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a b s t r a c t

A recurrent problem in applications that build on environmental sensor networks is that of sensor data
organization and interpretation. Organization focuses on, for instance, resolving the syntactic and se-
mantic heterogeneity of sensor data. The distinguishing factor between organization and interpretation
is the abstraction from sensor data with information acquired from sensor data. Such information may be
situational knowledge for environmental phenomena. We discuss a generic software framework for the
organization and interpretation of sensor data and demonstrate its application to data of a large scale
sensor network for the monitoring of atmospheric phenomena. The results show that software support
for the organization and interpretation of sensor data is valuable to scientists in scientific computing
workflows. Explicitly represented situational knowledge is also useful to client software systems as it can
be queried, integrated, reasoned, visualized, or annotated.

� 2014 Elsevier Ltd. All rights reserved.
Software availability Measuring Ecosystem-Atmosphere Relations (SMEAR) is an example
Wavellite is open source, is written in Java, and was released in
2013 under the Eclipse Public License (EPL 1.0). Wavellite was
developed and is maintained by Markus Stocker. The Wavellite
project page is at http://www.uef.fi/en/envi/projects/wavellite.

1. Introduction

Environmental sensor networks are an important research tool
for earth and environmental science (Hart and Martinez, 2006).
They play a key role in the monitoring of the natural environment
and allow for unprecedented study of the dynamics of environ-
mental systems and processes (Hill et al., 2011).

Over the past decades, many small and large scale environmental
sensor networks have been deployed. The Finnish Station for
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fora large scale sensornetworkandHart andMartinez (2006)present
several others. SMEAR started its operations in 1991 with measure-
ments for SO2 in Eastern Lapland. It quickly grew to include several
other locations and properties of environmental phenomena,
including forweather, such as temperature, humidity, orwind speed;
for atmospheric gases, such as the concentration of carbon dioxide or
ozone; for aerosols, such as particle number concentration.

Today, SMEAR consists of four main stations: SMEAR I in Eastern
Lapland, SMEAR II in Hyytiälä, SMEAR III in Helsinki, and SMEAR IV
in Kuopio. The main stations consist of one or more substations.
Substations consist of a set of sensing devices. For instance, SMEAR
IV consists of two substations, at Puijo and at Savilahti. The sub-
station SMEAR IV-Puijo resides on top of the Puijo observation
tower (62�5403200 N, 27�3903100 E), 306 m above sea level and 224m
above the surrounding lake level. The Puijo observation tower is
located in the city of Kuopio, in a semi-urban environment. Kuopio
is situated in Eastern Finland, about 330 km to the northeast from
Helsinki. SMEAR IV-Puijo consists of sensing devices for the
monitoring of aerosols, weather, and atmospheric gases. Sensing
devices are manufactured by various vendors, including Thermo
Fisher Scientific Inc., TSI Inc., and Vaisala (Leskinen et al., 2009). In
this study, we used data by sensors of SMEAR IV-Puijo.
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Environmental sensor networks can produce large amounts of
syntactically and semantically heterogeneous data. SMEAR IV-Puijo
alone generates approximately 2.5 million data points every day, of
which1millionarebya single sensor (namely theoptical clouddroplet
spectrometer). To ensure its utility, such data must be managed with
appropriatehardwareandsoftwaresystems (Hart andMartinez, 2006;
Horsburgh et al., 2009). We distinguish the class of software systems
that organize sensor data and the class of software systems that in
addition interpret organized sensor data. The distinguishing feature
between the two classes is the abstraction from organized sensor data
with information acquired from sensor data, for instance information
about a monitored environmental phenomenon.

In discussing the design of a software system for publishing
environmental observations Horsburgh et al. (2009) underscore the
challenges of persistent storage and management, data access and
communication, data interoperability, and data discovery. These
challenges are typical to software systems that organize sensor data.
Organization of sensor data can be achieved in variousways. Systems
may build on conventional relational databasemanagement systems
(Horsburgh et al., 2009; Junninen et al., 2009) or so-called “NoSQL”
databases, such as Apache Cassandra. Systems may be tailored for
streamed data processing (Bonnet et al., 2001; Carney et al., 2002;
Madden and Franklin, 2002). Systems may use advanced data and
knowledge representation languages. We highlight Semantic Web
(Berners-Lee et al., 2001) technologies, which have found their
application in sensor networks and sensor data (Sheth et al., 2008)
with ontologies (Compton, 2011) and software architectures and
systems (Moraru and Mladeni�c, 2012) being developed for the pur-
pose of organizing sensor data.

Software systems that interpret sensor data build on organized
sensor data and include computational techniques in, e.g., machine
learning, inference, or complex event processing, to acquire infor-
mation from sensor data. In this study, information is for situations
and the acquisition of information is automated and may occur in
(near) real time. Information is represented explicitly. For example,
given organized observations for mean hourly concentration of
particulate matter with diameter less than 2.5 mm (PM2.5), complex
event processing can be used to automatically and continuously
detect situations of unhealthy exposure. The semantics of situations
are, typically, different from the semantics of observations. Spe-
cifically to situations of unhealthy exposure, ‘exposure’ entails a
longer time interval than mean hourly concentration and ‘un-
healthy’ requires mean hourly concentration to continuously
exceed a certain threshold.

Software systems that interpret sensor data are interesting for
several reasons. First, the problem is harder than mere sensor data
organization. The problem is known to various domains and several
software architectures have been proposed in the literature
(Clemente et al., 2013; Gorrepati et al., 2013; Conroy et al., 2011;
Gaglio et al., 2007; Liu and Zhao, 2005; Whitehouse et al., 2006;
Vassev and Hinchey, 2012). However, to the best of our knowledge,
the work in this area is fragmented. Second, information acquired
from sensor data is typically ofmore value to people than sensor data
(Barnaghi et al., 2012). Of specific interest in this study are scientists
and scientific computing on environmental sensor data. Third, for
applications that build on large sensor networks and/or high fre-
quency sensors it may not be desirable, or practicable, to persist
sensor data for offline analysis. For such applications it may be best
to acquire information over streams of sensor data, discard the
sensor data, and only retain the acquired information.

The problems addressed in this study are (1) the heterogeneity of
sensor data and (2) the explicit representation of situational
knowledge automatically acquired from heterogeneous sensor data
for environmental phenomena, specifically for SMEAR. Our aim is to
use Wavellite (Stocker et al., submitted for publication) and
demonstrate with a concrete application how it addresses these
problems. Wavellite is a generic software framework aimed at the
organization and interpretation of sensor data. It supports the pro-
cessing of heterogeneous sensor data to sensor observations with
homogeneous syntax and semantics; the mapping of sensor obser-
vations to dataset observations and the processing of datasets; the
acquisition of situational knowledge from datasets; and the repre-
sentation of situational knowledge. Extending our previous work
(Stocker et al., 2013), the environmental phenomena of interest in
this study are new particle formation and clouds. Hence, situations of
interest are events of new particle formation and cloud events,
occurring at Puijo. Information for such situations is acquired from
data by sensors used for the monitoring of aerosols and weather at
Puijo. To the best of our knowledge,Wavellite is unique in its support
for the representation of situational knowledge acquired from het-
erogeneous sensor data for environmental phenomena.

The contribution of this work is two-fold. First, for readers
interested in generic (and practical) approaches to the problem of
representing situational knowledge acquired from sensor data, this
work presents Wavellite and its application for a concrete use case
in aerosol science, with real sensors and sensor data as well as using
various computational methods, including machine learning. Sec-
ond, for aerosol scientists and, more generally, scientists in domains
in which sensors play an important role, this work presents a
software system that integrates the processes of sensor data or-
ganization and sensor data interpretation. Specifically to aerosol
scientists who study new particle formation, this work describes a
software system that could support their workflows.

The paper is structured as follows. In Section 2 we provide a
brief overview of Wavellite, specifically the logical structure of its
architecture. In Section 3 we present the concrete implementation
of the architecture. In Section 4 we briefly discuss how the imple-
mentation can be used in applications. In Section 5 we present our
experiment on SMEAR sensor data and the representation of situ-
ational knowledge for events of new particle formation and cloud
events. In Section 6 we discuss the results of our experiments and
Wavellite more generally. In Section 7 we present related work.
Finally, Section 8 draws some concluding remarks.

2. Architecture

We describe the logical structure of theWavellite architecture to
provide an overview of the layers, components, and modules as
well as their responsibilities and interactions. The logical structure
consists of four layers: measurement, observation, derivation, and
situation. The four layers build on each other, frommeasurement to
situation. Each layer serves a purpose and abstracts from underly-
ing complexity. Fig. 1 provides a graphical overview of the archi-
tecture. Figure D.7 (Appendix D) gives an overview of the most
important interfaces, in particular component interfaces with emit
and execute operations and operation parameters.

Layers consists of components. Components are categorized in
three broad classes: engine, reader, and writer. Components may
execute information entities received on incoming streams and
emit information entities to outgoing streams. Information entities
are messages, specifically measurements and their contextual in-
formation, sensor observations, dataset observations, and situa-
tions. Components and streams form the nodes and edges,
respectively, of a directed acyclic graph, known as a topology.
Associated to components, the architecture includes modules.
Modules are categorized in three broad classes: processing,
learning, and store. Modules implement computations for purposes
such as digital signal processing, machine learning, complex event
processing, inference, retrieval and storage. The knowledge base is
a third-party system.



Fig. 1. Logical structure of the architecture with its four layers of measurement, observation, derivation, and situation as well as components and modules implementing software
logic for data processing, knowledge acquisition and storage. Solid arrows represent streams. Dashed arrows represent the association between components and modules.
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The measurement layer abstracts from the physical sensor
network and data communication links and protocols. It consists of
measurement engines. A measurement engine implements the
software logic required to process sensor data into measurements.
Measurements are the numbers assigned to properties of objects or
events of the real world in the process of measurement (Finkelstein,
1982). Such numbers are typically scalars, or may be vectors or
matrices. Sensor data may be pulled by, or pushed to, a measure-
ment engine. Sensor is understood in a broad sense. It is often a
device but sensor data may also be sourced from files, databases, or
other resources. Sources of sensor data may be local or remote.

A measurement engine implements an interface with emit

method having a required parameter for the measurement and
optional parameters for procedure, property, feature, temporal loca-
tion, spatial location, and quality. The optional parameters form the
contextual information of a measurement. Together with the mea-
surement, the parameters form a measurement information entity,
which is emitted to outgoing streams. Typically, procedure is a
sensingdeviceandrefers toadeployedsensor.Aprocedureobservesa
propertyofa feature. Features refer toenvironmentalphenomena. For
example, a thermometer procedure may observe the temperature
property of air, the latter being the feature. Ameasurement is located
in time and space. For static procedures, the spatial location is
modelled as metadata of procedures while the temporal location is
modelled as metadata of measurements. In contrast, for mobile pro-
cedures the temporal location and the spatial location are both



1 https://github.com/nathanmarz/storm/wiki/.
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modelled as metadata of measurements. Information for the quality
of the measurement can be provided in contextual information.

The observation layer abstracts from the heterogeneity of sensor
data. It consists of observation engines, observation writers, and
observation readers. Observation engines may subscribe to streams
of measurement information entities. An observation engine im-
plements an interface with execute and emit methods. Thus, it
executes measurement information entities and emits sensor
observation information entities. Observation engines translate
measurements and related contextual information into sensor ob-
servations. The semantics of sensor observations are defined by the
Semantic Sensor Network Ontology (SSNO) (Compton, 2011). This
translation overcomes the syntactic and semantic heterogeneity of
sensor data by aligning sensor data to the syntax and semantics of
the SSNO. Observation engines may make use of modules. For
instance, a processing module may enrich sensor observations with
information for their quality. Sensor observations are emitted as
information entities to outgoing streams.

Observation writers may subscribe to streams of sensor obser-
vation information entities. An observation writer implements an
interface with execute method. It executes sensor observation
information entities and uses a store module to persist sensor ob-
servations. All sensor observations generated at the observation
layer can thus be persisted. Persistence is implemented by the
knowledge base. An observation writer does not further emit in-
formation entities.

Observation readers implement an interface with emitmethod.
An observation reader typically uses a store module to retrieve
sensor observations from the knowledge base. Sensor observations
are emitted as information entities to outgoing streams. However,
observation readers arenot limited to retrieving sensorobservations
from the knowledge base. Indeed, implementations may retrieve
data from any accessible resource and emit sensor observations.

The derivation layer abstracts from the sensor network dimen-
sion of sensor observations. It consists of dataset engines, deriva-
tion engines, derivation writers, and derivation readers. Dataset
engines may subscribe to streams of sensor observation informa-
tion entities. A dataset engine implements an interface with
execute and emit methods. It executes sensor observation in-
formation entities and maps sensor observations to dataset obser-
vations. The semantics of dataset observations are defined by the
RDF Data Cube Vocabulary (QB) (Cyganiak et al., 2013). Dataset
observations are elements of datasets. Dataset observations are
emitted as information entities to outgoing streams. Note that
dataset observations emitted by a dataset engine may be streamed
directly to the situation engine.

Derivation engines may subscribe to streams of dataset obser-
vation information entities. A derivation engine implements an
interface with execute and emit methods. It performs compu-
tations on dataset observations. Such computation amounts to
dataset processing, in that the dataset observations of one or more
source datasets are processed to dataset observations of a target
dataset. Derivation engines may associate to processing modules.
Processing modules implement computations. Computations may
be for, e.g., despiking, aggregation, interpolation, merging, filtering.
Dataset observations are emitted as information entities to out-
going streams. Derivation engines can be chained in order to
implement more complex dataset processing.

Derivation writers may subscribe to streams of dataset obser-
vation information entities. A derivation writer implements an
interface with execute method. It executes dataset observation
information entities and uses a store module to persist dataset
observations. All dataset observations generated at the derivation
layer can thus be persisted. A derivation writer does not further
emit information entities.
Derivation readers implement an interfacewith emitmethod. A
derivation reader typically uses a store module to retrieve dataset
observations from the knowledge base. Dataset observations are
emitted as information entities to outgoing streams. However,
derivation readers are not limited to retrieving dataset observation
from the knowledge base. Indeed, implementations may retrieve
data from any accessible resource and emit dataset observations.
Note that dataset observation emitted by a derivation reader may
be streamed directly to the situation engine.

The situation layer abstracts from data. It consists of situation en-
ginesandsituationwriters. Situationenginesmaysubscribe to streams
of dataset observation information entities. A situation engine imple-
ments an interface with execute and emit methods. It employs
learning modules to acquire situational knowledge from datasets.
Learning modules perform computations over dataset observations.
Computations may include methods in, e.g., machine learning or
complex event processing. Situation engines represent situational
knowledgeas situations. The semantics of situations aredefinedby the
Situation Theory Ontology (STO) (Kokar et al., 2009), which is groun-
ded in Situation Theory (Barwise and Perry, 1983; Devlin, 1995). Situ-
ations are emitted as information entities to outgoing streams.

Situation writers may subscribe to streams of situation infor-
mation entities. A situation writer implements an interface with
execute method. It executes situation information entities and
uses a store module to persist situations. All situations generated at
the situation layer can thus be persisted. A situationwriter does not
further emit information entities.

3. Implementation

Wavellite is an implementation for the software architecture
presented in Section 2. In this section we detail the adopted ma-
terials and methods. Wavellite builds on knowledge representation
and reasoning, a distributed streamed data processing platform, as
well as computational techniques in digital signal processing,
complex event processing, and machine learning. Wavellite is
implemented in Java.

Wavellite builds on the distributed and fault-tolerant real time
computation system Storm to support (near) real time represen-
tation of situational knowledge and distributed processing of in-
formation entities. Storm provides three core abstractions: streams,
spouts, and bolts. A stream is an unbounded sequence of tuples and
a tuple is a named list of values.1 Both spouts and bolts are Storm
primitives that transform streams into new streams. A spout is a
source of streams, i.e. a source of tuples for data (typically) read
from an external source. Wavellite measurement engines, obser-
vation readers, and derivation readers are Storm spouts. In contrast
to spouts, a bolt consumes one or more streams, processes tuples,
and possibly emits one or more new streams. With the exception of
measurement engines, Wavellite engines and writers are Storm
bolts. Streams correspond to the edges while spouts and bolts
correspond to the nodes of a graph, also known as Storm topology.
A Storm topology is executed by a Storm cluster, whichmay operate
in local or distributed mode. In local mode, the worker nodes of a
Storm cluster are simulated with threads. In contrast, in distributed
mode Storm operates as a cluster of machines. The Storm topology
is generated at Wavellite application runtime from a Wavellite to-
pology. A Wavellite topology is a user defined configuration for a
Wavellite application. It specifies the components and modules,
their interaction and configuration, that are relevant to a Wavellite
application. A Wavellite topology is a document encoded in Java-
Script Object Notation (JSON).

https://github.com/nathanmarz/storm/wiki/
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The Wavellite observation, derivation, and situation layers build
on materials in knowledge representation, specifically the Resource
Description Framework (RDF) (Manola et al., 2004), RDF Schema
(RDFS) (Brickley et al., 2004), and Web Ontology Language (OWL 2)
(Hitzler et al., 2012) SemanticWeb technologies. At the core, RDF is a
language for representing information. RDF Schema is a semantic
extension of RDF (Hayes and McBride, 2004) and provides the basic
constructs to build RDF vocabularies, also called ontologies. Ontology,
defined as a formal and explicit specification of a conceptualization
(Gruber, 1993), is a means to represent knowledge of a domain,
meaning the concepts of some area of interest and relations that hold
among them. TheWebOntology Language, specifically OWL 2, builds
on RDF and RDF Schema and introduces further constructs that allow
for the building of ontologies with richer semantics.

Wavellite adoptsanontology for therepresentationof information
at each layer above the measurement layer. The Semantic Sensor
Network Ontology (SSNO) is adopted at the observation layer for the
representation of sensor observations. The SSNO defines terms used
for the description of sensors and observations. We highlight some
that are of particular interest. The term ssn:Sensor is defined as an
“entity that can follow a sensing method and thus observe some
Property of a FeatureOfInterest”.2 Typically, sensors are devices.
However, computational methods and people may also be sensors.
According to the ontology, the term ssn:Sensor is an exact match
with the term ‘sensor’ defined in the OGC Sensor Model Language
standard. Fig. 4 (b) (Appendix B) is a representation of an example
ssn:Sensor. A sensor observes a ssn:Property, which is defined
as “an observable Quality of an Event or Object”.3 The term
ssn:Property is an exactmatchwith the term ‘property’ defined in
the OGC Observations and Measurements standard. A ssn:Prop-

erty is of a ssn:FeatureOfInterest, which is defined as “an
abstraction of [environmental] phenomena”.4 The term ssn:Fea-

tureOfInterest is anexactmatchwith the term ‘feature’defined in
the OGC Observations and Measurements standard. Finally, the term
ssn:Observation is defined in SSNO as “a Situation in which a
Sensing method has been used to estimate or calculate a value of a
Property of a FeatureOfInterest”.5 Fig. 4(a) (Appendix B) is the rep-
resentation of an example ssn:Observation. The term ssn:Ob-

servation is a close match to the term ‘observation’ defined in the
OGCObservationsandMeasurements standard.Overall, SSNOdefines
several dozen classes and properties. Sensor, property, feature, and
observation are of specific interest to Wavellite.

At the derivation layer, Wavellite adopts the RDF Data Cube Vo-
cabulary (QB). The term qb:DataSet is defined as “a collection of
statistical data that corresponds to a defined structure”6 and plays a
central role in the modelling of datasets at the derivation layer.
Fig. 5(b) (Appendix B) is the representation of an example qb:Da-

taSet. A dataset relates to a qb:DataStructureDefinition with
qb:ComponentSpecification(s). Component specifications relate
to a qb:ComponentProperty and hold metadata for, e.g., the
ordering of component properties. Component properties specify
the dimensions of a dataset. The term qb:Observation is used to
model dataset observations at the derivation layer. A dataset obser-
vation relates to a dataset and values for the component properties
specified in the corresponding data structure definition. Thus, a
dataset is a collection of dataset observations of a defined structure.
Fig. 5(a) (Appendix B) is the representation of an example
2 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Sensor.
3 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Property.
4 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#FeatureOfInterest.
5 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Observation.
6 http://www.w3.org/TR/2013/CR-vocab-data-cube-20130625/#cubes-model-

datasets.
qb:Observation. QB builds on results from the Statistical Data and
Metadata Exchange (SDMX) Initiative. Similar to QB, the SDMX In-
formationModel defines an SDMX DataSet to be “a collection of a set
of Observations that share the same dimensionality”.7

At the situation layer, Wavellite adopts the Situation Theory
Ontology (STO). STO relates to the Situation Theory developed by
Barwise and Perry (1983) and extended by Devlin (1995). The
theory formalizes the semantics of situations by means of the
expression s ~ s (read “s supports s”) meaning that the infon s is
“made factual” by the situation s. According to the definition by
Devlin (1995), the object�R,ai,.,am,i[ is a well-defined infon if R
is an n-place relation and a1,.,am (m�n) are objects appropriate for
the argument places i1,.,im of R, and if the filling of argument
places i1,.,imis sufficient to satisfy the minimality conditions for R,
and i ¼ 0,1 is the polarity. Minimality conditions “determine which
particular groups of argument roles need to be filled in order to
produce an infon” (Devlin, 1995). The polarity is the ‘truth value’ of
the infon. If i ¼ 1 then the objects a1,.,am stand in the relation R;
else the objects do not stand in the relation R. Parameters, denoted
as _a, make reference to arbitrary objects of a given type. For
instance, _l and _t typically denote parameters for arbitrary objects of
type spatial location and temporal location, respectively. Anchors
are a mechanism to assign values to parameters. Hence, the
parameter _t may anchor the value for the current time. The STO
follows the semantics of situations summarized here. It defines the
term sto:Situation to model situations. Figure B.6 (Appendix B)
is the representation of an example sto:Situation. A situation
relates to one or more sto:ElementaryInfon via the property
sto:supportedInfon. As in Situation Theory, an elementary
infon consists of a sto:Relation, anchors one or more
sto:Object, and relates to a sto:Polarity.

Aside SSNO, QB, and STO, Wavellite also adopts the WURVOC
Ontology of units ofMeasure (OM) (Rijgersberg et al., 2011) tomodel
quantities anddimensions aswell as theSemanticWeb for Earth and
Environmental Terminology (SWEET) (Raskin and Pan, 2005), most
importantly for themodellingof environmental phenomena, e.g. the
feature related to a sensor observation or the object anchored by an
infon of a situation, such as aerosol, air, or carbon dioxide.

The derivation layer performs transformations on datasets.
Methods in digital signal processing (Rabiner and Gold,1975), such as
filtering, Fourier transform, interpolationoraggregation, areof interest
at the derivation layer. Methods in digital signal processing may be
used to, e.g., convert the observations of a dataset in time domain into
observations of a dataset in frequency domain. Several Java libraries
implementdigital signalprocessingalgorithms, e.g. theModularAudio
RecognitionFramework(MARF)or JScience.ComplexEventProcessing
(CEP) (Luckham,2002) andrelated Java libraries suchasEspermayalso
be of interest at the derivation layer to process datasets.

Of particular interest at the situation layeraremethods inmachine
learning and data mining (Mitchell, 1997; Hand et al., 2001). Such
methods play a key role in discovering situations from dataset ob-
servations. An example are Multilayer Perceptron artificial neural
networks (MLP) (Haykin, 1999). An MLP network consists of a set of
neurons that form the input layer, one ormore hidden layers, and the
output layerof thenetwork.MLP is trained inasupervisedmanner, i.e.
by means of a labelled training dataset, using error back-propagation
learning, which consists of a forward pass and a backward pass
through the layers. In the forward pass, the signal resulting from the
application of an input vector is propagated through the network in a
forward direction and the actual response of the network at the
output layer is recorded. In the backward pass, the recorded response
7 http://sdmx.org/docs/2_0/SDMX_2_0%20SECTION_02_InformationModel.pdf.

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Sensor
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of the network at the output layer is subtracted from a desired
response, i.e. the label, toproduceanerror signal,which ispropagated
through thenetwork inabackwarddirection. In thispass thenetwork
is adjusted in order to align the actual response with the desired
response. In supervised learning, the labelled training dataset is used
to train (calibrate) thenetwork.Once trained, thenetworkcanbeused
to classify input vectors for which the label is not known. At the sit-
uation layer, a learning module may use trained neural networks in
order to classify input vectors represented as (multidimensional)
dataset observations, elements of datasets of the derivation layer. The
result of such classification allows for the detection of situations as
well as for the acquisition of situational knowledge. There exist
several Java libraries of interest to learning modules at the situation
layer. A popular example is WEKA (Hall et al., 2009).

A Wavellite store module is for a specific knowledge base. We
use the Stardog RDF database. The Stardog RDF database imple-
ments the persistence of RDF. Thus, all information entities
generated at the observation, derivation, and situation layers may
be persisted via store module to the Stardog RDF database. Wave-
llite can be extended with application specific store modules to
support other RDF databases.

The Protégé Ontology Editor and Knowledge Acquisition System
is useful for ontology management. It is particularly useful to the
design of domain ontologies that extend the concepts and prop-
erties of ontologies discussed here, e.g. extend the SSNO concept for
sensor with a domain specific hierarchy of sensor types and in-
dividuals representing deployed sensors.

4. Application

Wavellite can be implemented for specific applications.
Figure E.8 (Appendix E) provides a schematic overview ofWavellite
application implementation. The process begins with a domain
ontology that imports SSNO, QB, and STO. The ontology is then
populated with domain knowledge, for instance using Protégé. This
may require a fair amount of expertise regarding the sensor
network infrastructure, the sensed environmental phenomena, the
purpose of sensing, and ontology engineering. The completed
ontology is imported by the knowledge base.

Wavellite application implementation also requires extensions
to the framework with custom (Java) program code. While any
Wavellite component or module may be extended, most base
implementations are intended to be reused.Main exceptions are the
measurement engine and the situation engine. We recall that the
responsibilityof ameasurementengine is to retrieve sensordata and
to convert the data tomeasurements. The technicalities of retrieving
and parsing sensor data very much depend on the sensing device
and communication links and protocols. Thus, the base measure-
mentengineexpects the implementationof theprogramlogic that is
necessary to emit measurements and their contextual information.

The responsibility of a situation engine is to implement the
program logic necessary for the acquisition of situational knowl-
edge from dataset observations as well as the representation of
situations. Situation engines are domain specific. Their imple-
mentation is determined by situational knowledge acquisition
tasks of interest to the domain. Thus, the base situation engine
expects the implementation of the program logic that is necessary
for situational knowledge acquisition and representation.

Wavellite supports the implementation and reuse of processing
and learning modules. However, the large number of methods for
data processing and data driven learning, as well as the large
number of domain specific problems, is likely to necessitate
framework extension with modules required in applications.

There are two main modes of application execution. We may
either create a Wavellite topology and execute it on a Storm cluster
or we may use Wavellite in a (Java) application. They are aimed at
different modes of operation. The former is designed for applica-
tions that require continuous (near) real time processing of current
sensor data. In contrast, the latter is designed for applications that
process historical sensor data. The use of Storm for historical data is
technically possible but practically it is more direct to assemble the
necessary program logic in a standalone application.

5. Experiment

We developed a Wavellite application for SMEAR IV-Puijo sen-
sors for the acquisition and representation of situational knowledge
for events of new particle formation and could events. The appli-
cation was for data by the Differential Mobility Particle Sizer
(DMPS) for particle size distribution and the Present Weather
Sensor (PWS) for visibility and precipitation.

New Particle Formation (NPF) and the growth of newly formed
particles have been well documented in a wide variety of envi-
ronments all over the world (Kulmala et al., 2004). Aerosol particles
are known to influence quality of life, for instance by affecting
human health (Pope III et al., 2002). Newly formed nano-sized
particles can grow, through condensation and coagulation pro-
cesses, and directly effect on Earth’s radiation balance by scattering
sunlight. Indirectly, their potential to grow large enough to act as
Cloud Condensation Nuclei (CCN) and their possible activation to
cloud droplets results in more scattering of radiation. It is known
that the scattering of radiation has a cooling effect on the climate
(Solomon et al., 2007). However, the magnitude of indirect effects
remains the single largest uncertainty in current estimates of
anthropogenic radiative forcing (Solomon et al., 2007), leading to
large uncertainties in the calculations of future climate change.

The study of NPF relies on methods for the identification and
characterization of these atmospheric events. At the base of such
methods is the measurement of particle size distribution for poly-
disperse aerosols. Of specific interest are particles with diameter
size ranging 10�9e10�6 m. The resulting data, as measured over the
course of a day at a specific location, can be visualized to assess the
presence of NPF (Dal Maso et al., 2005).

Different classifications have been proposed in order to char-
acterize NPF (Dal Maso et al., 2005; Hamed et al., 2007; Vana et al.,
2008). The criterion established by Hamed et al. (2007) is based on
event clarity. According to the criterion, nucleation event classes 1,
2, and 3 indicate strong, intermediate, and weak nucleation event
(E) days, respectively. Days during which no particle formation is
observed are classified as non-event (NE). Days that are neither E
nor NE are called undefined class, or class 0. The tasks of NPF
identification and characterization are typically carried out visually
by experts (Hamed et al., 2007).

We adopt the classification proposed by Hamed et al. (2007) and
distinguish two (machine learning) classification tasks: NPF event
identification and NPF event characterization. The former is for the
classification of days as event (E) or non-event (NE). The latter is for
the classification of event (E) days into classes 1, 2, or 3 for event
clarity. We train, validate, and test MLP artificial neural networks
for the two tasks of NPF event identification and characterization.

A could event at Puijo is considered to take place when average
hourly visibility drops below 200 m. Cloud events are further clas-
sified as rainy if average hourly precipitation exceeds 0.2 mm h�1. In
contrast to NPF events, (rainy) cloud events are relatively straight-
forward to detect using complex event processing.

The sensors are installed on the Puijo observation tower. A
DMPS consists of a Differential Mobility Analyser (DMA) and a
Condensation Particle Counter (CPC). The particles of a poly-
disperse aerosol (source) are first classified according to diameter
size by the DMA and then counted by the CPC (Kulkarni et al., 2011).



Table 1
The key characteristics of training datasets for NPF identification and NPF charac-
terization. The table provides an overview of the mapping from (expert) label to
training class. The number (#) of samples are included.

Label Learning tasks

NPF identification NPF characterization

Class # Class #

NE NE 195
1 E 126 1 10
2 2 38
3 3 78
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The DMPS measures the particle number concentration [cm�3] for
40 discrete diameter sizes in the range 7e800 nm, on average 5
samples per hour. The PWS (Vaisala FD12P) measures visibility [m]
and precipitation [mm h�1], 1 sample per minute.

5.1. Implementation

In this section we describe the extensions made at the mea-
surement, derivation, and situation layers in order to implement the
application. We processed historical data for the period May 2007
throughDecember 2011. Datawas available in (daily)files. PWSdata
for visibility and precipitation was available as it was generated by
the sensor. In contrast,DMPSdata for particle number concentration
was available post-processed. Post-processing is for DMPS sensor
data inversion (Wiedensohler et al., 2012) and is performed in
MATLAB. Thus, we used sets of sensor data for visibility and pre-
cipitation and sets of dataset observations for particle number
concentration. We implemented a store module that streams
generated RDF triples in N-Triples format to a plain text file. The
motivation for this implementation is that the StardogRDFDatabase
is optimized for bulk load of RDF data at database creation time.

At the measurement layer, we processed PWS data for visibility
and precipitation. Sensor data was converted to measurements and
contextual information for sensor, property, feature, and temporal
location. In contrast to PWS data, we did not process (the post-
processed) DMPS data at the measurement layer. The motivation
is three-folded. First, DMPS data requires a (non-trivial) inversion
from sensor data in [V] to particle number concentration in [cm�3].
The inversion was implemented in MATLAB. Second, the result of
the inversion was readily available in daily files and could, thus, be
used directly. Third, we can demonstrate that Wavellite is not
restricted to inputting data at the measurement layer.

At the derivation layer, we processed sensor observations for
visibility and precipitation to a dataset Dpws of dimensionality 3 for
temporal location, and visibility and precipitation measurement.
Furthermore, DMPS data were processed from daily files to a
dataset Ddmps. Ddmps was a data matrix m � n, where m was the
number of samples and n ¼ 41 was the temporal location plus the
40 discrete particle diameter sizes. We processed the data of Ddmps
for each day between 6 AM and 6 PM using Singular Value
Decomposition (SVD) to a vector, vi, of size 40. Hyvönen et al.
(2005) have argued that the time window between sunrise and
sunset is a reasonable choice; we selected 6 AM through 6 PM as a
rough approximation. Together with temporal location, vi formed
an observation of dataset Dsvd. At this stage we also introduced the
NPF label manually assigned for the historical data by experts, who
assessed the label visually by plotting the particle size distribution
over the course of each day. Thus, Dsvd was a data matrix of
dimensionality 42, for the temporal location, the NPF label, and vi.

At the situation layer, we used the WEKA learning module
implemented in Wavellite to classify observations of dataset Dsvd
using Multi-Layer Perceptron (MLP) artificial neural networks. To
do so, we first needed to train MLP networks for the two classifi-
cation tasks. For training and validation we used data from May 1,
2007 through December 31, 2010. The data for 2011 was used for
test purposes. The generation of WEKA ARFF files from dataset Dsvd

is straightforward, as it amounts to the execution of SPARQL
(Prud’hommeaux and Seaborne, 2008) queries and the processing
of the result set to generate ARFF formatted files. Generated ARFF
files were used for MLP networks training and validation as well as
to train MLP networks used to classify test data.

For the acquisitionof knowledge forevents ofNPFwetrained two
MLP networks, one for the identification (classes E and NE) and one
for the characterization (classes 1, 2, and 3) of NPF events. Thus, we
generated two ARFF files fromDsvd for the periodMay 2007 through
December 2010. The NPF labels were mapped to the corresponding
training class for NPF event identification and characterization as
shown inTable1. TheARFFfileswereused to trainMLPnetworks and
evaluate their performance. TheMLPnetworks consisted of 40 input
neurons and one hidden layer with 21 hidden neurons. The number
of output neurons was 2 and 3 for NPF identification and NPF char-
acterization, respectively. The learning rate and momentum were
set to 0.3 and 0.2, respectively. (Default WEKA configuration.) The
MLP networks were validated using 10-fold cross validation,
meaning that the training dataset was partitioned into 10 disjoint
and equal-sized folds, and for each fold a classifierwas trained using
the other 9 folds and thenvalidated on the fold (intermediate results
were averaged). ARFF files were also used to test situational
knowledge acquisition for events of NPF in 2011. For testing, obser-
vations of dataset Dsvd for 2011 were classified by two WEKA
learning modules, first to identify and, if identified, to characterize
NPF events. For characterizedNPF events, situationswere generated
and persisted. Such situations consisted of the infon

s
�
�¼� npf ; _c; _t;1[

where ‘npf’ is the relation and _c and _t are parameters for the NPF
event clarity classes 1, 2, or 3 and the temporal location for the day
at which NPF was characterized, respectively.

The acquisition of knowledge for (rainy) cloud events occurred on
observations of dataset Dpws for 2011. A complex event processing
learningmodulewas implemented to identify cloud events and their
duration, i.e. time intervals during which visibility was continuously
below 200 m. Furthermore, the module classified identified cloud
events as rainy if mean precipitation during the time interval excee-
ded 0.2 mm h�1. For (rainy) cloud events, situations were generated
and persisted. Situations for cloud events consisted of the infon

s
�
�¼� cloud� event; _t1; _t2; _v;1[

where _t1 and _t2 are parameters for the temporal locations at which
the cloud event begins and ends, respectively, and _v is the param-
eter for mean visibility computed over the time interval ½ _t1; _t2�.
Situations for rainy cloud events consisted of the infon

s
�
�¼� rainy� cloud� event; _t1; _t2; _v; _p;1[

where _p is the parameter for mean precipitation computed over the
time interval ½ _t1; _t2�.

5.2. Results

Executing the application generated approximately 100 million
RDF triples for the period May 2007 through December 2011. At the
observation layer, approximately 4.5 million sensor observations
were generated frommeasurements for visibility and precipitation.
These sensor observations were represented by approximately 67
million RDF triples. At the derivation layer, approximately 2.5
million dataset observationswere generated for the DMPS and PWS



Table 2
Precision, recall, and F-measure by class.

Measure Learning tasks

NPF identification NPF characterization

E NE 1 2 3

Precision 0.875 0.896 0.000 0.333 0.698
Recall 0.833 0.923 0.000 0.342 0.769
F-Measure 0.854 0.909 0.000 0.338 0.732
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Fig. 2. Situations for events of NPF for 2011 acquired and represented at the situational
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data. These dataset observations were represented by approxi-
mately 37 million RDF triples.

Figure B.4 (Appendix B) and Listing 1 (Appendix C) show the
representation of an example sensor observation made on
December 29, 2011 at 3:48 AM for the visibility of 161 m in air at
Puijo by the Vaisala FD12P sensing device. For readability, we
expand the sensing device separately. We highlight the modelling
of the platform on which the sensing device resides. In fact, we
reuse the GeoNames identifier for the Puijo Tower (in Finnish Puijon
torni). We, thus, inherit the information for, e.g., the tower’s
longitude and latitude coordinates from GeoNames. Given that it
observes three properties (namely temperature, precipitation and
visibility) we underscore that the Vaisala FD12P may also be
modelled as a system consisting of three sensors. We do not further
expand here on the pros and cons of such modelling choices and
leave them at the discretion of domain modellers. Figure B.5 and
Listing 2 show the representation of an example dataset observa-
tion made on December 29, 2011 at 3:48 AM for the visibility and
precipitation having values 165 m and 1.46 mm h�1. The structure
definition of the dataset is expanded separately. The example
shows that the dataset observation consists of the values for the
component properties defined in the structure of the dataset it
relates to, namely for time, visibility, and precipitation. Finally,
Figure B.6 and Listing 3 show the representation of an example
situation for a rainy cloud eventmade on December 29, 2011 lasting
between 3 and 5 AM with mean precipitation 1.18 mm h�1. The
situation supports an infon with rainly-cloud-event relation
anchoring four attributes for the temporal locations at which the
cloud event begins and ends (and _t2), for mean visibility ( _v) as well
as for mean precipitation ( _p) during ½ _t1; _t2�.

We validated MLP classifiers using WEKA. Classification per-
formance (correctly classified instances) of the NPF identification
learning task was 89%. Classification performance of the NPF
characterization taskwas 58%.We recall that we used 10-fold cross-
validation to validate MLP classifiers. Table 2 provides detailed
precision, recall, and F-measure figures by class. As expect from
classification performance, precision and recall for NPF identifica-
tion and NPF characterization is good and mediocre, respectively.
Indeed, all samples for class 1 were confused as either class 2 or
class 3. The number of samples for the three classes of NPF char-
acterization is insufficient, especially for class 1.

Using trainedMLP classifiers, at the situational layerwe identified
and characterized 45 situations for events of NPF in 2011. Fig. 2
provides an overview. Most events are characterized as clarity 3,
namely 34 (approximately 75%). The number of events characterized
as clarity 1 and clarity 2 are 4 and 7, respectively. In contrast, experts
have characterized 43 situations for events of NPF in 2011, of which
29 are of clarity 3, 3 are of clarity 1, and 11 are of clarity 2. Indeed, if
we evaluate the classification performance (correctly classified in-
stances) using trained classifiers on 2011 test sets the result is 88% for
NPF identification and 63% for NPF characterization, which is slightly
better than using 10-fold cross-validation (58%).

At the situational layer, we also identified and characterized 126
cloud events during 2011, of which 52 were rainy. The longest cloud
event lasted28hbetweenNovember29 at 2PMandNovember30 at 6
PMwith mean visibility 110 m. The rainy cloud event with maximum
mean precipitation occurred on August 8 lasting from 3 AM to 4 AM
with mean visibility 161 m and mean precipitation 6.4 mm h�1 Fig. 3
shows the (rainy) cloud events in December 2011. During December
2011 there were 31 cloud events, of which 8 were rainy. The cloud
event with lowest visibility occurred on December 16 with mean vis-
ibility 101 m. The rainy cloud event with maximum precipitation
occurred on December 29 with mean precipitation 1.2 mm h�1. As
shown in Fig. 3, some cloud events are longer than others.
6. Discussion

We provided an overview of Wavellite (Stocker et al., submitted
for publication), a software framework for the representation of
situational knowledge acquired from sensor data. We discussed in
details the current version of its logical structure, in particular the
four layers, the components, and modules. We presented the
implementation of the architecture and the materials and methods
the implementation builds on.

Extending our previous work (Stocker et al., 2013), the aim of
this study was to apply Wavellite to SMEAR IV-Puijo sensor data
and the representation of situational knowledge for events of at-
mospheric New Particle Formation (NPF) acquired from dataset
observations by machine learning. In addition we processed Pre-
sent Weather Sensor (PWS) data for visibility and precipitation
from measurements and contextual information to sensor obser-
vations and dataset observations to represent situational knowl-
edge for (rainy) cloud events. The results show a good classification
performance for NPF identification (approximately 90%) and a
mediocre classification performance for NPF characterization
(approximately 60%). Thus, the system can be used for automated
identification of NPF event days whereas expert review is required
to determine NPF event clarity.

We demonstrated for (rainy) cloud events how explicitly repre-
sented situational knowledge can be of value to scientists. The term
‘cloud event’ has a determined interpretation in PWS data for visi-
bility. This interpretation is shared between scientists andWavellite.
Thus, Wavellite is able to represent situational knowledge for cloud
events and scientists can interact withWavellite using the term. It is,
hence, possible for scientists to query Wavellite for, e.g., the cloud
event with lowest visibility and longest duration in a given time
interval. Similar examples can be made for events of NPF.

The fundamental problem addressed in this work is known to
other fields. For instance, Coradeschi and Saffiotti (2003) introduce
‘anchoring’ as the process of establishing and maintaining the
layer. The clarity of the event is shown on the y-axis (1, 2, or 3).
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correspondence between abstract representations and perceptual
(sensor) data “that refer to the same physical objects in the external
world” (Coradeschi and Saffiotti, 2003). Their focus is on robotics
and autonomous systems. The authors argue that “anchoring must
necessarily take place in any robotic system that comprises a
symbolic reasoning component” (Coradeschi and Saffiotti, 2003).
We think that anchoring is more generally a useful concept to do-
mains that employ sensors and process sensor data with the aim of
improving the understanding of real world phenomena. Indeed, the
process of anchoring is fundamental to Wavellite as the framework
aims at drawing a correspondence between abstract representa-
tions for environmental phenomena and sensor data that explicitly
or implicitly hold information about the phenomena. We deliber-
ately use the term ‘phenomenon’ and contrast it with the ‘object’ of
typical interest in robotics.

Wavellite supports the semantically rich modelling of infor-
mation at each layer of abstraction. Suchmodelling is an interesting
aspect for several reasons. First, Wavellite commits to reuse formal
terminology and semantics that are explicitly defined in ontologies.
Indeed, most of the terminology used by Wavellite is defined in
SSNO, QB, and STO. Wavellite applications often only trivially
extend these ontologies with domain knowledge. One of the ben-
efits of this commitment is that the reuse of terminology explicitly
represented in ontology can increase the interoperability between
systems (Obrst, 2003; Uschold and Gruninger, 2004). However, in
ontology based system it is not just software that commits to reuse
terminology defined in ontology: human experts do so as well. In
fact, knowledge provided by domain experts is formalized and
extends SSNO, QB, and STO with information about the sensor
network and observed environmental phenomena at the observa-
tion layer, information about datasets at the derivation layer, and
information about situations of interest to the domain at the situ-
ation layer. Wavellite and third party software systems use domain
expert knowledge to “learn” about, and adapt to, specific domains.

The three adopted ontologieseSSNO, QB, and STOecan serve as
a modelling framework for the problem of sensor data organization
and interpretation. This framework provides an organization of
relevant generic concepts and relations. For instance, at the
observation layer, the SSNO implements the so-called Stimulus-
Sensor-Observation ontology design pattern (Janowicz and
Compton, 2010; Compton, 2011). According to this pattern, sen-
sors observe properties of features by detecting stimuli that are
(directly or indirectly) related to properties. Moreover, sensors
implement a procedure that transforms stimuli to results. Obser-
vations link sensors and stimuli. Thus, in committing to SSNO,
domain experts adopt this pattern for the modelling of sensor
networks and observations. Similarly, at the situation layer, Situa-
tion Theory (Barwise and Perry, 1983; Devlin, 1995) serves as an
organization of generic concepts, relations, and their semantics for
the modelling of situations. In committing to STO, domain experts
adopt Situation Theory for the modelling of situations.

We have demonstrated the organization and interpretation of
sensor data for SMEAR IV-Puijo, in particular for DMPS and PWS
data. Organization was achieved at the observation and derivation
layers with shared syntax and semantics for sensor observations
and dataset observations as well as by supporting the persistence
and retrieval of observations. Interpretation was achieved at the
situation layer with functionality aimed at the acquisition and
representation of situational knowledge for events of NPF and
(rainy) cloud events.

Wavellite is not limited to the ontologies presented here.
Indeed, other ontologies may be adopted, e.g. to represent time or
space. For instance, the ontology used by PelletSpatial (Stocker and
Sirin, 2009) may be adopted to represent qualitative spatial re-
lations of the Region Connection Calculus (Randell et al., 1992)
between regions, to allow for qualitative spatial reasoning. The
WURVOC Ontology of units of Measure (OM) can be adopted to
model quantities and dimensions and the Semantic Web for Earth
and Environmental Terminology (SWEET) for the modelling of
environmental phenomena.

Wavellite was designed with earth and environmental science
as its target domain. It can be operated in a real time context to
continuously represent situational knowledge acquired from pro-
cessed sensor data. However, it can also serve as a computational
platform to explore and prototype applications. In earth and envi-
ronmental science, at the beginning of a workflow there may be
historical sensor data. Experts may be unfamiliar with the data,
unclear about the data processing, and perhaps unclear what
situational knowledge to acquire. Wavellite may be used to explore
and prototype such an application, layer by layer. Application de-
velopers first need to know what sensor data is available and how
to retrieve and parse the data. These concerns matter at the mea-
surement layer. Once these are known, at the observation layer the
focus turns to applying the Stimulus-Sensor-Observation pattern to
measurement data. At this stage, experts are more familiar with the
available measurement data as well as the domain, including de-
tails about the observed environmental phenomena. This famil-
iarity may also clarify the aims at the situational layer. Having the
aims at the situational layer set, the derivation layer can be used to
explore and prototype dataset processing chains that transform
dataset observations in preparation for situational knowledge
acquisition. This may often be a laborious task but systems such as
Wavellite may support the process.

Wavellite can be used in combination with other software and
scripts used by earth and environmental scientists to process data.
Such software may provide input to Wavellite as well as consume
output from Wavellite. Input can be provided at the measurement,
observation, and derivation layers. Output can be retrieved from
the observation, derivation, and situation layers. We think such
features are of particular interest to earth and environmental
science applications that build on sensor networks and process
sensor data to, specifically, acquire and represent situational
knowledge.

To the best of our knowledge, Wavellite is unique in its support
for the representation of situational knowledge acquired from
heterogeneous sensor data for environmental phenomena. It is a
practical architecture with a concrete implementation that can be
extended to meet the requirements of specific application.
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7. Related work

Work related to Wavellite can be organized along several lines.
First, the work relates to other software architectures that aim at
the representation of knowledge acquired from sensor data. Sec-
ond, Wavellite relates to the development of ontologies for sensor
networks and sensor data as well as the development of systems for
the semantic enrichment of sensor data. Third, it relates to work
that applies the SSNO, QB, or STO to domains that build on sensor
networks and sensor data. Fourth, our work relates to software
systems that manage, process, or mine sensor data and were
developed ad hoc for a specific domain and purpose, in particular
the study of atmospheric new particle formation.

Clemente et al. (2013) propose a software architecture aimed at
collision avoidance of ships in harbour areas. Their recent work
relates to previous work on a software architecture aimed at the
identification of, and reasoning about, situations (Furno et al., 2011)
as well as the use of the STO to represent airport security situations
(Fenza et al., 2010). The architecture presented by Clemente et al.
(2013) relates to the one implemented by Wavellite in that,
broadly speaking, both aim at the representation of situational
knowledge acquired from sensor data. Moreover, both architectures
leverage on the SSNO and Situation Theory. However, there are
important differences. First, in contrast to Clemente et al. (2013)
Wavellite suggests using a third ontology to model datasets and a
corresponding layer at which arbitrary transformations on datasets
can be computed. Second, our target domain of application is earth
and environmental sciences. Different domains pose different re-
quirements on software systems with comparable aims. It is
important to identify and characterize such differences. Third,
Wavellite proposes a concrete implementation of its architecture
and is released open source.

Gorrepati et al. (2013) propose a software architecture for se-
mantic modelling of bird ecology. The architecture consists of a
physical layer (microphone array), an event layer (pattern match-
ing, feature extraction, classification), a semantic layer (represen-
tation of location, species, numbers), an awareness layer (modelling
of movement, location, interaction, health), and a service layer (for
tracking, behaviour, richness and diversity). Their work relates to
Wavellite in that raw sensor measurement data for the signal of a
property (bird call) of a physical phenomenon (birds) is processed
to knowledge for situations involving the phenomenon of interest.
The work also relates to Wavellite in the target application domain.
One of the main differences is that by building on generic termi-
nology, Wavellite is reusable across applications. In fact, Gorrepati
et al. (2013) directly extend the top level concept owl:Thing

with domain specific terminology, e.g. Bird. Their modelling is,
therefore, ad hoc for the semantic modelling of bird ecology.

As we briefly mentioned, our work also relates to the field of
robotics, in particular to the notion of anchoring. In addition to
Coradeschi and Saffiotti (2003) and Daoutis (2013), we highlight
the work by Vassev and Hinchey (2012). The authors underscore
that converting sensor data to symbolic knowledge is a challenge in
cognitive robotic systems. According to Vassev and Hinchey (2012),
the raw sensor data of a robotic system for the measured properties
of physical phenomena must be converted to “programming vari-
ables or more complex data structures that represent collections of
sensory data” which “must be labelled with [knowledge repre-
sentation] symbols.” Naturally, cognitive robotic systems have a
substantially different set of requirements and challenges
compared to similar software systems designed for the organiza-
tion and interpretation of environmental sensor network data.

The relevance of ontologies to sensor networks and sensor data
is well documented in the literature. Sheth et al. (2008) present the
Semantic Sensor Web in which sensor data is annotated with
spatial, temporal, and thematic semantic metadata. Terminologies
to describe the characteristics of sensors and sensor networks have
received considerable attention (Avancha et al., 2004; Eid et al.,
2006). Compton et al. (2009) review eleven sensor ontologies for
their range and expressive power.

The semantic enrichment of sensor data has been studied.
Moraru and Mladeni�c (2012) propose a framework that resembles
the Wavellite measurement and observation layers. Wanner et al.
(2011) present an environmental information system in which
environmental data, e.g. temperature measurements for a city, are
stored in an OWL knowledge base. Barnaghi et al. (2009) propose a
semantic model for (heterogeneous) sensor data representation,
discussed using both XML and OWL. Wei and Barnaghi (2009)
annotate sensor data with semantic metadata and relate sensor
data with data of knowledge bases available online, such as
DBpedia (Bizer et al., 2007), following the linked data principle
(Berners-Lee, 2006). The principle has also been applied in works
that aim at making sensor data accessible as linked data (Kessler
and Janowicz, 2010).

An advantage of the semantic enrichment of sensor data is that
systems can leverage ontology and rule based reasoning to infer new
knowledge from sensor data. This practice is well documented, for
instance by Sheth et al. (2008) to infer a ‘blizzard condition’; Henson
et al. (2009) to infer ‘highwinds’ observations; Stocker et al. (2011) to
infer the nutrient status of lakes; Wei and Barnaghi (2009) to infer
the approximate temperature for a city neighbouring another city for
which the temperature is known. If a knowledge acquisition task on
sensor data can be expressed using rule languages, representing
sensor data in ontology is attractive, as it allows us to leverage the
powerful reasoning capabilities of inference engines. However, not
all knowledge acquisition tasks on sensor data can be formalized
using state of the art ontology and rule languages, e.g. the task of NPF
identification presented in this study.

Using the SSNO, Barnaghi et al. (2012) describe a framework
aimed at creating perception from sensor data. The authors moti-
vate their work by underscoring how data consumers “are often
interested in the higher-level concepts, such as events,” rather than
low-level sensor data. Contrary to Barnaghi et al. (2012) and our
previous work (Stocker et al., 2012a,b) herewemake use of the STO
to represent knowledge at themost abstract level, leaving the SSNO
at an intermediate level for the semantic enrichment of sensor data.
Lefort et al. (2012) use the QB in combination with the SSNO to
model a dataset with daily temperature sensor data. Their work
relates to the Wavellite observation and derivation layers. The clear
difference is the Wavellite situation layer. The STO has also been
used in various studies. Aside Fenza et al. (2010) who use the STO to
represent airport security situations, De Maio et al. (2012) present
an approach to identify situations represented using the STO and
Doulaverakis et al. (2011) use the STO in an architecture for intel-
ligent information fusion in a sensor network environment,
demonstrated for the domain of security and surveillance. In
contrast, we suggest adopting the SSNO, QB, and STO at different
levels of abstraction. Persistence of, and possibly inference on,
sensor observations motivates the intermediate observation layer
while arbitrary processing of dataset observations, as well as their
persistence, motivates the intermediate derivation layer.

Wavellite relates to ad hoc systems that manage and process
sensor data to organize such data, provide declarative query in-
terfaces, and domain specific services, such as visualizations. An
example related to this study is Smart-SMEAR (Junninen et al.,
2009). Smart-SMEAR is a software system and Web interface for
the visualization of data measured at the SMEAR II station in
Hyytiälä, Finland. The measurement station has recorded data for
gas, aerosol, and meteorological variables since 1996. Smart-
SMEAR was designed and developed to manage the data, provide
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visualizations, support querying and export, as well as some data
mining functionality. Junninen et al. (2009) provide some imple-
mentation details. Of most interest here is that Smart-SMEAR
builds on classical relational database management technologies,
specifically a MySQL database. As we discussed earlier, one of the
key advantages of ontology based systems such as Wavellite is that
they reuse machine processable and interpretable terms and se-
mantics defined explicitly in ontologies which can be shared across
domains of application. Hence, they support rich semantic
modelling of domain knowledge and increase the interoperability
between human-machine systems.

The acquisition of knowledge for atmospheric new particle
formation at the situation layer relates to work that applies data
mining techniques on sensor data to study atmospheric new par-
ticle formation. Hyvönen et al. (2005) used clustering and classifi-
cation of SMEAR II sensor data to identify the key parameters that
explain new particle formation. The authors found that just two
parameters, namely relative humidity and the condensation sink,
are capable of explaining 88% of new particle formation events.
Data mining techniques are relevant toWavellite learningmodules.
However, with knowledge representation Wavellite goes clearly
beyond mere knowledge acquisition.

8. Conclusions

Using the Wavellite software framework (Stocker et al.,
submitted for publication) for the organization and interpretation
of sensor data and extending our previous work (Stocker et al.,
2013), the aim of this study was to develop a Wavellite applica-
tion for the representation of situational knowledge acquired from
data by sensors of the Finnish Station for Measuring Ecosystem-
Atmosphere Relations (SMEAR) for events of atmospheric new
particle formation and (rainy) cloud events.

Wavellite supports the processing of heterogeneous sensor data
to sensor observations with homogeneous syntax and semantics;
the mapping of sensor observations to dataset observations and the
processing of datasets; the acquisition of situational knowledge
from datasets; and the representation of situational knowledge.We
have provided an overview of the current version of the logical
structure of its architecture and thematerials andmethods adopted
by the implementation.

Our results show that Wavellite can be used to organize het-
erogeneous sensor data, interpret sensor data, and represent situ-
ational knowledge for atmospheric phenomena. Furthermore, the
results show that Wavellite can support scientists in the identifi-
cation and characterization of atmospheric new particle formation.
Knowledge automatically acquired and represented by Wavellite
can guide the manual review by scientists. The automated assess-
ment can reduce the resources required in scientific computing
workflows as well as reduce individual bias in manual assessment.
Moreover, the knowledge layer provided by Wavellite can be a
useful resource to scientists. We have shown how situational
knowledge for (rainy) cloud events can be visualized and used to
compute statistics, such as the maximum duration of cloud events
or maximum precipitation of rainy cloud events. Similar conclu-
sions can be drawn for events of new particle formation.

Together with our previous work on Wavellite, namely to
represent situational knowledge acquired from road pavement vi-
bration sensor data for vehicles (Stocker et al., 2012b) and situa-
tional knowledge for the exposure to carbon monoxide in a
residential home (Stocker et al., 2012a), this study underscores that
Wavellite provides a generic modelling framework for the problem
of sensor data organization and interpretation. Its architecture in-
cludes the key aspects of a generic solution, in particular the
modelling of sensor observations, the modelling of dataset
observations, and the modelling of situational knowledge. Wave-
llite frames the addressed problem and proposes a concrete ter-
minology, approach, and technologies to build on.

To support the requirements of applications, the framework can
be extended with application specific program logic that includes
algorithms in, e.g., digital signal processing, complex event pro-
cessing, or machine learning. Application specific knowledge is
accommodated by extension of three upper ontologies adopted in
Wavellite for the representation of knowledge about sensor net-
works and sensor observations, the representation of datasets and
dataset observations, and the representation of situational knowl-
edge acquired from dataset observations. Knowledge is represented
explicitly using the terms and semantics defined in ontologies. With
Semantic Web technologies, Wavellite builds on open and de facto
standard knowledge representation languages, on increasingly
known and supported related software systems, and inherits the
functionality for inference and query typically supported by systems.
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Appendix A. Internet Resources

Appendix A.1. Specifications

DAML þ OIL: http://www.daml.org/2001/03/damlþoil-index
N-Triples: http://www.w3.org/2001/sw/RDFCore/ntriples/
OM: http://www.opengeospatial.org/standards/om
OWL: http://www.w3.org/TR/owl-features/
OWL 2: http://www.w3.org/TR/owl2-primer/
QB: http://www.w3.org/TR/vocab-data-cube/
RDF: http://www.w3.org/TR/rdf-primer/
RDFS: http://www.w3.org/TR/rdf-schema/
SDMX: htt://www.sdmx.org
SensorML: http://www.opengeospatial.org/standards/sensorml
SSNO: http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
STO: http://vistology.com/ont/2008/STO/STO.owl
SWEET: http://sweet.jpl.nasa.gov/ontology/
WURVOC: http://www.wurvoc.org/vocabularies/om-1.8/
Appendix A.2. Software

Apache Cassandra: http://cassandra.apache.org
Esper: http://esper.codehaus.org/
JScience: http://jscience.org/
MARF: http://marf.sourceforge.net/
Protégé: http://protege.stanford.edu/
Smart-SMEAR: http://www.atm.helsinki.fi/smartSMEAR/
Stardog: http://stardog.com
Storm: http://storm-project.net/
WEKA: http://www.cs.waikato.ac.nz/ml/weka/
Appendix A.3. Other

SMEAR: http://www.atm.helsinki.fi/SMEAR/

http://www.daml.org/2001/03/daml+oil-index
http://www.daml.org/2001/03/daml+oil-index
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.opengeospatial.org/standards/om
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/vocab-data-cube/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-schema/
http://htt://www.sdmx.org
http://www.opengeospatial.org/standards/sensorml
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://vistology.com/ont/2008/STO/STO.owl
http://sweet.jpl.nasa.gov/ontology/
http://www.wurvoc.org/vocabularies/om-1.8/
http://cassandra.apache.org
http://esper.codehaus.org/
http://jscience.org/
http://marf.sourceforge.net/
http://protege.stanford.edu/
http://www.atm.helsinki.fi/smartSMEAR/
http://stardog.com
http://storm-project.net/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.atm.helsinki.fi/SMEAR/


Appendix B. RDF Graphs

Figure B.4. RDF graphs showing the representation of a sensor observation and the sensor that made the observation. The greyed nodes correspond to named individuals with UUID
fragment, here abbreviated for the sake of readability.



Figure B.5. RDF graphs showing the representation of a dataset observation.
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Figure B.6. RDF graph showing the representation of a situation for a rainy cloud event.
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Appendix C. RDF Listings
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Appendix D. Component Interfaces

Figure D.7. Interfaces of Wavellite components with emit and execute operations.
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Appendix E. Application Implementation

Figure E.8. Schematic overview of Wavellite application implementation and execution. Experts extend upper ontologies (SSNO, QB, STO) with domain knowledge. These on-
tologies are imported to the Knowledge Base (KB). Experts create the (JSON) Wavellite application configuration for components, their settings, incoming and outgoing streams, and
class implementations. Finally, experts implement measurement engines and learning modules, as well as processing modules (if required by the application). At runtime, the
Wavellite application configuration is translated to a Storm topology which is submitted to a Storm cluster. The Storm cluster then initializes the topology and activates spouts
(measurement engines and readers) and bolts (other components). In activating measurement engines, sensor data is retrieved and processed to measurements, which are emitted
by measurement engines. Data is, henceforth, processed to sensor observations and dataset observations, which may be persisted by accordingly configuring writers. Situations are
acquired from dataset observations by situation engines. Sensor observations, dataset observations, and situations are represented according to the SSNO, QB, and STO upper
ontologies, respectively, and are persisted to the KB by store modules.
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