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Situational Knowledge Representation for Traffic
Observed by a Pavement Vibration Sensor Network

Markus Stocker, Mauno Ronkko, and Mikko Kolehmainen

Abstract—Information systems that build on sensor networks
often process data produced by measuring physical properties.
These data can serve in the acquisition of knowledge for real-world
situations that are of interest to information services and, ulti-
mately, to people. Such systems face a common challenge, namely
the considerable gap between the data produced by measure-
ment and the abstract terminology used to describe real-world
situations. We present and discuss the architecture of a software
system that utilizes sensor data, digital signal processing, machine
learning, and knowledge representation and reasoning to acquire,
represent, and infer knowledge about real-world situations observ-
able by a sensor network. We demonstrate the application of the
system to vehicle detection and classification by measurement of
road pavement vibration. Thus, real-world situations involve vehi-
cles and information for their type, speed, and driving direction.

Index Terms—Knowledge acquisition, knowledge representa-
tion, machine learning, sensor data, sensor networks, traffic
monitoring.

I. INTRODUCTION

E propose a software system architecture and imple-

mentation for the continuous and automated represen-
tation of knowledge for real-world situations observable by a
sensor network. In this paper, we demonstrate the application of
the software system to intelligent transportation systems. Thus,
real-world situations involve vehicles and information for their
type, speed, and driving direction.

According to Finkelstein [1], “measurement is the process
of empirical, objective, assignment of numbers to properties of
objects or events of the real world in such a way as to describe
them.” A sensor is a device that performs measurement, in that
it transforms the signal of a physical property (e.g., heat) into
numbers or, more generally, into data [2]. Sensor measurement
is, hence, the process of recurrent application of such transfor-
mation for certain temporal and spatial locations. The result of
sensor measurement is sensor data. Sensor data represent the
change of the signal over time.

Despite recent advancements in sensor data management,
processing, and query [2]-[4], as well as semantic description
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of sensors and data [5]-[7], making sense of sensor data is an
ongoing challenge [8]-[10] because of the difference in the
degree to which sensor data represents information about a
signal and information about, or related to, a physical property
[11]. In other words, it is a challenge because of the consider-
able gap between data produced by measurement and abstract
terminology [12] used by people to describe (the properties of)
real-world objects or events.

We are interested in situations involving real-world objects
that affect a physical property, for which a signal is measured
by means of sensors. In this paper, vehicles are the real-world
objects and road pavement vibration is the physical property.
We present the architecture of a software system that utilizes
digital signal processing, machine learning, and knowledge
representation and reasoning to acquire, represent, and infer
knowledge about real-world situations involving vehicles. The
system aims at reducing the gap between road pavement vi-
bration measurement data and abstract terminology used to
describe real-world situations involving vehicles.

Digital signal processing techniques are iteratively applied
to a sliding window over sensor data to enhance the vibration
signal and to transform sensor data (time domain) into patterns
(frequency domain). Machine learning is used to classify pat-
terns. We employ multilayer perceptron (MLP) feedforward
artificial neural networks [13]. Techniques in knowledge rep-
resentation are utilized to formally represent domain con-
cepts, instances, and relations. A concept of interest to our
domain is the vibration sensor. The (installed) sensors are
represented as instances of this concept. An instance may
have a number of relations, e.g., to a spatial location. We
represent sensors and observations using the Semantic Sensor
Network Ontology (SSNO) [14].! SSNO is an “ontology for
describing the capabilities of sensors, the act of sensing and the
resulting observations” [15]. We employ the Situation Theory
Ontology? (STO) [16] to represent knowledge about real-world
situations, which are acquired from observations. The STO
captures the key aspects of the situation theory developed by
Barwise and Perry [17] and extended by Devlin [18]. The
theory relates to the work on situation awareness by Endsley
[19], [20] as it encompasses most of the concepts discussed in
[16]. Both the SSNO and the STO serve as upper ontologies
from which we extend to accommodate domain knowledge.
The hybrid use of the SSNO and the STO allows for a mul-
tilevel abstraction of sensor measurement data and the use
of appropriate terminology and formalization at each level.

Thttp://purl.oclc.org/NET/ssnx/ssn
Zhttp://vistology.com/ont/2008/STO/STO.owl
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Thus, observations are semantically enriched measurements,
and situations are acquired from observations.

The main contribution of this paper lies in a thorough analy-
sis of ontology-based situational knowledge representation for
traffic observed by a sensor network. Knowledge is acquired
from processed sensor data using machine learning. This paper
builds on a software system aimed at near real-time represen-
tation of situational knowledge acquired from sensor data. The
proposed system is generic enough to serve different domains.
We present its application to intelligent transportation systems.

II. MATERIALS AND METHODS

Here, we first present the materials used in this paper, namely
the sensor network, the retrieved data, and software. We then
detail the methods utilized to process sensor data, as well as to
acquire, represent, and infer knowledge.

A. Materials

Road pavement vibration was measured using three CEF
C3MO1 accelerometer vibration sensors developed by Con-
trol Express Finland (CEF) Oy? for condition monitoring and
machinery maintenance. (CEF C3MOI sensors are currently
manufactured by Webrosensor Oy* as WBS CM301.) The
sensor network was installed at the training site of the Finnish
Emergency Services College, Kuopio, Finland. The site is
used for emergency response training in simulated situations
involving, for instance, vehicles or buildings that are on fire.
The area can be accessed by vehicle, and its paved light traveled
roads are for different types of vehicles, such as ambulances and
fire trucks. The three accelerometer vibration sensors were part
of a wider sensor network that consisted of chemical sensors,
weather stations, acoustic sensors, and surveillance cameras.
The sensor network was installed and maintained for a Finnish
research project that aimed at the development of systems for
the monitoring of an operational environment.

The accelerometer vibration sensors—hereafter referred to as
sensing devices sd1, sdg, and sds—were installed with a relative
distance of approximately 45 m at the right side (with respect to
the surveillance camera, described later) along one of the roads
at the training site. Each sensor was mounted on a metal bar that
penetrated approximately 1 m into the ground, roughly 0.5 m
below the paved road surface. The sensors measured ground
vibration, including vibration induced by vehicles. We visually
monitored the road using an AXIS 211W Wireless Network
Camera with an Outdoor Antenna Kit AXIS 211W [21]. The
camera was positioned on top of a viewpoint tower located
nearby the road and directed toward the monitored road section.

We retrieved vibration data from the three CEF C3MOI
sensors (sampling frequency of 2 kHz) and image data from
the AXIS camera (1-3 frames/s) for a total of 6 h on
August 30, 2011, between 10:00 A.M. and 4:00 p.M. We
retrieved 42 962 432 values from sd, 42 937 345 from sd», and
42988 810 from sds. We retrieved 25 076 image files from the

3http://www.cef.fi/
“http://www.wbs.fi/
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AXIS camera. Data retrieved from CEF C3MO01 sensors were
persistently stored using Apache Cassandra.’ Files retrieved
from the AXIS camera were stored individually to a disk using
the acquisition time, in milliseconds, as file name.

We developed a software system to automatically process
historical vibration data stored in Apache Cassandra and to
detect vibration patterns. Data for vibration patterns formed
training data sets, aimed at supervised machine learning. We
used WEKA® [22] (version 3.6.5) to train and evaluate MLP
feedforward artificial neural network classifiers. Situational
knowledge acquired from vibration data was represented in a
domain ontology, using the Web Ontology Language (OWL)
[23] and Resource Description Framework (RDF) [24] knowl-
edge representation languages. We used Protégé’ (version 4.1)
and Apache Jena [25]® (version 2.7.0) to manually and pro-
grammatically manage the ontology. To demonstrate rule-based
inference, we defined two domain rules and evaluated them over
represented situations. We implemented and evaluated the rules
manually as processes executed over represented situations. We
also tested the Semantic Web Rule Language (SWRL) [26].
The work was performed on a workstation with an Intel Core 2
3.16-GHz CPU with 8-GB RAM and an Ubuntu 11.04 Linux
operating system. The software was written in Java.

We developed a software system framework for continuous
and (near) real-time processing of sensor data to acquire and
represent situational knowledge. The system builds on Storm,’
which is a distributed real-time computation system. The archi-
tecture consists of three layers: measurement, observation, and
situation. Fig. 1 provides a schematic overview. Each layer con-
sists of components. Components correspond to Storm nodes
and may associate to modules. Modules provide services such
as storage, inference, machine learning, complex event process-
ing, and digital signal processing. Components communicate
via Storm streams. Components and their communication links
thus form a Storm topology. A Storm topology can be executed
on a single machine or a cluster.

At the measurement layer, a measurement engine is an
abstraction for sensors. Its responsibility is to implement the
necessary software logic to acquire data from sensors and pro-
cess them into measurements. Measurements are data objects
with an associated timestamp. Data objects may be of primitive
type, such as numbers, or complex type, such as data structures.
Measurements are then forwarded to streams. At the observa-
tion layer, an observation engine subscribes to measurement
streams. An observation engine is responsible for the semantic
enrichment of measurements. Such semantic enrichment occurs
according to the SSNO. Observations are then forwarded to
streams. An observation store may exist at the observation layer
and subscribe to observation streams. An observation store is
responsible for storing incoming observations to the knowledge
store. At the situation layer, a situation engine subscribes
to observation streams. A situation engine is responsible for

Shttp://cassandra.apache.org
Shttp://www.cs.waikato.ac.nz/ml/weka/
"http://protege.stanford.edu
8http://incubator.apache.org/jena/
“http://storm-project.net/
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Fig. 1.

Logical structure of the system architecture for (near) real-time representation of situational knowledge acquired from sensor data showing the three

layers of measurement, observation, and situation, as well as the main components and modules, and their interactions.

the implementation of situational knowledge acquisition tasks
from observations. To do so, the situation engine orchestrates
services provided by various modules, e.g., for digital signal
processing, complex event processing, machine learning, or in-
ference. A situation engine represents knowledge for situations
according to the STO. Situations are then forwarded to streams.
A situation store may subscribe to situation streams and store
situations to the knowledge store.

B. Methods

Digital signal processing operations implemented by a
sliding window over persisted sensor data were employed
to iteratively process vibration data into vibration patterns.
Specifically, a bandpass filter was applied to enhance the vi-
bration signal possibly induced by vehicles and a fast Fourier
transform was applied to transform filtered sensor data into a
vibration pattern. Vibration patterns possibly corresponding to
vehicle occurrences were automatically identified and manually
labeled. For manual labeling, we first processed the camera
data to visually identify vehicle occurrences. Each identified
vehicle occurrence was described with metadata for the vehi-
cle type (e.g., a personal car), the time at which the vehicle
crossed the approximate location of sds and the driving side
of the vehicle. The metadata were used to link occurrences
(manually) identified in camera data with those (automatically)
detected in vibration data. By linking, we thus constructed
labeled data, which were used to generate training data sets
for supervised machine learning. Machine learning was for
the two tasks of vehicle detection (training classes vehicle
and no-vehicle) and vehicle classification (training classes
light and heavy). Training data sets only included samples
occurring between 10:00 A.M. and 2:50 P.M., such that we
may discuss the results of our simulated real-time experiments

for occurrences that were unseen by algorithms during the
training phase. Classification performance was evaluated using
tenfold cross validation, meaning that the training data set was
partitioned into ten disjoint and equal-sized folds, and for each
fold, a classifier was trained using the other nine folds and then
tested on the fold. Intermediate results were averaged. For both
the vehicle detection and vehicle classification tasks, the MLLP
networks consisted of ten input neurons, two output neurons,
and one hidden layer with six hidden neurons. The learning rate
and momentum were set to 0.3 and 0.2, respectively.

The situation theory developed by Devlin [18] formalizes the
semantics of situations by means of the expression s = o (read
“s supports ¢”’) meaning that the infon o is “made factual”
by the situation s. According to the definition by Devlin,
the object < R, a;, ..., amy, © > is a well-defined infon if
R is an n-place relation and aq, ..., a,, (m < n) are objects
appropriate for the argument places i1, ...,%, of R, and if
the filling of argument places 1, ..., i, is sufficient to satisfy
the minimality conditions for R, and < = 0, 1 is the polarity.
Minimality conditions “determine which particular groups of
argument roles need to be filled in order to produce an infon”
[18]. The polarity is the “truth value” of the infon. If ¢ =1,
then the objects aq, ..., a,, stand in the relation R; else, the
objects do not stand in the relation R. Parameters, which are
denoted @, make reference to arbitrary objects of a given type.
For instance, [ and { typically denote parameters for arbitrary
objects of type spatial location and temporal location, respec-
tively. Anchors are a mechanism to assign values to parameters.
Hence, parameter ¢ may anchor the value for the current time.

In order to represent situational knowledge for vehicles and
information about their type, speed, and driving direction,
we created a domain ontology that imported both the SSNO
and the STO. It extended the SSNO and the STO to accom-
modate knowledge about observations and situations that are
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specific to the domain. Fig. 3 provides an overview of the
axioms used. We extended the SSNO to accommodate the
class Accelerometer for domain-specific sensing devices, and
stated that sd;, sdo, and sds are individual sensing devices,
instances of Accelerometer. The individual pavement rep-
resents the monitored road section and is the domain-specific
SSNO feature of interest, i.e., the real-world object (physi-
cal entity). The individual vibration represents the monitored
property of the SSNO feature of interest. Hence, the individual
accelerometers sd, sdo, and sds observe vibration, which is a
property of pavement. We extended the STO to accommodate
the class Vehicle as a domain-specific class of STO relevant
individuals. Sensing devices, hence accelerometers, are also
STO relevant individuals. STO relevant individuals are objects
in infons. The classes LightVehicle and HeavyVehicle are
subclasses of Vehicle. We also stated the disjointness of
LightVehicle and HeavyVehicle, meaning that a vehicle
can be either light or heavy but not both. Finally, the individuals
near, driving-side, and driving-speed are domain-specific STO
relations.

We simulated a real-time context by programmatically pro-
cessing vibration data between 2:50 P.M. and 3:00 P.M. on
August 30, 2011, for the sensors sd;. Measurements were first
translated to SSNO observations. We did not store observations
but, rather, processed them directly to acquire knowledge for
situations. A situation was for a vehicle being near an ac-
celerometer sensing device. Formally, the situation s supports
the infon g, i.e.., s |= o, whereby o is the .nea.r—re;lation infon
< near,), sd,l,t,1 > with parameters 1), sd, [, and ¢ that
may be anchored to a specific vehicle, accelerometer sens-
ing device, spatial location, and temporal location, respec-
tively. Hence, upon detection of vehicles in observations
by accelerometer sd;, we populated the ontology with in-
dividuals, w, instances of STO Situation, with STO rela-
tion supportedInfon to an individual, o, instance of STO
ElementaryInfon. Infons with near-relation anchor two STO
relevant individuals, a Vehicle and an Accelerometer, as
well as STO attributes for spatial and temporal locations.
Hence, such infons state that, at temporal location ¢ and spatial
location [, the vehicle ¢ was near the accelerometer sensing
device sd;. Given situations s =< near,z/},sd,i,i,l > for
detected vehicles, we classified individuals Vehicle(v) as
LightVehicle(v)) or HeavyVehicle(%)).

To demonstrate rule inference, we defined two domain rules
p — g, being p and ¢ the rule antecedent and the rule conse-
quent, respectively. The first rule stated that for situations where
sp # sq With near-relation infons

sp B < near, ¥y, sd;, L, ty, 1>
sq = < near, g, sd;, lj, g, 1>

whereby sd; # sd; (hence, I; # [;) and |t, —t,| <8 s, the
anchored vehicles 1, and 1), are same, i.e., the same physical
entity. We represented this relation using the OWL axiom
sameAs (1), 14). This rule was motivated by the relative dis-
tance of approximately 45 m between consecutive sensors and
the average low-volume traffic.
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TABLE 1
VEHICLE OCCURRENCES BETWEEN 10:00 A.M. AND 2:50 P.M. AS
IDENTIFIED IN CAMERA DATA AND LINKED TO VIBRATION DATA, LISTED
ACCORDING TO THE ACTUAL VEHICLE TYPE. LINKING RESULTED IN
87 vehicle (TRUE POSITIVE) AND 211 no-vehicle (FALSE POSITIVE)
DETECTION OCCURENCES FOR sd1; 134 AND 42, FOR sda; AND 133 AND
32, FOR sd3. ADDITIONALLY, WE CONSIDERED 134 SAMPLES WITHOUT
VEHICLE OCCURRENCE FOR EACH SENSING DEVICE (background)

Label Camera | sdj sdg sds
mini-cleaner 7 0 4 5
mini-lifter 3 1 3 3
personal-car 9 3 7 8
van 24 15 20 17
ambulance 15 9 14 14
fire-van 28 10 18 19
pickup-truck 8 2 5 5
truck 42 27 36 34
fire-truck 21 16 20 20
bucket-digger 8 4 7 8
vehicle 165 87 134 | 133
background 134 | 134 | 134
no-vehicle 211 42 32
Total 432 | 310 | 299
Furthermore, for situation pairs  (sp, sq)  with

sameAs(1p, 1), the second rule inferred the velocity of
the vehicle. Velocity determined the vehicle’s driving side
and speed. We used the STO relations driving-side and
driving-speed to represent this knowledge. Hence, for such
pairs (s, sq), we inferred the following infons:

sp E < driving-side, v, v, 1 >
sp = < driving-speed, ¥, n, 1 >
sq = < driving-side,¥q,v, 1>
sq = < driving-speed, q,n,1 >

where v is an STO attribute for the driving side, and 7 is an
STO attribute for the driving speed. The STO attribute value for
driving side is right, with respect to the camera perspective,
if I; <l; and t, <t4 or if I; >1; and t, >1,, and left
otherwise. (Note that, with respect to the camera perspective,
for sdq, sdo, and sds, it holds that I; <[5 < [3, meaning that
the spatial location /; is closest to the camera. We also assume
that drivers respect driving rules.) The STO attribute value for
driving speed was computed as 0.045 x (3600/|t, — t4|) with
STO dimensionality [km/h].

III. RESULTS

Table I summarizes the vehicle occurrences manually identi-
fied in camera data and automatically detected in vibration data
between 10:00 A.M. and 2:50 P.M. We identified 165 vehicles in
camera images, of which 87 (53%) were automatically detected
by sdi, 134 (81%) by sds, and 133 (81%) by sds. In two
cases, the three sensors detected (vehicle) vibration, but we
could not confirm the presence of the vehicle (and label) due
to missing camera data for the corresponding time interval. The
label no-vehicle was used for detections that did not cor-
respond to vehicle-induced vibration or corresponded to both
vehicle-induced vibration and vibration-like signal induced by
unexplained factors. As shown in Table I, with 211 no-vehicle
detection occurrences, sd; was considerably more “noisy” than
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TABLE II
THE KEY CHARACTERISTICS OF THE DATA SETS USED TO TRAIN

CLASSIFIERS FOR THE MACHINE LEARNING VEHICLE DETECTION (VD)
TASK WITH TRAINING CLASSES (C) vehicle (V) AND no-vehicle (NV)

AND VEHICLE CLASSIFICATION (VC) TASK WITH TRAINING CLASSES
light (L) AND heavy (H). THE TABLE SHOWS THE MAPPING OF ACTUAL

VEHICLE LABELS (L) TO TRAINING CLASSES AND CORRESPONDING

NUMBER OF TRAINING SAMPLES, FOR EACH SENSING DEVICE

Machine learning tasks
VD VC
L C sdq sdo sds | C | sdy sdo | sds
mini-cleaner
mini-lifter
personal-car
van L 40 71 71
ambulance |y | g7 | 134 | 133
fire-van
pickup-truck
truck
fire-truck H | 47 63 62
bucket-digger
background
no-vehicle

NV | 345 | 176 | 166

TABLE III
SUMMARY OF PRECISION (P) AND RECALL (R) FIGURES FOR THE
CLASSES (C) no-vehicle (NV) AND vehicle (V) OF THE VEHICLE
DETECTION (VD) TASK AND THE CLASSES 1ight (L) AND heavy (H)
OF THE VEHICLE CLASSIFICATION (VC) TASK FOR THE
THREE SENSING DEVICES (SD)

C TSD [P R
sd; | 0967 [ 0933
NV | sdp | 0971 | 0943
sds | 0953 | 097
vD sd, 0768 [ 0874
V| sdy | 0928 | 0.963
sds | 0962 | 094
sd, [ 083 1083
H | sdy | 0721 | 0778
sds | 0842 | 0774
ve sd, 08 108
L | sdy | 0788 | 0732
sds | 0816 | 0873

either sdy or sds. Indeed, many detection occurrences in sd;
were labeled as no-vehicle because we detected noise or
because we detected signal but the corresponding window
included also noise. We do not know the reason for such noise
or for its relative abundance in sd; compared with sdy or
sds. Given the comparable installation of the three sensors, the
difference may be due to malfunction or manufacturing issues.

Table II summarizes, for the three sensors, the key char-
acteristics of the data sets used to train classifiers for the
machine learning vehicle detection and classification tasks. The
table shows how the actual vehicle labels were mapped to
training classes and the corresponding number of training sam-
ples per class. Classification performance (correctly classified
instances) for the vehicle detection task resulted to be 92% for
sd1, 95% for sdsy, and 96% for sd3. Classification performance
for the vehicle classification task resulted to be 82% for sd,
75% for sda, and 83% for sds. Table III is a summary of
precision and recall figures for the classes no-vehicle and
vehicle of the vehicle detection task and the classes light
and heavy of the vehicle classification task, for the three sens-
ing devices. Notably, the precision of class vehicle (vehicle
detection task) for sensing device sd; is relatively low, which
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TABLE IV
SUMMARY OF THE CONFUSION MATRICES FOR THE VEHICLE DETECTION
AND VEHICLE CLASSIFICATION TASKS FOR THE THREE SENSING
DEVICES. GIVEN THE CONFUSION MATRICES WE CAN
CALCULATE THE PRECISION AND RECALL FIGURES

(a) Vehicle detection with classes no-vehicle and vehicle. For
class no-vehicle and sensing device sdj precision is calculated as
322 _ — 0.967 and recall as = 0.933.

3
322411 322423
Predicted

no-vehicle vehicle
sdy sdo sdy | sdy  sd2  sdg
no-vehicle | 322 166 161 | 23 10 5
vehicle 11 5 8 76 129 125

Actual

(b) Vehicle classification with classes heavy and 1ight. For class

light and sensing device sdg precision is calculated as % =
62 _
0.816 and recall as 5210 = 0.873.
Predicted
heavy light

sdq sdo  sds3 sdq sdo  sds
heavy | 39 49 48 8 14 14
light 8 19 9 32 52 62

Actual

TABLE V
VEHICLE OCCURRENCES WITH INFORMATION ON RIGHT (R) OR
LEFT (L) DRIVING SIDE (D), BETWEEN 2:50 PM AND 3:00 PM AS
IDENTIFIED IN CAMERA DATA AND REPRESENTED IN SITUATIONS OF
VEHICLES NEAR SENSORS. MACHINE LEARNING CLASSIFICATION (C)
FOR LIGHT VEHICLE (Lv) OR HEAVY VEHICLE (Hv) IS SHOWN.
MISCLASSIFICATION IS HIGHLIGHTED

Occurrence sdq sdo sds
Label D H:m S C S C S C
personal-car | R | 14:50 | 36 | Lv | 39 | Lv | 43 | Hv
van R 14:53 | 20 | Lv | 24 | Lv | 27 | Hv
truck L 14:57 | 56 | Hv | 52 | Hv | 49 | Hv
fire-truck R 14:58 | 39 | Hv | 43 | Lv | 46 | Hv

reflects the unbalanced data set with 87 versus 345 samples for
classes vehicle and no-vehicle, respectively. Table IV(a) is
a summary of the confusion matrices for the vehicle detection
task and the three sensing devices, and Table IV(b) is the
corresponding summary for the vehicle classification task.

As result of the simulated real-time experiments, Table V
summarizes the key elements of the 12 situations for the four
vehicles near the three sensors between 2:50 P.M. and 3:00 P.M.
In particular, for situations s =< near, 1/}, s'd, i, t, 1>,
we show the anchored temporal location ¢ (for time; date is
August 30, 2011) and the most specific vehicle class of the
anchored individual . Infons for driving side and speed, i.e.,
vehicle velocity, as well as sameAs relations among vehicles
(not shown), were inferred according to the two rules described
earlier. For instance, rule inference correctly inferred that the
vehicle near sdsy at 14:53:24 is sameAs the vehicle near sds at
14:53:27 as well as sameAs the vehicle near sd; at 14:53:20. As
we can see, machine learning correctly classified the vehicles
9 times out of 12 (75%).

Fig. 2 depicts the RDF graph describing the situation s <
near,v,sdy, “2011-08-30T14:57:56+03:00”, 1>, meaning
that at 14:57:56 the (heavy) vehicle v was near the accelerom-
eter sensing device sd;. Note that, for readability, we do not
show the information for the spatial location anchored by infon
i, which we model after the spatial location of sd;. Contrary
to represented observations, represented situations were persis-
tently stored by the knowledge store.
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rdf:type \ STO:supportedInfon
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—
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rdfs:subClassOf /rdfs:subClassOf
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Fig. 2.
device sd1.

IV. DISCUSSION

For the case of vehicle detection and classification by mea-
surement of road pavement vibration, we have shown how the
classification of vibration patterns induced by entities observ-
able by a sensor network can be translated into the representa-
tion of knowledge for situations involving the entities.

We represented knowledge for the situation whereby a vehi-
cle is near an accelerometer sensing device; for the relevant
individuals in such situations, namely light vehicles, heavy
vehicles, and accelerometer sensing devices, which observe
vibration, a property of the feature pavement; for the disjoint-
ness of light and heavy vehicles; and for the relations driving-
side and driving-speed. Further, we implemented two domain
rules to infer: 1) when two vehicles are the same physical
object; and 2) a vehicle’s driving side and speed. We described
the infrastructure used to retrieve road pavement vibration
data, how such data are processed to detect possible vehicle
occurrences and to construct labeled data sets, how the data sets
are used to train artificial neural network classifiers, and how
we represented observations and situations, consistent with the
SSNO and the STO, respectively.

As defined by the ontology (see Fig. 3), our domain con-
sists of light and heavy vehicles. Therefore, each vehicle type
identified in camera data was mapped to the concept of light
vehicle or the concept of heavy vehicle. For the training and
evaluation of MLP classifiers, we used the mapping from the
actual vehicle label to the training class shown in Table II. For
the system evaluation between 2:50 P.M. and 3:00 P.M., all ve-
hicle individuals involved in the 12 situations were necessarily
instances of either light or heavy vehicle. Entirely new vehicle
types, e.g., motorcycles, would be also classified either as light
or heavy vehicle. Thus, it is the ontology that defines what is
known to the system.

In addition to vibration data, the system could also use cam-
era data for the purpose of vehicle detection and classification.
Knowledge could be acquired and represented from camera

> Siona > SO ()

STO:anchor2

rdf:type \ STO:hasAttributeValue

rdf:type
@ STO:attributeValue

| 2011-08-30T14:57:56+03:00

STO:polarity

rdf:type

RDF graph describing the situation s at time 14:57:56+03:00 on August 30, 2011, whereby the heavy vehicle v was near to the accelerometer sensing

Listing 1. Axioms with domain knowledge

Accelerometer T ssn:SensingDevice
ssn:SensingDevice T sto:RelevantIndividual
Vehicle T sto:Relevantlndividual
LightVehicle C Vehicle

HeavyVehicle T Vehicle

LightVehicle M HeavyVehicle C L

sto: Relation (near)

sto: Relation (driving-side)

sto: Relation (driving-speed)

ssn: FeatureOflnterest (pavement)
ssn: Property (vibration)
ssn:isPropertyOf (vibration, pavement)
Accelerometer (sdy)
Accelerometer (sdz)
Accelerometer (sdz)

ssn:observes (sdy, vibration)
ssn:observes (sdo, vibration)
ssn:observes (sds, vibration)

Fig. 3. Listing 1. Axioms with domain knowledge.

data, and we may then relate it to knowledge acquired from
vibration data. Alternatively, camera data may be used together
with vibration data in a single machine learning step. In our
setup, camera data were not meant to be used in machine
learning. Instead, the aim was to classify vehicles based on
vibration data only.

The presented system was evaluated over 10 min of historical
data. Hence, while the use case may be developed further
to include a production system that performs near real-time
situational knowledge representation, we have only simulated a
real-time context. At the end of the project related to this paper,
we were unable to access the sensor network. As we performed
this work after the project ended, we could not evaluate the
presented system in a true real-time context. Moreover, the
samples at our disposal for testing and evaluation purposes were
limited.
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The system architecture shown in Fig. 1 supports specific
implementations for measurement engines, observation engines
and stores, situation engines and stores, knowledge stores,
as well as digital signal processing, machine learning, com-
plex event processing, and inference modules. Measurement
engines and situation engines, including associated modules,
are domain specific. Indeed, the software logic necessary to
acquire and decode data from sensing devices is device specific.
Moreover, measurement engines can include files, databases,
or distributed resources, in addition to sensors. Similarly, situ-
ations acquired from observations are domain specific. Hence,
the implementation of situation engines is domain specific. In
the present form, the implementation of situational knowledge
acquisition tasks may be thus somewhat tedious. In future
work, we aim at proposing a solution whereby such knowledge
acquisition tasks can be driven via ontology. In contrast, the
implementation of an observation engine can be more generic.
However, specific use cases may want to make use of (rule-
based) inference in order to further semantically enrich ob-
servations. Knowledge stores are specific to OWL knowledge
bases. The system currently supports persisting observations
and situations using knowledge stores backed by the OWL
API'? and the Stardog RDF database.!! The system can be
extended with knowledge store implementations for other OWL
knowledge bases.

We implemented rule inference of same vehicles and of
vehicle velocity manually, in Java, as processes performed
for situations occurring between 2:50 P.M. and 3:00 P.M.
Hence, we first acquired knowledge about situations, and
then, we performed inference. We also tested the imple-
mentation and evaluation of the rules using the SWRL, but
ultimately, we did not succeed due to technical limitations
with respect to SWRL expressivity or language implemen-
tation by reasoners. For instance, we implemented our first
rule for same vehicles in Protégé using the SWRL built-
in subtractDateTimesYieldingDayTimeDuration. How-
ever, the SWRL built-in was not supported by reasoners in
Protégé (Hermit, FaCT—++-, or Pellet). Naturally, a declarative
implementation of rules, along with their evaluation by rea-
soners, is desirable. The applicability of declarative languages
for the inference of situational knowledge, in particular using
the STO, as well as the scalability of their evaluation using
reasoners, is largely an open question. We plan to address some
of these issues in future work.

Representing symbolic knowledge acquired from sensor data
for situations that involve entities observable by a sensor net-
work has a number of interesting implications. First, similarly
to other systems that build on sensors and acquire knowledge,
we abstract from sensor data. As we have shown, our small
sensor network consisting of three sensors, each sampling at
2 kHz, generated approximately 130 million values in a mere
six hours of measurement. Such data can be a challenge to man-
age and is of little interest if not for the knowledge conveyed by
them, particularly knowledge for situations involving vehicles.
We argue that the persistence of situational knowledge can be

10http://owlapi.sourceforge.net/
Mhttp://www.stardog.com/
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a desirable alternative to the persistence of sensor data, which
can be thus discarded.

Second, we explicitly and formally represent knowledge
acquired from sensor networks in ontology. The result is a
unified representation of (inferred) knowledge about situations
monitored by a sensor network. Hence, ontology facilitates
the integration of knowledge acquired in sensor networks and
the automatic discovery of new knowledge. Several arguments
speak for integration and inference at the situation layer.
Clearly, vehicle velocity can be also computed using digital
signal processing on data of two (or more) sensors. Given that
our system has access to data of all three sensors, this is indeed
an alternative. However, we may envision a use case whereby
a system only processes the data of one sensor. The resulting
three systems would not know about each others’ sensor data,
let alone have access to it. Each system would generate situ-
ational knowledge, individually. Represented knowledge may
be thus integrated to provide a view for the situations acquired
by the three systems. We can thus perform inference over such
an integrated view. (Note that this description is not unlike how
we implemented in fact the described use case.) More generally
speaking, systems may be distributed, of varying complexity
and proprietary. In such cases, it may be challenging to integrate
at the measurement layer. Moreover, integration and inference
at the situation layer may be more straightforward than at the
measurement layer because users are closer to the domain (i.e.,
it becomes possible to work with domain concepts). However,
the situation (more generally speaking, ontology) layer is not
a silver bullet: While some problems may be more elegantly
solved at the situation layer, others may not be solvable at the
situation layer.

Third, both users and computers may interact with
knowledge-rich systems rather than data-rich systems. For in-
stance, we may now use an RDF query language and system
to query, for example, situations involving vehicles (both light
and heavy) that drove on the right roadside at speed between
20 and 40 km/h on August 30, 2011, between 3:00 P.M. and
4:00 p.M. By using ontology to represent knowledge about
situations monitored by a sensor network, a system commits
to reusing domain terminology explicitly defined outside of the
system. Indeed, most of the terminology used here is defined
in the SSNO and the STO. We only trivially extended these
ontologies to accommodate domain knowledge. The commit-
ment to reusing domain terminology explicitly represented in
ontology can increase the interoperability of systems [27], [28].
We argue that this is a key benefit of ontology-based systems.

Fourth, we highlight a possible role of ontology consistency
checking. As shown in Table V, there are three vehicle occur-
rences (14:50, 14:53, and 14:58) for which machine learning
is in disagreement regarding the specific class of the vehicle
involved in the respective situations. This suggests that, in those
three occurrences, the three situations, respectively, involve
different vehicles. However, based on the temporal location at
which vehicles are near sensors in different situations, rule in-
ference suggests that, in those occurrences, the respective three
situations involve the same vehicles, e.g., at 14:50 a personal
car. Hence, inference could conclude that these vehicles are
both light and heavy. This, however, contradicts the disjointness
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axiom that states that a vehicle cannot be light and heavy. An
OWL reasoner would hence determine that the ontology is in-
consistent. It could also explain which OWL axioms are incon-
sistent. In our case, it can be shown that an ontology including
only the vehicle occurrence at 14:57 is consistent. The question
arises how to resolve such inconsistencies. Generally speaking,
resolution may require user feedback or may be carried out
automatically. In our case, if machine learning fails, meaning
that, for the same physical entity, the vehicle classes of three
situations are in disagreement, we could resolve the conflict
by choosing the vehicle class with most votes by classifiers.
Explanation services could identify the inconsistent ontology
axioms and, hence, the vehicle individuals of situations that
are in conflict. Using majority voting, the system could resolve
such conflicts automatically. On the other hand, if the sameAs
rule fails, meaning that, in reality, for three temporally close
situations, (for instance) two involve the (physically) same
light vehicle, and the third involves a (physically) different
heavy vehicle, then resolution may require manual assessment,
e.g., a correction in rule parametrization. More sophisticated
automated conflict resolution techniques may be of interest to
solving such inconsistencies.

Fifth, we underscore a few arguments that motivate our
choice for an ontology-based approach, in contrast to classical
relational database systems. First, with the ontology approach,
we can focus on the modeling of domain knowledge and
semantics, and leave the data modeling to the knowledge base.
Second, we build our system on two readily available on-
tologies. Such terminologies can support the modeling of do-
main knowledge since they provide an organization of relevant
generic concepts and relations. Moreover, they can guide the
design and implementation of software systems. In fact, we
greatly aligned our system implementation to relevant concepts
and relations of both the SSNO and the STO. Hence, the
system is generic, and its implementation can be reused across
domains. Finally, in future work, we also aim at showing that
scalable solutions for the discussed problem can be designed
and implemented using technologies other than classical rela-
tional databases.

V. RELATED WORK

Classifying objects or events observed by sensors has a
long tradition and extensive literature, diversified according to
observation and methodology. For a multitude of sensors, an
array of techniques, including vision-based techniques, acoustic
signature analysis, vehicle axle counting, and pneumatic road
tubes, have been proposed alone for the detection and classifi-
cation of road vehicles [29]-[32].

The relevance of ontologies to sensor networks is evident
from the literature. Sheth ef al. [33] present the Semantic Sensor
Web in which sensor data are annotated with spatial, temporal,
and thematic semantic metadata. Terminologies [6], [34] to
describe the characteristics of sensors and sensor networks
have received considerable attention. Compton et al. [5] review
11 sensor ontologies for their range and expressive power.

The semantic enrichment of sensor data has received consid-
erable attention. Wanner et al. [35] present an environmental
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information system in which environmental data, e.g., tempera-
ture measurements for a city, are stored in an OWL knowledge
base [36]. Barnaghi et al. [37] propose a semantic model for
(heterogeneous) sensor data representation, discussed using
both Extensive Markup Language (XML) and OWL. Wei and
Barnaghi [38] annotate sensor data with semantic metadata
and relate sensor data with data of knowledge bases avail-
able online, such as DBpedia [39], following the linked data
principle [40].

An advantage of semantic enrichment of sensor data is
that, in doing so, systems can leverage ontology and rule-
based reasoning to infer new knowledge from sensor data. This
practice is well documented, for instance by Sheth et al. [33],
to infer a “blizzard condition”; by Henson et al. [41], to infer
“high winds” observations; by Stocker et al. [42], to infer the
nutrient status of lakes; and by Wei and Barnaghi [38], to infer
the approximate temperature for a city neighboring a city for
which the temperature is known. If a knowledge acquisition
task on sensor data is within the expressivity of the languages
used and can be hence formally represented by means of said
languages, representing sensor data in ontology is attractive
as it allows us to leverage the powerful reasoning capabilities
of inference engines. However, not all knowledge acquisition
tasks on sensor data are within the expressivity of state-of-the-
art ontology and rule languages. For instance, the knowledge
acquisition task discussed here for the classification of vehicles
using road pavement vibration data and machine learning can-
not be formalized in an OWL ontology (the language lacks of a
notion for Fourier transform, for example).

Using the SSNO, Barnaghi et al. [8] describe a framework
aimed at creating perception from sensor data. They motivate
their work by underscoring how data consumers “are often
interested in the higher level concepts, such as events,” rather
than low-level sensor data. Contrary to [8] and our previous
work [43], [44], here, we make use of the STO to represent
knowledge at the most abstract level, leaving the SSNO at an
intermediate level for the semantic enrichment of sensor data.

This paper relates to the work of Fenza et al. [45], who
use the STO to represent airport security situations; of De
Maio et al. [46], who present an approach to identify situations
represented using the STO; and of Doulaverakis et al. [47],
who use the STO in an architecture for intelligent information
fusion in a sensor network environment, which the authors
demonstrate for the domain of security and surveillance. In
contrast to this related work, we suggest adopting the SSNO
and the STO at different levels of abstraction. Inference on, as
well as storage of, observations motivates the intermediate layer
of semantic enrichment of measurements.

Conroy et al. [12], [48] extract from sensor data various
biological and physiological properties of athletes during ex-
ercise. Contrary to their approach based on XML, we suggest
using an expressive ontology language to formalize acquired
knowledge. Gaglio et al. [49] propose a generic architecture to
extract information from an environment sensed by a wireless
sensor network and discuss it for a case study on wildfire
detection. The generic architecture presented by Gaglio et al.
relates to the three-layered architecture presented here, in
that both aim at bridging the measurement layer with the
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knowledge layer. In contrast to Gaglio ef al., we ground the
symbolic layer in situation theory [18]. Liu and Zhao [7] and
Whitehouse et al. [50] discuss the architecture of a system that
can be queried for high-level events without requiring handling
of raw magnetometer data, specifically for a parking garage
case study. The authors elaborate on a programming model
called Semantic Streams, which rests on two fundamental el-
ements, with event streams being one of them. Hence, at the
base of Semantic Streams are detected entities such as objects,
people, or events. In contrast, we do not assume such a stream
as given.

VI. CONCLUSION

For the case of vehicle detection and classification by mea-
surement of road pavement vibration, we have shown, using
digital signal processing and machine learning, how knowledge
about situations observable by a sensor network can be acquired
from sensor data and can be formally represented by means of
ontology. We have presented and discussed the process from
sensor data acquisition to knowledge representation.

Specifically, we used digital signal processing to process sen-
sor data and machine learning to acquire knowledge about the
physical entities involved in situations monitored by a sensor
network. We formally represented such knowledge in a domain
ontology that borrows from both the SSNO and the STO. Rules
were formulated to infer new knowledge about situations, e.g.,
vehicle velocity. We have discussed a number of implications
that result from representing knowledge acquired from sensor
network data in ontology, particularly abstraction from sensor
data, integrated representation of knowledge about monitored
situations, rule inference, querying in knowledge-rich systems,
and ontology consistency checking and explanation.

We have discussed a three-layered software architecture for
a system aimed at continuous, distributed, and (near) real-
time processing of sensor network data as well as at the
acquisition and representation of situational knowledge. The
system abstracts from sensor data by semantic enrichment of
measurements to observations and by acquisition and repre-
sentation of situations from observations. Hence, the system
reduces the gap between sensor data and abstract terminology
used by people to describe real-world situations. The SSNO
is used as upper ontology for the representation of domain-
specific observations, as well as knowledge related to devices
and sensing. The STO is used as upper ontology for the rep-
resentation of domain-specific situations. Being grounded in
situation theory, the STO seems to provide a useful terminology
for the representation of knowledge about real-world situations,
including for intelligent transportation systems. The hybrid
application of both the SSNO and the STO enables the adoption
of appropriate terminology at each level of abstraction, as well
as flexible storage of observations or situations according to
application requirements.

The discussed case highlights that some knowledge acquisi-
tion tasks on sensor data are beyond the expressivity of state-
of-the-art ontology and declarative rule languages, as well as
reasoners. Hence, such tasks cannot be formalized by means of
declarative rules. Instead, the acquired knowledge is a result of
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computations in digital signal processing, machine learning, or
complex event processing.
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