle

0.131 0.01 0.4 0.131 Mini-cleaner

0 0.001 0 0 Motorcycle

0 0.001 0 0 Pickup-truck

0.088 0.013 0.238 0.088 Fire-truck

0.434 0.115 0.374 0.434 Weighted average

Note. In the 4-class experiment we underscore the relatively low performance
of the training classes long-vehicle and truck-1ike. We can observe
in Figure 6(b) that the truck-1ike and long-vehicle classes were of-
ten confused. In the 13-class experiment we underscore that the classes that
performed relatively well are those that happened to be well represented as
training examples in their respective categories. For instance, there were 57
fire-truck versus 221 truck samples. Incidentally, the fire-truck
class was most often confused with the truck class. The classes mini -
lifter, teboil-truck, and motorcycle were not well represented.
Finally, pickup-truck was practically always confused as personal -
car or, to a lesser extent, as van, both of which were represented considerably
better than pickup-truck in the training data set.

As shown in Table 4, we tested a number of different vehi-
cle labels to training class mappings: the 2-class, 4-class, and
13-class experiments. The performance of the 4-class vehicle
classification task experiment is, at 64%, satisfactory. The 4-
class experiment may be a reasonable trade-off between classi-
fication performance, number of training classes, and samples
per training class. Light vehicles, such as personal cars, are dif-
ficult to separate from van-like vehicles. Because the labeled
data set consists of many samples for personal car and van-
like vehicles, we included only van-like vehicles in the van-
like training class. Distinguishing between vans, fire vans,
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and ambulance is not practical using the presented methods.
The same is true for fire trucks and other trucks. As can be
seen in Table 6, long-vehicle and truck-1ike are often
confused. In fact, everything else being equal, discarding the
long-vehicle class from the training data set leads to 78%
correctly classified instances using cross-validation. Overall, the
practical significance of the 4-class experiment is arguably ques-
tionable. First, it requires us to disregard some of the vehicle
types. Second, it does not consider personal cars, which is the
most frequent vehicle type. However, together with the 2-class
and 13-class experiments, the 4-class experiment may support
the drawing of a possible performance trend for progressively
difficult classification tasks.

In the 13-class experiment some of the training classes
are not well represented, such as motorcycle. The per-
formance for some of the vehicle classes is rather good, for
example, for truck and personal-car. However, these
classes happen to be the top represented training classes in the
data set. The class van is mostly confused with personal -
car, but personal-car not much with van (probably
due to the better representation of personal-car). Some
classes are strongly confused, such as pickup-truck with
personal -car or van (both of which are better represented
than pickup-truck).

Jackowski and Wantoch-Rekowski (2005) report a study on
the classification of wheeled military vehicles using artificial
neural networks and ground vibration data. Given the authors’
artificial neural network model with two outputs for light and
heavy vehicles, their results are comparable to the 2-class ve-
hicle classification task experiment discussed in this article. In
their evaluation, test samples are all correctly classified. How-
ever, the validation set consisted of only 14 samples. In our 2-
class experiment 14% of test samples were misclassified, that is,
on average 1.4 out of 10. Hence, the classification performance
reported by Jackowski and Wantoch-Rekowski may be compa-
rable to our results. However, it is important to note that Jack-
owski and Wantoch-Rekowski conducted the study on wheeled
military vehicles, and thus the terms /ight and heavy are proba-
bly interpreted differently.

Wau et al. (2001) also use artificial neural networks for the
purpose of vehicle classification, though by means of vision-
based techniques and feature extraction from CCD camera im-
ages. The data and dataprocessing methods are, hence, different
from the methods presented in this article. Wu et al. evaluated
their methods using 300 test samples and reported a 91% clas-
sification accuracy on six vehicle classes, ranging from car to
large truck. This is considerably better than our results for the
4-class experiment (64%), which may signal that feature extrac-
tion from camera images could lead to training data for which it
is possible to build artificial neural network models with better
generalization.

Nooralahiyan et al. (1997) use artificial neural networks on
acoustic signature data for vehicle classification. The authors
report 82.4% classification accuracy for test samples and four
vehicle classes, ranging from motorcycle to van. This result is
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Table 7 Summary of the classification performance results for different
machine learning algorithms. The table also shows results of related and
comparable studies.

Classification
Algorithm Detection 2-Class 4-Class 6-Class
NaiveBayes 75% 55%
RBFNetwork 86% 60%
SVM 93% 65%
MLP 94% 86% 64%
Jackowski et al. 100%
Wu et al. 91%
Nooralahiyan et al. 82%

also better than our results for the 4-class experiment (64%),
which may again signal that feature extraction from acoustic
data on vehicles may lead to training data for which artificial
neural network models generalize better. However, note that
the vehicle classes are not equal and acoustic methods may be
particularly suitable for the classification of certain vehicles,
such as motorcycles.

Building training data sets for supervised machine learning
algorithms such as described here is costly. Unable to provide
an accurate account, we simply note that, beyond hardware,
software infrastructure must be developed to collect and store
high-volume and high-frequency sensor data. Algorithms must
be implemented to process data such that information can be
extracted from raw sensor data. The number of samples re-
quired to reach an acceptable classification performance may
lie in the few hundreds, which may not be beyond practica-
bility. However, the requirement of balanced training data sets
can pose additional demands on resources. More importantly,
however, due to different hardware characteristics, each sensor
of a network may need its own training data set, in particular
if data cannot be normalized such that they are representative
for multiple sensors (of the same type). Further, different en-
vironmental conditions may also require specific training data
sets. For instance, our data set was created by measurement of
road-pavement vibration during summer. During winter, roads
in eastern Finland are generally covered with ice and snow. Such
changed environmental conditions are likely to affect the signal
measured and, hence, the characteristics of the data and training
data set generated. Thus, a data set generated by measurement
in summer may not be suitable for the training of an artificial
neural network aimed at classifying vehicles during winter.

The monitoring presented here is for a setting of low traffic.
Further, the labeled data set was built such that windows contain
one event. Hence, we cannot assume that the discussed methods
perform similarly for busy bidirectional traffic monitoring. This
is a clear limitation of the presented approach. However, vibra-
tion sensors are insensitive to visibility conditions and they can
be deployed in the environment such that they are out of sight.
Thus, the methods discussed in this article may be of interest
to security applications, specifically the monitoring of activity
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in, and detection of unauthorized access to, restricted areas.
Also, vibration sensors are less intrusive compared to other in-
frastructure, such as inductive loop detectors, and can thus be
deployed more quickly and with lower costs. Perhaps the main
advantage of using supervised machine learning algorithms for
vehicle detection and classification tasks is that we are not re-
quired to specifically extract vehicle features from data, such
as the number and distance of axles. This reduces the burden
on data processing and analysis, as well as the development of
specific software. However, the classification performance of
supervised machine learning algorithms is only performing in
the field as in validation to the extent that the training set is
representative for field conditions. This may be problematic in
situations where a system must be quickly deployed into new
environments or where the conditions of an environment are
frequently changing.

The settings of our study, that is, the type of sensors and the
physical installation of sensors in the environment, are (experi-
ment) constraints we were required to work with. The specific
installation of sensors most probably has an important effect
on the signal strength of road-pavement vibration. As described
earlier, our installation was not very intrusive. In particular, road
pavement was not disrupted by sensor installation. While more
intrusive, an installation whereby vibration sensors are embed-
ded into the road pavement could lead to much stronger signals.
The discussed methods could hence lead to better classification
performance. We argue that the deployment of sensors in the
environment can have a significant impact on the performance
of data-driven methods.

Finally, we have used only one vibration sensor in our exper-
iments. With two or more vibration sensors installed at constant
relative distance it is possible to approximately compute the ve-
locity, speed, and driving direction of vehicles. Speed is likely
to affect measured vibration. Knowing the speed of detected
vehicles, vehicle classification may perform differently using
classifiers that are trained for specific speed ranges, for exam-
ple [20—40], [40-60], [60-80] km h!. Knowing the driving
direction of detected vehicles, classifiers could also be trained
separately for driving side. In fact, the distance between the ve-
hicle and the sensor is also likely to affect measured vibration.

CONCLUSION

We have described the entire processing chain from sen-
sor data acquisition to vehicle classification for the purposes
of detection and classification of vehicles by measurement of
road-pavement vibration and by means of supervised machine
learning, in particular MLP. We have presented and discussed
our results for classification performance and compared them
with the results of similar studies published in the literature.

The processing chain consists of numerous steps, including
sensor data acquisition, its parsing and storing, the identifica-
tion of information in raw sensor measurement data, and the
semiautomatic construction of a labeled data set to be used for
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creating training data sets that meet the requirements of specific
experiments. We argue that building the required software in-
frastructure necessary to acquire enough representative data to
train classifiers in supervised machine learning, and building a
corresponding labeled data set, is costly.

Using data for a single vibration sensor, our results show a
classification performance ranging between 94% and near 100%
for the vehicle detection task, and between 43% and 86% for
the vehicle classification task. As we discussed, the resulting
performance is a function of a number of experiment settings,
including training data sets, preprocessing methods, number
of training classes and their characteristics, and learning al-
gorithms. Furthermore, systems based on supervised machine
learning only perform in the field as in validation to the ex-
tent that the training set is representative for field conditions.
Hence, systems based on supervised machine learning may not
scale to large sensor networks that operate in environments with
frequently changing conditions.

The work presented in this article is part of a wider system
located at the training area of the Emergency Services Col-
lege, Kuopio, Finland. The platform consists of a number of
sensors, including several road-pavement vibration sensors and
other sensors, such as acoustic sensors. We envision building on
the work presented in this article and employing data of mul-
tiple road-pavement vibration sensors as well as complement
vibration sensor data with, for example, acoustic sensor data
for the purpose of vehicle detection and classification. Such a
development may lead to better classification performance and
may be a relevant study on sensor data fusion for situation
awareness. Placing the camera so that vehicles are better visible
could also allow the classification of loaded, half-loaded, and
empty trucks.
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