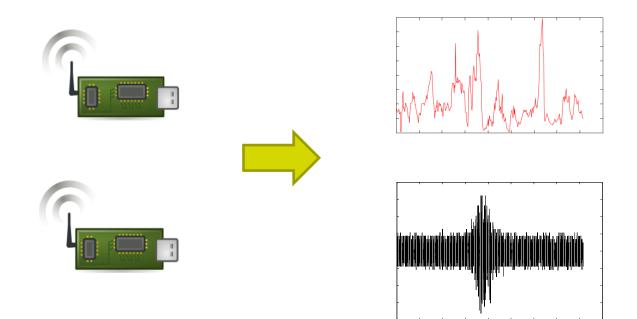
Markus Stocker SFERC International Collaboration • August 23, 2012 • Kuopio, Finland

Acquisition and representation of knowledge about sensor observations

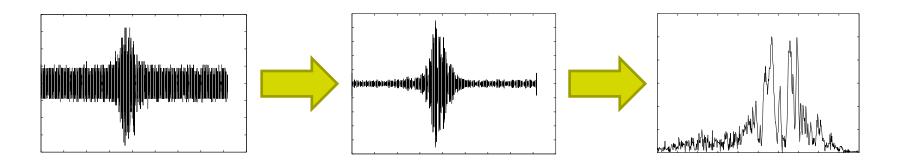
Overview

- For environmental monitoring, discuss
 - How to let computers represent knowledge acquired from sensor data
 - Knowledge about observations made by a sensor network
- We look into
 - Acquisition of sensor data in environmental monitoring
 - Processing of sensor data into data patterns
 - Classification of patterns and acquisition of knowledge
 - Representation of knowledge and automated inference
- Discussed for two use cases
 - Classification of vehicles observed in vibration sensor data
 - Representation of algal bloom observations in Lake Taihu



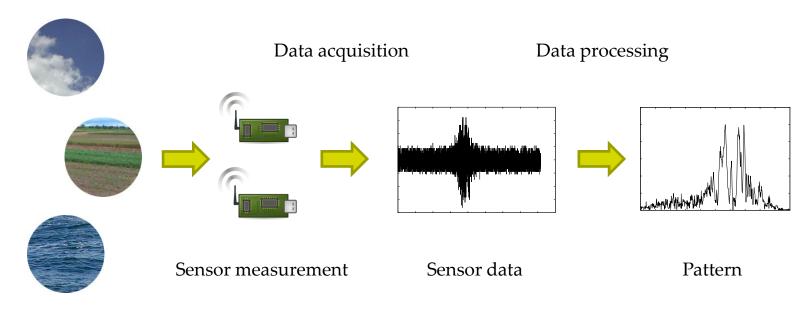
Introduction Environmental monitoring

Environmental monitoring Sensor data

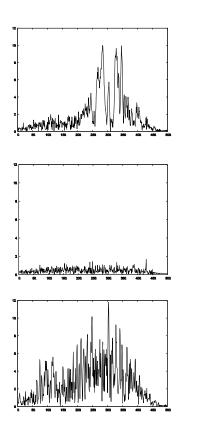

Sensor data Tabular representation

Time	Dim 1	•••	Dim N
2012-08-22 10:00:00	0.00512546		•••
2012-08-22 10:00:01	0.00635674		•••
2012-08-22 10:00:02	0.03467845		
2012-08-22 10:00:03	0.13453564		
2012-08-22 10:00:04	0.00004566		
2012-08-22 10:00:05	0.00034563		
2012-08-22 10:00:06	0.23045677		
2012-08-22 10:00:07	0.34506677		
2012-08-22 10:00:08	0.03402594		
••••			

Environmental monitoring Data processing

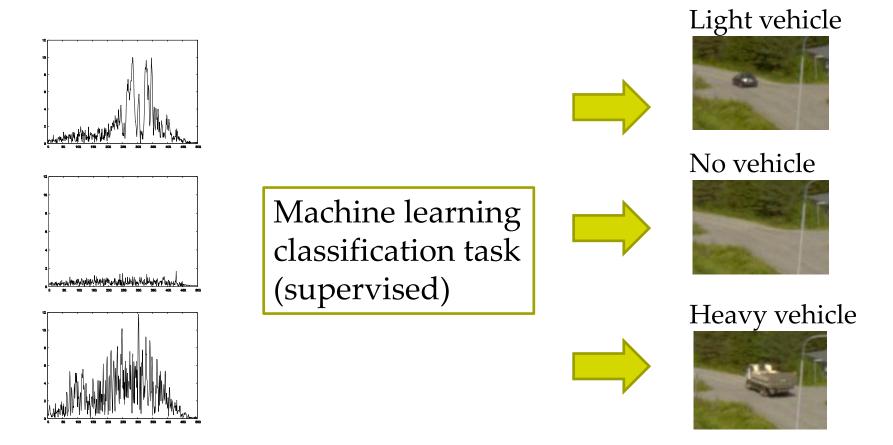

Bandpass filter

Fourier transform


Environmental monitoring Recap

Properties of objects or events of the real world

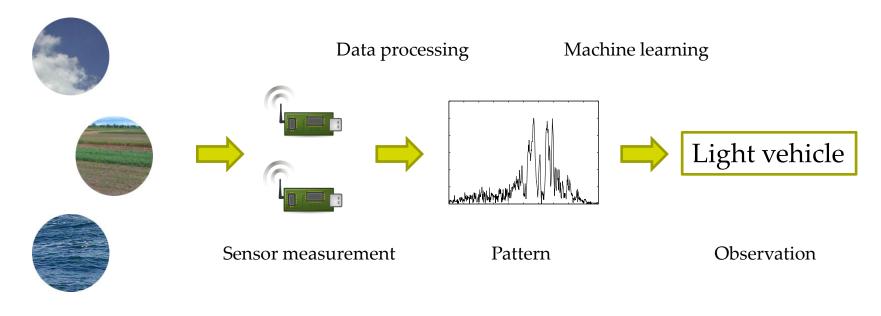
Introduction Great, and what next?



Problems and challenges

What do those patterns actually mean
How to deal with high-volume data
How to continuously process data
How to efficiently process data
How to store and retrieve such data

Knowledge acquisition Machine learning



Supervised learning A very brief intro

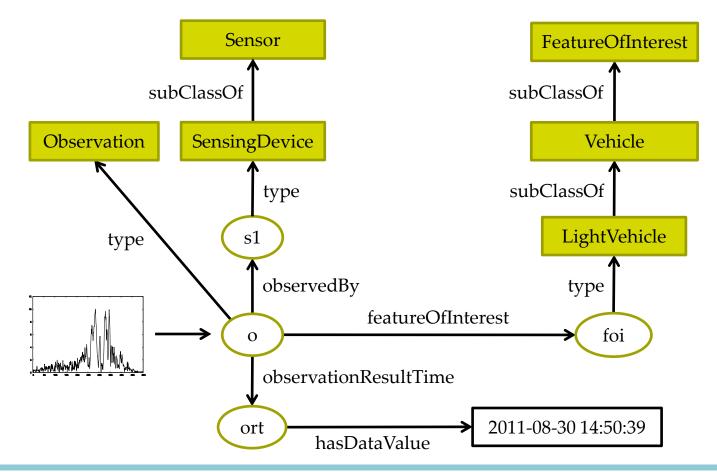
Time	Dim 1	•••	Dim N	Label	Pred.	
2012-08-30 10:00:00	0.00512546			Lv		- Training
2012-08-30 10:00:01	0.00635674			Lv		
2012-08-30 10:00:02	0.03467845			Hv		
2012-08-30 10:00:03	0.13453564			Lv		
2012-08-30 10:00:04	0.00004566			Hv		
2012-08-30 10:00:05	0.00034563			Hv		
2012-08-30 10:00:06	0.23045677			Lv	Lv	
2012-08-30 10:00:07	0.34506677			Hv	Hv	- Test/Validation
2012-08-30 10:00:08	0.03402594			Lv	Hv	
•••	•••		•••			

Knowledge acquisition Recap

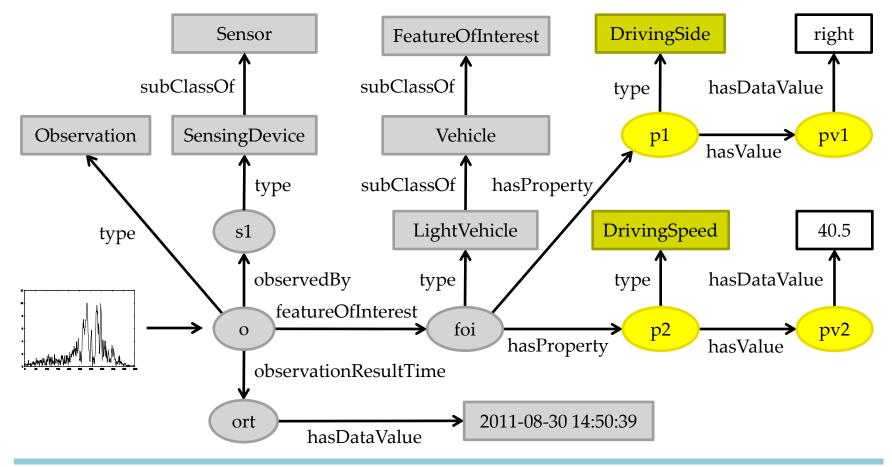
Properties of objects or events of the real world

Knowledge acquisition Great, and what next?

- We now know how to acquire abstract knowledge about observations
- It is a convenient method because
 - Computer does it automatically
 - Computer can do it continuously
 - Often computationally not too expensive
- Though there are downsides
 - Supervised learning is expensive
 - Domain specificity
- Now that the computer tells us "there is a light vehicle"
 - What can we do with this piece of information?
 - We let the computer represent it

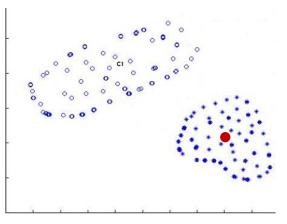

Knowledge representation A very brief intro

- Looking at a street and seeing a vehicle we can describe it
 - For instance, "it is a heavy vehicle"
 - The vehicle is "on the right side of the road"
 - And we may know the time
 - And we might guess the speed
- A computer can do something similar
 - It already "knows" that
 - There is a vehicle observed by sensor S
 - And that it is a heavy vehicle
 - And what time it is
 - Given two sensors, it can
 - Infer the vehicle velocity

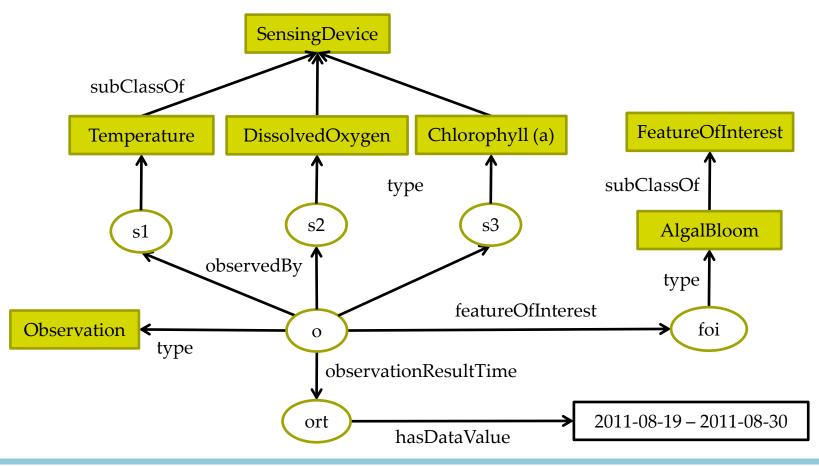


Knowledge representation Observation

Knowledge representation Automated inference


Putting it all together Algal bloom observations in Lake Taihu

- Given
 - Sensor monitoring data
 - EMB01 station located in the Meilian bay of Lake Taihu, China
 - Sensor data for
 - Water temperature
 - Dissolved oxygen
 - Chlorophyll (a)
- Aim
 - Represent knowledge about observations for algal blooms


Algal bloom observations in Lake Taihu Knowledge acquisition

- We have a 3-dimensional dataset
 - Water temperature, dissolved oxygen, chlorophyll (a)
- As well as measurement values over 3 years
- Use clustering to learn a prototype algal bloom observation
 - From past algal bloom observations
- For the sake of argument, assume
 - Lower cluster is for algal bloom observations
 - Hence red dot is the prototype observation
- Classify future observations
 - According to similarity with prototype

Algal bloom observations in Lake Taihu Knowledge representation

Conclusions

- Discussed one type of environmental monitoring
 - Automated using sensor networks
- Looked at the data produced by such networks, time series
- Computational methods to process such data
 - To acquire interesting patterns
- Computational methods to classify patterns
 - To acquire conceptual knowledge
- Computational methods to represent knowledge
 - Pros of automated inference, abstraction, query, integration, sharing
- Discussed two use cases

