

The relevance of measurement data in environmental ontology learning

Markus Stocker, Mauno Rönkkö, Ferdinando Villa, Mikko Kolehmainen ISESS 2011 · June 27-29, 2011 · Brno, Czech Republic

Introduction Ontology

Introduction Ontology

- Schema
 - $\exists poorIn.Compound \sqsubseteq Oligotrophic$
 - $\exists richIn.Compound \sqsubseteq Eutrophic$
 - Nitrogen \sqsubseteq Compound
 - DataProperty(*totalNitrogen*)
- Individual
 - *totalNitrogen*(lakeSuperior, 2.1)

Introduction

- What does rich and poor mean, numerically?
 - From literature, classification using Trophic State Index (TI)
 - TI <30-40: Oligotrophic, thus poor in nutrients
 - TI 50-70: Eutrophic, thus rich in nutrients
 - From measurement data, using data-driven methods
 - Learn a central tendency for "being rich" (or poor) from measurement data
- Measurement
 - Process of assigning numbers to the properties of objects
 - Fundamental to environmental science
- Hypothesis
 - Measurement data is relevant to environmental ontology learning

Materials

- Taxonomy of lakes formalized in OWL
 - In particular two relations *richln* and *poorIn*
- Data on the nutrient concentration of European lakes (EEA)
 - Including mean annual total nitrogen concentration
- Jena for ontology management (RDF, OWL) and query (SPARQL)
- WEKA for data mining

Methods

Rules

- (Lake totalNitrogen X) Λ (X \leq Y) \rightarrow (Lake poorIn Nitrogen)
- (Lake totalNitrogen X) Λ (X > Y) \rightarrow (Lake richIn Nitrogen)
- Learn threshold Y
 - K-means clustering
 - Two clusters and two centroids
 - Interpreted as central tendencies for lakes being *poorIn* and *richIn*
 - Threshold Y is calculated as the mean for the centroids
- Example for centroids $C_1 = 0.8$ and $C_2 = 2.4$; Y = 1.6
 - (Lake totalNitrogen X) Λ (X \leq 1.6) \rightarrow (Lake poorIn Nitrogen)
 - (Lake totalNitrogen X) Λ (X > 1.6) \rightarrow (Lake richIn Nitrogen)

Results Rule-based reasoning

(Lake *totalNitrogen* X) \land (X > 1.6) \rightarrow (Lake *richIn* Nitrogen) \exists *richIn*.Nitrogen \sqsubseteq Eutrophic

Results Spatial variation

- Using Finnish lakes in 2008
 - $C_1 = 0.39$ and $C_2 = 0.88$; Y = 0.63
 - 150 lakes *poorIn* and 53 *richIn* total nitrogen
- Using Spanish lakes in 2008
 - $C_1 = 0.78$ and $C_2 = 8.36$; Y = 4.57
 - 137 lakes *poorIn* and 12 *richIn* total nitrogen
- Tests for Denmark, Germany, Great Britain, Italy and Switzerland

Results Temporal variation

Discussion

- Experiment suggests
 - Measurement data relevant to environmental ontology learning
 - Thus, learning methods beyond text collections needed
- Interaction
 - Feedback acquired knowledge to ontology
 - Use ontological knowledge in data mining
 - Cyclical interaction between data mining and ontologies

Discussion

- Spatial and temporal variation
 - To what extent should environmental ontologies reflect this?
 - Methods for time-space localization of ontologies
- Query
 - Lakes with mean annual total nitrogen concentration ≥ 1.6
 - Or, simply, Lakes richIn nitrogen
- Learning beyond simple ontological rules

Related work

- Data mining with ontologies cycle (Nigro *et al.*)
- Rule-based reasoning for environmental ontologies (Henson et al.)
 - Wind \geq 35 miles/h \rightarrow HighWinds
 - Similar use case
 - Authors give no indication on threshold value
 - May be expert opinion
 - We learn threshold value from the data

Conclusions

• Aims

- Demonstrate the learning of ontological rules
- Using numerical measurement data and clustering methods
- Hypothesis
 - Measurement data is relevant to environmental ontology learning
- Is the interpretation given to centroids valid?
 - Bridge between data mining and ontology
 - Open for discussion

References

- Zafar, A.: Taxonomy of lakes. Hydrobiologia 13(3), 287-299 (1959)
- Sydenham, P.H.: Handbook of Measurement Science: Volume 1 Theoretical Fundamentals. John Wiley & Sons (1982)
- Nigro, H.O., Císaro, S.E.G., Xodo, D.H.: Data mining with ontologies: Implementations, findings, and frameworks. Information Science Reference (an imprint of IGI Global) (2008)
- Henson, C.A., Pschorr, J.K., Sheth, A.P., Thirunarayan, K.: SemSOS: Semantic Sensor Observation Service. In: Proc. of the 2009 International Symposium on Collaborative Technologies and Systems (CTS 2009). Baltimore, MD (May 2009)
- http://en.wikipedia.org/wiki/Trophic_state_index
- <u>http://www.openjena.org/</u>
- <u>http://www.cs.waikato.ac.nz/ml/weka/</u>
- <u>http://en.wikipedia.org/wiki/Lake</u>

