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ABSTRACT
The document-centric workflows in science have reached (or al-
ready exceeded) the limits of adequacy. This is emphasized by
recent discussions on the increasing proliferation of scientific lit-
erature and the reproducibility crisis. This presents an opportu-
nity to rethink the dominant paradigm of document-centric schol-
arly information communication and transform it into knowledge-
based information flows by representing and expressing informa-
tion through semantically rich, interlinked knowledge graphs. At
the core of knowledge-based information flows is the creation and
evolution of information models that establish a common under-
standing of information communicated between stakeholders as
well as the integration of these technologies into the infrastructure
and processes of search and information exchange in the research
library of the future. By integrating these models into existing and
new research infrastructure services, the information structures
that are currently still implicit and deeply hidden in documents
can be made explicit and directly usable. This has the potential to
revolutionize scientific work as information and research results
can be seamlessly interlinked with each other and better matched to
complex information needs. Furthermore, research results become
directly comparable and easier to reuse. As our main contribution,
we propose the vision of a knowledge graph for science, present a
possible infrastructure for such a knowledge graph as well as our
early attempts towards an implementation of the infrastructure.
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1 INTRODUCTION
The communication of scholarly information is document-centric.
Researchers produce essays and articles that are made available in
online and offline publicationmedia as text documents. The entire li-
brary, technology, service and research landscape is geared towards
this fundamental approach. This approach may indeed be justi-
fied if questions can be answered by individual articles. However,
increasingly often answers do not just span multiple articles but
also multiple scientific domains. In these cases researchers are not
adequately supported by the existing infrastructure. Currently, in a
best case scenario researchers obtain large, disordered amounts of
more or less relevant documents, or more generally, digital objects.

With the current developments in areas such as knowledge rep-
resentation, semantic search, human-machine interaction, natural
language processing, and artificial intelligence it has become pos-
sible to completely rethink this dominant paradigm of document-
centric information flows and transform scholarly communication
into knowledge-based information flows by expressing and rep-
resenting information as structured, interlinked and semantically
rich knowledge graphs.

https://doi.org/10.1145/3227609.3227689
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Ehrlinger and Wöß [10] have discussed the term “knowledge
graph” and proposed a definition based on an analysis of current re-
lated research work. According to the authors a “knowledge graph
acquires and integrates information in an ontology and applies a
reasoner to derive new knowledge”. The authors underline that “an
ontology does not differ from a knowledge base”, meaning that fol-
lowing their definition a knowledge graph acquires and integrates
information in a kind of knowledge base. Since it is not within
the scope of this article, we make no further attempt to refine this
definition or provide an alternative. However, we suggest a special-
ization to science by proposing that a knowledge graph for science
acquires and integrates scientific information in a knowledge base,
and may apply a reasoner or other computational methods to derive
new information.

The variegated problems of document-centric information flows
are fairly obvious. Among others, the expansion of scientific liter-
ature1 makes it increasingly difficult to keep an overview of the
current state of research. Furthermore, the creation, reading, and
processing of scientific literature is tying up cognitive capacity.
The ambiguity, intransparency and redundancy of publications also
contributed to a lack of reproducability of research culminating in
the reproducibility crisis [18]. A further problem rests in the fact
that although the characters, words, and sentences can be indexed
and searched, the structure and semantics of text, illustrations, ref-
erences, symbols, etc. are currently hardly accessible to computers.

As our main contribution, we propose the vision of a knowl-
edge graph for science, present a possible infrastructure for such a
knowledge graph (Section 2) as well as our early attempts towards
an implementation of this infrastructure (Section 3). We highlight
some avenues for future work (Section 4) and provide a brief review
of related work (Section 5).

2 SCIENCE GRAPH INFRASTRUCTURE
The science graph is a knowledge graph for scholarly communica-
tion. It is the core of a socio-technical infrastructure that develops
and maintains the graph and operates services. The science graph
represents scientific information. It does not merely link (metadata
about) people, documents, datasets, institutions, grants, etc. but
rather represents research contributions semantically, i.e., explic-
itly and formally. While an ontology that conceptualizes research
contributions is yet to be developed, a semantic description for a
research contribution should, at the very least, relate the problems)
addressed by the contribution with the methods used and results
obtained. Problems, methods, and results are semantic resources
themselves. For instance, a result such as the statement “There is
a significant difference in the mean duration of a phenomenon X
(e.g., particle formation in the atmosphere) between winter and
summer seasons” is not merely a natural language sentence but an
identified semantic resource in the knowledge graph. This resource
is furthermore linked to the research contribution (and thus the
authors and affiliation) and the methods used to obtain the result.

The science graph is populated and curated by the infrastructure
via four complementary sources. First, the infrastructure leverages
existing metadata, data, taxonomies, ontologies, and information

1National Science Foundation: Science and Engineering Publication Output Trends:
https://www.nsf.gov/statistics/2018/nsf18300/nsf18300.pdf

models. Second, it provides services that enable direct contributions
from scientists who describe their research, supported by intelli-
gent interfaces and automatically generated suggestions. Third, it
implements automatedmethods for information extraction and link-
ing. Fourth, it supports curation and quality assurance by domain
experts, librarians and information scientists.

We argue that in order to succeed it is necessary to combine these
different sources and curatorial methods. Automated procedures
do not achieve the necessary coverage and accuracy while fully
manual curation is too time-consuming. Moreover, librarians and
information scientists lack the necessary domain expertise while
scientists lack the necessary expertise in knowledge representation.
By combining the four strategies we can bring their respective
strengths to bear and compensate for relative weaknesses.

The science graph infrastructure provides services for interlink-
ing, integration, visualization, exploration, and search. It enables
scientists to gain a much faster overview of new developments
in a specific field and identify relevant research problems. It rep-
resents the evolution of the scientific discourse in the individual
disciplines and enables scientists to make their work more accessi-
ble to colleagues as well as partners in industry, policy, and society
at large.

We suggest that a minimally viable infrastructure must comprise
the following technical components. First, a data model for repre-
senting scholarly communication semantically. The data model can
adopt RDF and Linked Data as a scaffold, but must add comprehen-
sive provenance, evolution, and discourse information. Second, the
infrastructure must include a scalable graph-storage backend to
store information and expose a comprehensive API for interacting
with the knowledge graph. Third, we require user interface widgets
and components for collaborative authoring and curation of the
graph and integration of these widgets into third-party services.
Finally, the infrastructure must support semi-automated semantic
integration, search, extraction, and recommendation services to
support the curation of the knowledge graph.

3 INFRASTRUCTURE IMPLEMENTATION
At its core, the infrastructure consists of a scalable data manage-
ment system with a flexible graph-based data model that can be
accessed via lightweight APIs. To ensure maximum interoperabil-
ity, it implements the long-established open standards RDF, RDF
Schema, OWL, and Linked Data as well as W3C Data on the Web
and the FAIR Data Principles. A central aspect is the preservation
of provenance and evolution, so that changes can be tracked trans-
parently at any time. The user interface supports flexible elements,
which can be contributed by advanced users themselves to enable
customized domain-specific interactions.

3.1 Ontology
As already stated by Ehrlinger and Wöß [10], ontologies are core
elements of a knowledge graph insofar as that all information that
is acquired as an input for the graph is integrated into a network of
ontologies underlying the graph. In information science, the term
“ontology” has many definitions – a majority of them build on the
formulation originally proposed by Gruber [14] who defined an
ontology as “an explicit specification of a conceptualization”.

https://www.nsf.gov/statistics/2018/nsf18300/nsf18300.pdf
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Thus, since ontologies are the base of the conceptualization of
scholarly communication they are a core element of the science
graph infrastructure. Attempts to “conceptualize science” using
methods from knowledge engineering are, predictably, not entirely
novel, and there are already several existing suggestions for on-
tologies trying to cover the scientific research process.2 However,
fundamental questions such as: “What is research?”, “What are
the contents of scholarly communication?”, “What are the relevant
components of a research contribution?” are notoriously difficult
to answer and answers are continuously hard to formalize.

We have decided to set out focusing on “research contribution”
as an abstract central concept of a possible top-level ontology, post-
poning considerations of feasibility and usefulness until we have
gathered more experience in order to tackle those questions. We
suggest that a research contribution communicates one or more
results in an attempt to address one or more problems using a
set of methods. This nucleus is certainly subject to review and
extension. The next necessary step will be to define specific and
adequate knowledge engineering workflows for the development
of a core ontology (or, more extensively, a network of top-level and
domain ontologies) that can be used as the base of the science graph
infrastructures in order to support the storing of information.

It is fairly obvious that any abstract concept and top-level on-
tology will need to be specialized and branched out for different
fields of science. What we call “problem” may be more commonly
known as “hypothesis” in the natural sciences and “research ques-
tion” in engineering. Furthermore, these specialized concepts may
be conceptualized differently, i.e., feature different attributes and ac-
cordingly entail different conclusions concerning their subconcepts.
It is even less obvious how concepts are established and determined.
A top-down approach whereby a small group of experts designs
top-level and domain-specific ontologies as well as their alignment
with existing ontologies seems to be a daunting task with uncer-
tain outcome. A bottom-up approach whereby concepts, relations,
and conceptualizations are crowd-sourced, thus emerging from the
submission of semi-structured data by researchers, may be an inter-
esting way to derive an ontology but comes with its own challenges,
for instance the acquisition of the resources that are needed for a
continuous curation and formalization of the submitted data.

The design of a practical ontology engineering workflow that
finds the right balance between those options and incorporates as
many of their positive aspects as possible will need careful atten-
tion and should occupy a large portion of the next phase in the
construction of the science knowledge graph.

3.2 Backend
The backend features a layered architecture consisting of three lay-
ers: application layer, domain layer, and persistence layer. Figure 1
provides an overview of the layers and components.

Inspired by the Hexagonal Architecture [8], the application layer
contains ports and adapters. These implement the interface to the
outside world and contain the application logic needed so that
clients can access the information contained in the knowledge
graph. The domain layer contains the domain model from which
the knowledge graph is built. It also contains the authentication

2https://derivadow.com/2011/04/19/science-ontology-take-three/
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Figure 1: Architecture Diagram. The figure shows all layers
and adapters. Possible adapters or storage solutions that are
not currently available are displayed with dashed lines.

and authorization component that allows us to store provenance
information as part of the domain model. As the lowest layer in
the architecture, the persistence layer is responsible for storing
all data. Since we currently evaluate different storage options, the
persistence layer includes abstractions that can be implemented
differently for the respective storage solutions.

The backend is implemented around a data model that builds
on RDF. Hence, triples consisting of a subject, a predicate and an
object are the elementary entities. They also contain provenance
information, such as the time of creation and the author. Resources
are entities identified by an ID and carry a label for display purposes.
Subjects and predicates are resources and are always referenced by
their ID. Objects are either resources or (typed) literal values.

All data inserted into the knowledge graph will be made persis-
tent via a layer that is agnostic of any specific storage technology.
The compatibility of the data model with RDF means that data can
be translated from and to RDF so that as storage technology one
could use an off-the-shelf triple store. However, since we also want
to make statements about triples which are not well supported in
RDF we decided to use a linked property graph (LPG) instead, and
accordingly our current implementation uses Neo4j.

Data modifications are preserved and can be queried. Currently,
we only allow additions and deletions. Data can be modified and
queried via a RESTAPI implemented as an adapter of the application
layer. We adopt JSON as the serialization format. Other possible
adapters include a SPARQL endpoint or a GraphQL interface.

The knowledge graph can be queried openly and without reg-
istration. However, users are required to register in order to con-
tribute data to the knowledge graph. Possible queries include the
search for resources by ID or label, or the retrieval of lists of state-
ments filtered by resource identifiers. The REST API is currently
used by the frontend to power a user interface to the knowledge
graph, as well as visualizations.

3.3 Frontend
The user interface provides access to the knowledge graph, specifi-
cally research contribution descriptions and resources they related
to, currently in two primary forms: hierarchical and graphical. The
main page of the user interface includes a search form to allow a
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Figure 2: Graphical representation of a research contribu-
tion as a knowledge graph

search for resources by their labels. The resulting resources are
then displayed in both graphical and hierarchical form.

At the top, the user interface visualizes the graphical form (Fig-
ure 2). It displays the found or selected resources as well as their
relations to other resources. The graph visualized in this form can
be navigated.. Nodes can be selected to display related informa-
tion. The interface supports navigating from node to node while
information about the currently selected node is automatically up-
dated. While navigating, the displayed part of the graph is updated
as well so that the user is presented with the nodes that have di-
rect connections to the currently selected one, while other nodes
disappear.

In the hierarchical view, the information is displayed in the form
of nested lists (Figure 3). Here, the found or selected resources are
elements of the outer list while the inner list contains the related
resources and literals. Hence, the links in the hierarchical view
present an additional way to navigate information. Each link trig-
gers the selection of the corresponding resource. The information
about the selected resource is reflected both in the hierarchical and
graph views.

The hierarchical view enables users to add new information to
the knowledge graph. Submitting information should be straight-
forward in order to reduce the burden on researchers. Currently,
and subject to improvements, each top level resource in the hierar-
chy displays a button that provides the functionality to add related
resources (e.g., a relationship to another resource or literal). When
adding a new resource, the user is asked to provide the literal or
the title for the resource as well as the relation between them.

4 FUTUREWORK
The work presented here delineates our initial steps towards a
knowledge graph for science. By testing existing and developing
new components, we have so far focused on some core technical
aspects of the infrastructure. Naturally, there are a number of re-
search problems and implementation issues as well as a range of
socio-technical aspects that need to be addressed in order to realize
the vision. Dimensions of open challenges are, among others:

Figure 3: Hierarchical representation of two research contri-
butions as a knowledge graph

• the low-threshold integration of researchers through meth-
ods of crowd-sourcing, human-machine interaction, and so-
cial networks;

• automated analysis, quality assessment, and completion of
the knowledge graph as well as interlinking with external
sources;

• support for representing fuzzy information, scientific dis-
course and the evolution of knowledge;

• development of new methods of exploration, retrieval, and
visualization of knowledge graph information.

Several projects have demonstrated how to represent general
encyclopedic and factual information in knowledge graphs (see
Section 5). An open challenge is how to represent scholarly com-
munication in specialized fields of science. Since precise conceptual
structures emerge and evolve over time, the representation of dis-
course, opinion-forming, and evolution is of particular interest. A
knowledge graph for science needs to accommodate fuzzy defini-
tions, diverging opinions, and competing conceptualizations.

The integration of information from documents is critical and
relies on natural language processing and information mining meth-
ods from text, image, and other media. The maturity of current
methods is arguably insufficient to construct a rich knowledge
graph from legacy documents in an automated manner. The sci-
ence graph infrastructure thus relies on numerous complementary
approaches to acquire information. Researchers are an important
source but must be supported with automated suggestions and
recommendations for populating the graph in order to reduce the
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manual effort. Another open challenge is the question of how to or-
ganize collaboration and interaction among researchers, librarians,
information scientists, and knowledge engineers.

An integration of particular interest is the one between the sci-
ence graph infrastructure and publishers. Addressing the issue of
when to best capture contributions to the knowledge graph by
researchers, a collaboration with publishers could enable the acqui-
sition of contributions at the time of article submission through the
respective submission systems.

Existing scholarly communication incentive measures (e.g., cita-
tions, h/i-10 index, impact factor) are document-centric and thus
rather coarse-granular. Clearly, we need incentive models for con-
tributions to the knowledge graph for science. We argue that graph-
centric measures are an opportunity for a more accurate assessment
of scholarly contributions.

5 RELATEDWORK
Knowledge graphs such asDBpedia [2], Yago [16] andWikiData [25]
as well as similar industrial initiatives by Google, Bing, IBM, BBC,
or Thomson Reuters have demonstrated that representing encyclo-
pedic and factual knowledge using RDF and Linked Data is feasible.

However, while there has been a vast amount of work related to
representing and managing bibliographic metadata, relatively little
work focuses on representing the information contained inside
scientific publications semantically. The Semantic Publishing and
Referencing (SPAR) Ontologies [21] focus primarily on metadata
but also on document structure to some extent.

There has been some work on enriching various document for-
mats with semantic annotations. Examples include Dokie.li [6],
RASH [22] or MicroPublications [7] for HTML and SALT [13] for
LaTeX. We started representing key findings of survey articles fo-
cusing on semantically describing research problems, approaches,
implementations and evaluations in [11] and integrating biblio-
graphic information in a knowledge graph [23].

Other work focused on developing ontologies for representing
scholarly knowledge in specific domains, for example mathemat-
ics [19], the RXNO ontology in chemistry or the OBO Foundry
ontologies [24] in the life sciences. A knowledge graph for sci-
ence must go beyond such efforts, by enabling the parallel and
synchronized creation, curation and augmentation of both termino-
logical/ontological as well as assertional and discourse knowledge.
For representing provenance and discourse we can build on the
PROV ontology [20] and Document Components Ontology [9].

While there has been work on argumentation and reasoning in
AI (e.g. [3, 12]) and philosophy (often using specialized formalisms),
more work needs to be done to represent argumentation, concept
drift and scholarly knowledge evolution in knowledge graphs.

The RDF data model and respective ontologies arguably appear
adequate as a scaffold for representing scholarly knowledge. How-
ever, aspects such as provenance, evolution and discourse are more
difficult to represent in pure RDF (see the ongoing discussion about
reification). While there are meanwhile relatively elegant solutions
such as RDF singleton properties [26], which can be used for repre-
senting and exchanging semantic data, we need to investigate how
graph data management techniques (e.g. using the Gremlin graph
query algebra [17]) can be employed for storing and managing the

extremely large amounts of interconnected scholarly communica-
tion data and metadata. Hence, we argue that a knowledge graph
for science can build but must extend the triple (or quad) data model
in RDF.

The scholarly communication community has initiated numer-
ous related projects. The Research Graph [1] is a prominent example
for an effort that aims to link research objects, in particular publi-
cations, dataset, researcher profiles. The Scholix project [5], driven
by a corresponding Research Data Alliance working group and
associated organizations, aims at standardizing the information
about the links between scholarly literature and data exchanged
among publishers, data repositories, and infrastructures such as
DataCite, Crossref, and OpenAIRE.

Other related projects include Research Objects [4], which pro-
poses amachine readable abstract structure that relates the products
of a research investigation, including articles but also data and other
research artefacts, as well as the RMap Project [15], which aims
at preserving “the many-to-many complex relationships among
scholarly publications and their underlying data.”

6 CONCLUSIONS
The transition from purely document-centric to a more knowledge-
based view on scholarly communication is in line with the current
digital transformation of information flows in general and is thus
inevitable. However, this also creates a need for the implementation
of corresponding tools and workflows supporting the switch. As
of now, there are still very few of those tools, and their design
and concrete features remain a challenge that is yet to be tackled –
collaboratively and in a coordinated manner.
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