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Abstract. Sensors are used in environmental science to monitor an in-
creasingly large multitude of properties of real world phenomena. An
important scientific aim of such monitoring is more accurate and more
complete understanding of phenomena, with respect to, e.g., their forma-
tion, development, or interactions. Properties and phenomena may be,
for instance, mass or concentration and particulate matter or eutrophi-
cation, respectively. Typically, measurement data must undergo consid-
erable processing in order to become useful to a scientific aim. We outline
the architecture and implementation of an ontology-based environmental
software system for the automated representation of knowledge for real
world situations acquired from measurement data. We evaluate and dis-
cuss the system for the automated representation of knowledge for situa-
tions of atmospheric new particle formation. Such knowledge is acquired
from measurement data for the particle size distribution of a polydisperse
aerosol, as measured by a differential mobility particle sizer.

Keywords: Knowledge representation, new particle formation, ontol-
ogy, situation theory, machine learning

1 Introduction

Atmospheric New Particle Formation (NPF) and the growth of newly formed
particles have been well documented in a wide variety of environments all over
the world [1]. Aerosol particles are known to influence quality of life, for in-
stance by affecting human health [1]. Newly formed nano-sized particles can
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grow, through condensation and coagulation processes, and directly effect on
Earth’s radiation balance by scattering sunlight. Indirectly, their potential to
grow large enough to act as Cloud Condensation Nuclei (CCN) and their pos-
sible activation to cloud droplets results in more scattering of radiation. It is
known that the scattering of radiation has a cooling effect on the climate [2].
However, the magnitude of indirect effects remains the single largest uncertainty
in current estimates of anthropogenic radiative forcing [2], leading to large un-
certainties in the calculations of future climate change.

The study of NPF relies on methods for the identification and characteriza-
tion of these atmospheric events. At the base of such methods is the measurement
of particle size distribution for polydisperse aerosols. Of specific interest are par-
ticles with diameter size ranging 10 x 1079 to 10 x 107% m. The resulting data,
as measured over the course of a day at a specific location, can be visualized
to assess the presence of NPF [3]. Quantitative methods have been developed
to extract, from measurement data, basic NPF characteristics, such as particle
growth and formation rates [3].

Different classifications have been proposed in order to characterize NPF
[3-5]. The criterion established by Hamed et al. [4] is based on event clarity.
According to the criterion, nucleation event classes 1, 2 and 3 indicate strong,
intermediate, and weak nucleation event (E) days, respectively. Days during
which no particle formation is observed are classified as non-event (NE). Days
that are neither E or NE are called undefined class, or class 0. The tasks of NPF
detection and characterization are typically carried out visually by experts [4].

We outline the architecture and implementation of an ontology-based en-
vironmental software system aimed at the automated representation of knowl-
edge for real world situations acquired from measurement data. In translating
measurements to observations, the system performs a semantic enrichment of
(heterogeneous) measurement data. Observations are consistent with the ter-
minology defined by the Semantic Sensor Network (SSN) ontology [6-8]. Given
observations, the system acquires and represents knowledge for real world situ-
ations. Situations are consistent with the terminology defined by the Situation
Theory Ontology (STO) [9]. The STO has been used to represent airport secu-
rity situations [10], in methods for situation identification [11], and for intelligent
sensor network information fusion [12]. We evaluate and discuss the presented
system for situations of NPF acquired from data for the particle size distribution
of a polydisperse aerosol, as measured by a differential mobility particle sizer.

The presented system can support domain experts in the detection and char-
acterization of NPF. Moreover, it has the potential for full process automation.
More generally speaking, by committing to the terminology and semantics ex-
plicitly formalized in ontologies, the system provides a unified framework for the
representation of sensor observations and real world situations acquired from ob-
servations. The system can be adapted to specific domains by extension, specif-
ically by extending ontologies with domain knowledge and software components
with domain specific application logic [13, 14].
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Fig. 1. System architecture for the representation of situational knowledge acquired
from sensor measurement data showing the three layers of measurement, observation,
and situation as well as the main components and modules, and their interactions.

2 Materials and Methods

Materials: We used expert-labeled sensor measurement data for the particle
size distribution of a polydisperse aerosol, in the 7 to 800nm diameter size
range as measured between January 2008 and December 2011 by a Differential
Mobility Particle Sizer (DMPS) located at the Puijo semi-urban measurement
station in Kuopio, Finland [15]. A DMPS consists of a Differential Mobility
Analyzer (DMA) and a Condensation Particle Counter (CPC); the particles of
a polydisperse aerosol (source) are first classified according to diameter size by
the DMA and then counted by the CPC [16]. The DMPS measures the particle
number concentration [cm ™3] for 40 discrete diameter sizes, on average 5 samples
per hour. Daily measurement data results in a data matrix m x n, where m is the
number of samples (typically approx. 120) and n = 40 is the number of discrete
diameter sizes. Daily measurement data is persisted in a text file.

We developed a software architecture for a system aimed at automated, near
real-time, distributed, and continuous acquisition of sensor measurements; trans-
lation of measurements into semantically enriched observations; representation
and persistence of observations; automated acquisition of situations from ob-
servations; representation and persistence of situations. Figure 1 provides an
overview of the architecture. The core of the architecture consists of three layers
that build on each other: the measurement, observation, and situation layers.
Layers consist of components, including the measurement, observation, and sit-
uation engines as well as the observation and situation stores. Components com-
municate over (TCP/IP) streams. Modules implement computational services,
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such as for machine learning or complex event processing, needed by components.
The knowledge base is a third-party system.

The architecture is implemented on top of Storm, a distributed real-time
computation system for the processing of streams of data.® A Storm topology
consists of nodes and streams. Nodes may be of two types: (1) a source of streams
or (2) a consumer of input streams as well as data processor and, possibly,
source of new streams. Components and streams map to Storm nodes and Storm
streams, respectively.

At the measurement layer, a measurement engine implements the software
logic necessary to acquire data from a sensor, and process it into measurements.
In its simplest form, a measurement is a tuple consisting of a time stamp and
a measurement value. Measurements are forwarded to Storm streams. At the
observation layer, an observation engine subscribes to streams of measurements
and processes measurements to observations, consistent with the SSN ontology.
This step amounts to a semantic enrichment of measurements. Observations are
forwarded to streams. Still at the observation layer, an observation store may
subscribe to streams of observations and require the knowledge store to persist
observations. At the situation layer, a situation engine subscribes to streams of
observations. A situation engine implements (one or more) knowledge acquisition
tasks and makes use of computational services provided by modules. Knowledge
for situations acquired from observations is represented consistent with the STO
and persisted by the situation store.

The STO captures key aspects of the situation theory developed by Barwise
and Perry [17] and extended by Devlin [18]. The theory formalizes the semantics
of situations by means of the expression s = o (read “s supports ¢”) meaning
that the infon ¢ is “made factual” by the situation s. According to the definition
by Devlin, the object < R, a;,...,am,,7 > is a well-defined infon if R is an n-
place relation and aq, ..., a, (m < n) are objects appropriate for the argument
places i1, ...,i, of R, and if the filling of argument places i1, ...,%,, is sufficient
to satisfy the minimality conditions for R, and ¢ = 0, 1 is the polarity. Minimality
conditions “determine which particular groups of argument roles need to be filled
in order to produce an infon” [18]. The polarity is the ‘truth value’ of the infon. If
¢ = 1 then the objects ay, ..., a,, stand in the relation R; else the objects do not
stand in the relation R. Parameters, denoted as a, make reference to arbitrary
objects of a given type. For instance, [ and i typically denote parameters for
arbitrary objects of type spatial location and temporal location, respectively.
Anchors are a mechanism to assign values to parameters. Hence, the parameter
t may anchor the value for the current time.

We used the WURVOC Ontology of units of Measure (OM) [19] to model
quantities and dimensions, in particular at the observation layer. We used the
OWL 2 Web Ontology Language (OWL 2) [20], the Resource Description Frame-
work (RDF) [21] and Protégé® to manage the ontologies. The knowledge base is

® http://storm-project.net/
5 http://protege.stanford.edu
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implemented by the Stardog RDF database.” We used WEKA [22] for machine
learning. Software was implemented in Java.

Table 1. The key characteristics of training datasets for NPF detection and NPF
characterization. The table provides an overview of the mapping from (expert) label
(Hamed et al. [4]) to (training) class. It includes the number (#) of samples. Note that,
in order to construct approximately balanced training classes, we limited the number of
samples per training class to 160 and 50 in NPF detection and NPF characterization,
respectively.

Learning tasks
NPF detection|NPF characterization

Label| # |Class # Class +#

0 113

4 531| NE 160

NE (200

1 14 C1 14

2 47| E 159 C2 47

3 98 C3 50

Methods: The expert-labelled sensor measurement data was used to train and
evaluate the performance of Multi-Layer Perceptron artificial neural network
(MLP) classifiers for the two tasks of NPF detection and NPF characterization.
NPF detection is a 2-class classification of days into event days (E) and non-
event days (NE). NPF characterization is a 3-class classification of event days
(E) into events of type class 1 (C1), class 2 (C2), or class 3 (C3). The multivariate
daily DMPS measurement data was transformed to a vector by means of Singu-
lar Value Decomposition (SVD). Together with the label, such vectors formed a
labelled dataset which we used to automatically generate training datasets. Ta-
ble 1 provides an overview of the key characteristics of training datasets. MLP
classification performance was evaluated using 10-fold cross validation, meaning
that the training dataset was partitioned into 10 disjoint and equal sized folds,
and for each fold a classifier was trained using the other 9 folds and then tested
on the fold. Intermediate results were averaged. For both NPF detection and
NPF characterization the MLP networks consisted of 40 input neurons and one
hidden layer with 21 hidden neurons. The number of output neurons was 2 and
3 for NPF detection and NPF characterization, respectively. The learning rate
and momentum were set to 0.3 and 0.2, respectively.

To accommodate domain knowledge we extended from both the SSN and
STO upper ontologies. Listing 1.1 provides an overview. Specifically, we extended
the SSN ontology to accommodate our domain specific sensing device, namely an
individual instance of the DifferentialMobilityParticleSizer class, which

" http://stardog.com/
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Listing 1.1. Subset of axioms used to accommodate domain knowledge. The set of
terminological axioms is followed by assertional axioms. We show the modelling of
the concentration of particles with diameter 7.0 nm and omit the similar modelling
of the concentration of particles for the remaining 39 diameter sizes. Situations of
NPF support infos with npfe-relation and event class as relevant individual. Individual
names such as {16 are abbreviated random UUIDs.

DifferentialMobilityParticleSizer C ssn:SensingDevice
PolydisperseAerosol C ssn:FeatureOflnterest
ParticleConcentration C ssn:Property
NewParticleFormation C sto:Situation

EventClass C sto:RelevantIndividual
rdfs:domain(forParticleDiameter , ParticleConcentration)
rdfs:range (forParticleDiameter , om:diameter)

# The DMPS located at Puijo
DifferentialMobilityParticleSizer (f16)

# implements a process of sensing

ssn: Sensing (b5b)

ssn:implements (f16, b5b)

# characterized by the unit of measure [cm™?]

DUL: isCharacterizedBy (b5b, om:reciprocal_cubic_centimetre)
# The concentration of particles
ParticleConcentration (0f1)

# for a particle diameter

om: diameter (a2b)

forParticleDiameter (0fl1, a2b)

# of length 7.0 nm

om: Measure (2b2)

om: value (a2b, 2b2)

om: numerical_value (2b2, 7.0)

om: unit_of_measure_or_measurement_scale (2b2, om:nanometre)
# is observed by the DMPS

ssn:observes (f16, 0fl)

# and is a property of the polydisperse aerosol at Puijo
PolydisperseAerosol (01d)

ssn: hasProperty (01d, 0fl)

# Situations of NPF support infons with npfe—relation
sto:Relation (npfe)

# and a relevant individual for the NPF event class
EventClass(cl)

EventClass (c2)

EventClass (c3)
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was modeled as a subclass of ssn:SensingDevice. The DMPS implements a pro-
cess of ssn:Sensing which is characterized by the unit of measure [cm ™3] . More-
over, we extended ssn:Property with the subclass ParticleConcentration
to model particle number concentration for discrete diameter sizes. Finally, we
extended ssn:FeatureOfInterest with the subclass PolydisperseAerosol to
model the polydisperse aerosol at Puijo. Thus, the DMPS observes the par-
ticle number concentration for 40 discrete diameter sizes ranging 7-800nm,
which are properties of the polydisperse aerosol at Puijo. Finally, we extended
sto:Situation with the subclass NewParticleFormation to represent knowl-
edge about situations of interest to our domain. Such situations support npfe-
relation infons with temporal and spatial locations as well as the related NPF
event class.

3 Results and Discussion

Correctly classified instances, as computed by WEKA, resulted to be approxi-
mately 73% and 54% for NPF detection and NPF characterization, respectively.
Precision (and recall) figures are 0.730 (0.744), 0.737 (0.723), 0.444 (0.286), 0.524
(0.468), and 0.567 (0.680) for the classes NE, E, C1, C2, and C3, respectively.
Precision, and in particular recall, are notably low for C1. The class is misclassi-
fied as either C2 or C3 approximately three times out of four. This performance
can be explained by the very low number of training samples for the class C1
(14). Furthermore, recall of events in NPF detection is an issue because at 72.3%
the system will not retrieve many events of NPF. Overall, the performance of
NPF detection is satisfactory while the performance of NPF characterization is
mediocre.

The results suggest that the current implementation is not mature enough
for full automation in a real-time context. However, the system may support
domain experts in the detection and characterization of NPF and simplify the
manual task to a machine assisted visual confirmation step, e.g. via a web ap-
plication. Still, it is important to improve classification performance, an aim in
future work. We have performed some preliminary experiments which resulted
in approximately 80% correctly classified instances for NPF detection. The per-
formance may be improved by including other attributes in classification, such
as total daily particle concentration, average daily solar flux, or average daily
SO, concentration. Both solar flux and SO, are known to correlate with events
of NPF [4, 1]. Moreover, instead of using SVD on daily DMPS measurement data
and use the resulting vector in classification, we may compute certain futures
from daily DMPS measurement data and use those in classification. Such fea-
tures include particle growth rate and formation rate [3]. This approach may also
be interesting because it could extend the (prevalently data driven modelling)
architecture shown in Figure 1 with modules for mechanistic modelling.

In the presented system, knowledge provided by different system parts is
managed by a knowledge base. Both domain experts and software commit to
use a common knowledge representation language as well as shared upper and
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domain ontologies. Specifically, knowledge provided by domain experts (List-
ing 1.1) is formalized and extends upper ontologies, at the observation layer for
information about the measurement infrastructure and the observed real world
phenomena and at the situation layer for information about real world situations
that are of interest to the domain. Such information is used by the components of
the architecture in order to “learn” about the domain. On the other hand, system
components also commit to use the (same) knowledge representation language
and extended terminologies in the (automated) representation of knowledge ac-
quired at different layers.

At the observation layer, measurements are semantically enriched and rep-
resented as observations [14]. Given an average of approximately 4800 measure-
ments per day and a time interval of 4 years, the observation engine generates
around 80 million RDF statements, which are persisted in the knowledge base.
SPARQL [23] can be used to query observations according to, e.g., sensing de-
vices, features, properties, time. Results can be visualized as tables, (multivari-
ate) time series plots, heat maps, or in other form. Summary statistics can be
easily computed for data generated by a heterogeneous sensor network that mea-
sures a range of properties of real world features. We have demonstrated the flex-
ibility of SPARQL to domain experts at the University of Eastern Finland and
Finnish Meteorological Institute. First impressions underscore how a knowledge
base that manages measurement data for sensing devices deployed in the field
would be an invaluable repository and a considerable improvement compared
to current measurement data management. In addition to sensor measurement,
experts have also highlighted the possibility of integrating measurement data
acquired (manually) in a laboratory.

At the situation layer, situations are acquired from observations. Obviously,
the number of RDF statements generated by the situation engine is far lower
than the number of statements generated by the observation engine. We argue
that this is generally the case. SPARQL can be used for flexible querying of situ-
ational knowledge acquired from one (or more) heterogeneous sensor network(s).
Situations can be augmented or refined with new or more accurate knowledge,
either manually or automatically. For instance, in the presented use case, situ-
ations support the infon < npfe,é, 1,1 >, where ¢, [, and { are parameters
for the event class, spatial location, and temporal location, respectively. For a
specific situation, acquired by NPF detection, the value to be anchored to the
parameter ¢ for the event class is automatically assessed, by NPF characteri-
zation. However, because this assessment is not sufficiently reliable, a domain
expert should review, and may correct, the automatically represented informa-
tion. This amounts to manual refinement of automatically represented situations
with more accurate information. Finally, of interest to situational knowledge are
intuitive visualization techniques. Real world situations are typically located
along spatial and temporal dimensions. Aside the visualization of situations on
an interactive map, we may also visualize situations on an interactive timeline.

We selected the ontology approach, rather than classical relational databases,
and build our system on semantic web technologies for several reasons. Domain
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ontologies developed in Protégé can be tested for satisfiability and consistency.
We can, thus, check whether an ontology is meaningful [24]. Knowledge bases
offer powerful reasoning services. Specifically, Stardog supports several reasoning
levels, including RDFS, QL, RL, EL, and DL.® With the ontology approach we
can focus on the modelling of domain knowledge and semantics, and leave the
data modelling to the knowledge base. We build our system on several, readily
available, ontologies, including the SSN ontology, the STO, and the OM ontol-
ogy. In future work we will also include the SWEET ontology,” in particular the
concepts chem:Substance and aero:Aerosol (among others) and GeoNames!®
for (qualitative) spatial modelling (e.g. sensor location). Such terminologies can
support the modelling of domain knowledge, since they provide an organization
of relevant generic concepts and relations. Moreover, they can guide the design
and implementation of software systems. In fact, we aligned our system imple-
mentation to relevant concepts and relations of both the SSN ontology (e.g.
ssn:SensingDevice and ssn:observedBy) and STO (e.g. sto:Situation and
sto:supportedInfon). Hence, the system is generic and its implementation can
be reused across domains. Concrete applications [13, 14] can be implemented by
extending specific system components and modules, as long as domain knowl-
edge is aligned to the discussed upper ontologies. In the ontology approach, the
integration and extension of terminologies designed by third parties is relatively
straightforward. Finally, we also aim at showing that scalable solutions for the
discussed problem can be designed and implemented using technologies other
than classical relational databases.

4 Conclusions

For the domain of aerosol science and the study of New Particle Formation
(NPF), we have presented a software system that supports the automated pro-
cessing of measurement data into observations, consistent with the Semantic
Sensor Network ontology, as well as the automated representation of situational
knowledge, consistent with the Situation Theory Ontology, for events of NPF,
acquired from observations by means of machine learning. Results show that,
currently, machine classification performance is insufficient to allow for reliable
automated NPF characterization. However, the system can guide domain experts
with an estimate, and the automatically represented knowledge can be improved
by expert refinement. The knowledge base integrating observations made by a
heterogeneous sensor network and situational knowledge for real world phenom-
ena is promising for its potential value to domain experts. In future work we
alm at improving classification performance for both NPF detection and NPF
characterization and further integration of measurement data, in particular for
sensors other than a differential mobility particle sizer. Moreover, we plan to add
an intermediate layer, named derivation, between the observation and situation

8 http://www.w3.org/ TR /owl2-profiles/
9 http://sweet.jpl.nasa.gov/ontology/
10 http://www.geonames.org/
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layer of the presented architecture. This layer will support the translation of SSN
observations to observations of datasets as well as the application of algorithmic
transformations to datasets. The result of such transformations are datasets.
Datasets can be persisted in the knowledge base. Example transformations in-
clude gap filling, outlier detection/removal, spatio-temporal interpolation, or
digital signal processing. We are currently evaluating the use of the RDF Data
Cube Vocabulary [25] at the derivation layer.
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