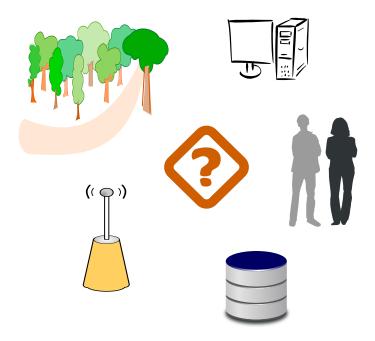
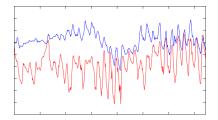
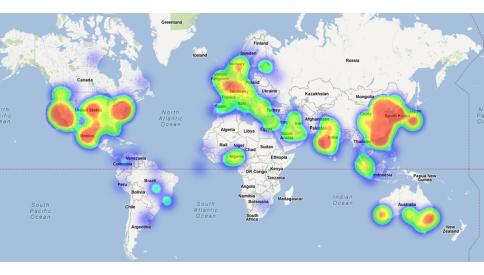
Technology Transfer Seminar October 31, 2014, Vaisala, Helsinki


Situation awareness in environmental monitoring

Markus Stocker



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで



7.3316302167824074e+00	5 6.7295417637024639e+002 0.000000000000000e+000 0.000000000000e+000 0.0000000000
0.000000000000000e+000	0.00000000000000e+000 0.0000000000000e+000 0.0000000000
1.1248345678061637e+003	7.6451655783892170e+002 6.6489916883398178e+002 5.0996188060151417e+002 5.3037337771849309e+002
2.5990152166875021e+002	2.6354791501170808e+002 2.6316883341227492e+002 3.3696093295963192e+002 3.2708190669952091e+002
3.9391899945110441e+002	3.2426846166900322e+002 2.0141200942601449e+002 1.4700101128227615e+002 4.0928587811142940e+001
1.2831620686413419e+001	0.000000000000e+000
7.3316303024305555e+00	5 5.9954073981185900e+002 0.00000000000000e+000 0.00000000000000e+000 0.0000000000
0.000000000000000e+000	0.000000000000e+000 0.0000000000000e+000 0.0000000000
8.1548383245909952e+002	6.4755047038178782e+002 4.7342333956288417e+002 5.0497438804107304e+002 4.8678378833469156e+002
2.1558831592426984e+002	2.4469781600550951e+002 2.4637216889127018e+002 3.9338495014282574e+002 2.8801709503956096e+002
4.1110643983031497e+002	2.8396322218576239e+002 2.1375040618051182e+002 1.4957123471247169e+002 3.7975823102376701e+001
2.0382122539321763e+001	1.6943213617983506e+001
7.3316303880787035e+00	5 6.4135476612374202e+002 0.000000000000000e+000 0.0000000000000e+000 0.0000000000
0.0000000000000000e+000	0.0000000000000e+000 0.0000000000000e+000 0.0000000000
7.9725650443997608e+002	4.0630047999881816e+002 3.5247269226184869e+002 3.7902085695621594e+002 2.8805461752290518e+002
1.8132905435068977e+002	2.6028214884093450e+002 1.6268304363454374e+002 3.3463583010398571e+002 2.0169500653114130e+002
4.6380154662366067e+002	2.6412454349776425e+002 2.0127541006127689e+002 1.3503244293786514e+002 2.3154902150570045e+001
7.6393422067327084e+000	1.7201363075124494e+001
7.3316304687500000e+00	5 6.1036574617458143e+002 0.00000000000000e+000 0.00000000000000e+000 0.0000000000
0.000000000000000e+000	0.0000000000000e+000 0.0000000000000e+000 0.0000000000
7.2736971215268670e+002	3.9684227323502876e+002 3.4903661050199901e+002 3.4531808153726166e+002 3.0686816846877008e+002
1.5193881810750614e+002	2.4133238139702240e+002 2.4228704440975204e+002 2.8825745672488563e+002 2.0412591958392611e+002
4.0962054312850012e+002	2.8308360749792962e+002 2.2063151348349507e+002 1.2405735268505646e+002 1.0751097756079318e+001
1.1881689141194544e+001	1.3547412000218912e+001
7.3316305520833330e+00	5 6.4313854345743607e+002 0.00000000000000e+000 0.0000000000000e+000 0.0000000000
0.0000000000000000e+000	0.000000000000e+000 0.0000000000000e+000 0.0000000000
8.0539618874151654e+002	3.8626777986640963e+002 2.8741638600588004e+002 2.5488895887853258e+002 2.6289312410222209e+002
1.6973869269222212e+002	1.7064856680396792e+002 2.6528938061547774e+002 2.7436008754172127e+002 2.3416327840132379e+002
4.5037513571727550e+002	3.4357911665879971e+002 2.1968465764114876e+002 1.0707033953281511e+002 4.2106918027684735e+001
0.0000000000000000e+000	2.5075705754016887e+001
7.3316306354166672e+00	5 6.9018149795028319e+002 0.00000000000000e+000 0.0000000000000e+000 0.0000000000
0.0000000000000000e+000	0.0000000000000e+000 0.0000000000000e+000 0.0000000000
1.0122740400440272e+003	4.7588170401009631e+002 3.6163701941444793e+002 3.8492799229831303e+002 3.1633325134373962e+002
1.8305150227202395e+002	2.2529123956614126e+002 2.0836586101380522e+002 3.1634735061210313e+002 2.5690547494848136e+002
3.6567505629777969e+002	3.0461779733996269e+002 1.8490080930780519e+002 1.1544775603278390e+002 4.1043905610232025e+000
1.3740708174213207e+001	2.9403296138810457e+001

Can environmental monitoring systems do a better job at managing *processable* and *interpretable* information

Approach

The recipe

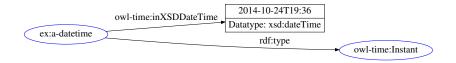
- Get the data from somewhere
 - Sensors, files, middleware, database, ...
- Get rid of its heterogeneity
 - Bring it into some canonical form
 - Often that's some database schema
 - Sometimes there is an XML schema (e.g. MMEA)
- Process the data
 - Generally necessary to achieve anything useful
 - Even simple things like hourly average
- Obtain information from data
 - Lot's of ways, manually and automatically
- Represent information
 - So that it is processable and interpretable

The technologies

- The obvious ones ...
 - The math, stats, and related software packages
 - At least one programming language
- Machine learning
 - Handy to extract information from data
 - But depends on the application
 - Other computational models are cool too
- Ontologies
 - Oh no, that word again
 - Let's skip it
- Situation theory
 - Situation what?

Situation theory

- Useful to describe what is occurring in the world
- In a monitored environment, in particular
- Situation is a structured part of the world
- What objects exist in a situation?
- When and where do they exist?
- What are their attributes?
- How do they relate to each other?


Ontologies and related technologies

- (Ask me for a definition if you want one.)
- Support you in teaching yourself what you already know
- And along the way teach some of it to computers
- Useful ontologies here
 - Semantic Sensor Network
 - RDF Data Cube Vocabulary
 - Situation Theory Ontology
 - ► OWL-Time, GeoSPARQL, PROV-O

Resource Description Framework (RDF)

- Data model at the base of semantic technologies
- Statement
 - Triple consisting of <subject, predicate, object>
 - Subject is a resource, entity referred to by URI
 - Predicate is a property, referred to by URI
 - Object is the value of the property, URI or literal
- Set of statements is a RDF graph

イロト 不得 とうほう イヨン

RDF serialization (RDF/XML)

```
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
    <!ENTITY owl-time "http://www.w3.org/2006/time#" >
]>
```

```
<rdf:RDF
xmlns:owl-time="http://www.w3.org/2006/time#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
```

```
<rdf.Description rdf:about="http://example.org#a-datetime">
    <rdf:type rdf:resource="&owl-time;Instant"/>
    </rdf:Description>
```

```
</rdf:RDF>
```

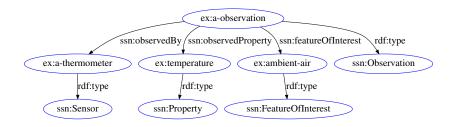

RDF serialization (N-Triples)

<http://example.org#a-datetime>
<http://www.w3.org/2006/time#inXSDDateTime>
 "2014-10-24T19:36"^^<http://www.w3.org/2001/XMLSchema#dateTime> .
<http://example.org#a-datetime>
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 <http://www.w3.org/2006/time#Instant> .

Semantic Sensor Network: Features

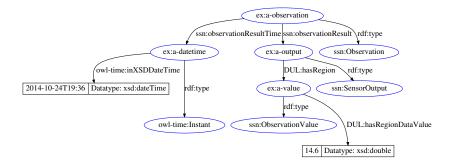
- Sensors
 - The sensing method they implement
 - Their capabilities, e.g. range of operation
 - On what platform they are installed
- Observations
 - Property of feature observed
 - Sensor that made the observation
 - When (and where) the observation was made
 - The observation value obtained in measurement

16


э

イロト 不得 とうほう イヨン

The quality of observation

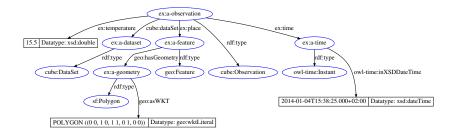

Semantic Sensor Network: Example

Semantic Sensor Network: Example (cont'd)

(日)

RDF Data Cube Vocabulary: Features

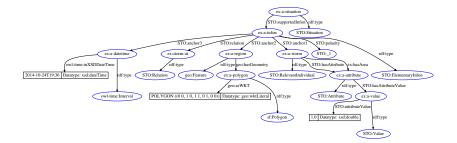
- Datasets
 - Define the structure of a dataset
 - Specify the components (the "columns")
 - Including the property and metadata (e.g. order)
- Observations
 - The "rows" of a dataset
 - Relate to a dataset
 - And to component property values (the "cells")


19

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

According to dataset structure definition

RDF Data Cube Vocabulary: Example



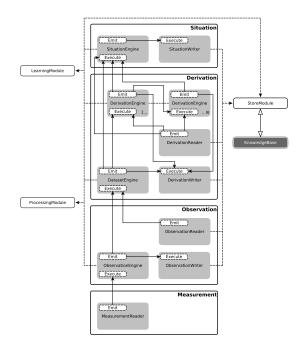
Situation Theory Ontology: Features

- A situation is said to support infons
- Infons are tuples consisting of
 - Relation
 - Set of objects
 - Polarity [0/1] ("truth value")
- Object are relevant to the relation
- Objects can have attributes
- Infons can also have attributes
- A situation can be an object

Situation Theory Ontology: Example

How did machine learning fit into the picture again

Computational models


- Sit between processed data and represented information
 - Feed on data objects and return information objects
 - Objects in information about situations
- Useful for information *extraction*
 - Let software automatically do the work
 - Virtually necessary in some applications
 - Hardly possible in others
- Large family
 - Machine learning
 - Complex event processing
 - Mechanistic models

How does all this fit together

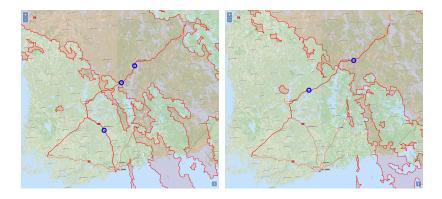
Example

Processing

- Radar data obtained from FMI Open Data
- Octave script processes data
- Identify storm polygon contours
- Represent polygon as WKT
- Create MMEA observation message
- Includes timestamp and all polygons at that time
- Messages are processed to situations
- Situations are stored to Profium Sense

Directions

- Users can add directions
- Origin, destination, departure time
- Upon registration of a direction
 - Fetch route from Google Directions
 - Gives also estimated time of arrival
 - Fetch situation time steps in interval
 - Compute situations for driver location


New Direction

Origin

Destination

Departure time

add clear

Query situations

```
prefix ns: <http://cleen.mmea.com/storm#>
prefix sto: <http://vistology.com/ont/2008/STO/STO.owl#>
prefix time: <http://www.w3.org/2006/time#>
select ?relation ?time ?location
where {
   rdf:type sto:Situation ;
   sto:supportedInfon [
     sto:relation ?relation :
     sto:anchor2 [ time:inXSDDateTime ?time ] :
     sto:anchor3 [ profium:location ?location ]
 filter (?time > "2014-10-15T08:30:00.000+03:00"^^xsd:dateTime)
 filter (?relation = ns:storm-at || ?relation = ns:driver-at)
3
```


<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Query situations (cont'd)

```
where {
 rdf:type sto:Situation ;
 sto:supportedInfon [
   sto:relation ns:storm-at ;
   sto:anchor1 [ ns:hasArea [ sto:hasAttributeValue [ sto:attributeValue ?area ] ] ] :
   sto:anchor2 [ time:inXSDDateTime ?time1 ] :
   sto:anchor3 [ profium:location ?location1 ] ;
 rdf:type sto:Situation :
 sto:supportedInfon [
   sto:relation ns:driver-at ;
   sto:anchor1 [ ns:direction [ profium:location ?direction ] ] ;
   sto:anchor2 [ time:inXSDDateTime ?time2 ] ;
   sto:anchor3 [ profium:location ?location2 ] ;
 ٦
 filter (?time1 = ?time2)
 filter (profium:inside(?location2, ?location1))
3
```


Where is situation awareness

Situation awareness (SA)

- Three level model useful for system architecture
 - Perception: sensor data assimilation
 - Comprehension: data processing, information extraction
 - Projection: spatio-temporal situation reasoning
- Distributed SA also useful
 - Traditionally, SA obtained and maintained by experts
 - Here SA is shared among system components
 - Technical subsystem can obtain and maintain SA
 - Social subsystem can refine SA
 - Monitoring system SA greater than sum of parts?

Take aways

- Environmental monitoring system
 - Environmental-sociotechnical system
- Technical subsystem can obtain and maintain SA
 - Using computational methods
 - Data assimilation and processing
 - Information extraction and representation
- SA shared among social and technical subsystems
 - Ontology acts as interface
- Environmental monitoring system with own SA
- ▶ Representation of information content of maps, figures, ...
 - Explicitly, i.e. accessible and processable by computers

