2014 International Congress on Environmental Modelling and Software June 18, 2014, San Diego, CA, USA

# Abstractions from Sensor Data with Complex Event Processing and Machine Learning

Markus Stocker, Mauno Rönkkö, Mikko Kolehmainen

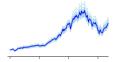


#### Introduction

- ► Environmental sensor networks (ESN)
  - Important tool in environmental science
- Large amounts of heterogeneous data
- Organize and interpret ESN data
- Building on ESNs
  - Environmental data systems
  - Environmental knowledge systems






## Problem

#### What we have



- 1.12483456780
- 2.59901521668 3.93918999451
- 1.28316206864
- 8.15483832459
- 2.15588315924
- 1.12483456780
- 2.59901521668
- 3.93918999451
- 1.28316206864 8.15483832459
- 2.15588315924





#### What we need more





# Starting point

- ESNs do not measure situational knowledge
  - But spatio-temporal change of physical properties
- We have data for properties
- We want situational knowledge
  - Information for situations
  - Situations are "structured parts of reality" [1]
  - Include objects, information for their state
- Assumed we can get from data to knowledge
  - Automatically using computational methods
  - Possibly (expert) supervised





#### Methods of interest

- Knowledge representation
  - Represent data and knowledge
- Knowledge extraction
  - Rule-based reasoning
  - Complex event processing (CEP)
  - Machine learning (ML)
  - Physically-based models
- Data processing
  - Aggregation, interpolation, filtering, ...



#### What we did

- Use CEP and ML to get from data to knowledge
- In Wavellite
  - Modelling and software framework
  - Situation awareness in environmental monitoring
  - Four layers with components and modules
  - Core data abstractions
    - Sensor observation, dataset observation, situation
    - ► These are ontological classes
- Learning modules of particular interest here
  - Implement program logic to extract knowledge
  - From dataset observations (input)
  - Represented as situations (output)





#### What we did

- ► Implementations for CEP with Esper and ML with WEKA
- CEP and Esper
  - Provide EPL statements
  - Executed by CEP engine on dataset observations
  - Events form situational knowledge
- ML and WEKA
  - Provide (trained) classifier
  - Classify dataset observations
  - Class labels form situational knowledge



## Examples

- CEP and Esper
  - Sensor measures wind speed
  - Data represented as sensor observations
  - Processed to dataset observations
  - ► EPL statement for strong winds (wind speed > threshold)
  - ► CEP engine returns events matching EPL statement
  - Events include situational knowledge for strong winds
- ML and WEKA
  - Sensor observations for road pavement vibration
  - Processed to dataset observations for vibration patterns
  - Classify patterns to detect and characterize vehicles
  - Class label is situational knowledge for vehicle type



# Take away

- ▶ In applications on ESNs
  - Problem-specific knowledge extraction
  - Support range of computational methods
  - Situation theory/awareness useful
  - Build knowledge representation into systems



### References I

#### [1] K. Devlin.

Logic and information.

Cambridge University Press, 1995.

#### Pictures:

\* Environmental monitoring station

http://ndep.nv.gov/baqp/monitoring.html

\* Database

http://www.inkwellimages.ie/webdesign/uploads/images/stock/png/computer-database-psd-icon-400x320.png

\* Timeseries

http://freakonometrics.blog.free.fr/public/perso6/sp500-ok-evol-jack.png

\* Situation

http://www.relocateaz.com/wp-content/uploads/2014/05/monsoon-driving.jpg

