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Abstract. The vision of semantic business processes is to enable the in-
tegration and inter-operability of business processes across organizational
boundaries. Since different organizations model their processes differ-
ently, the discovery and retrieval of similar semantic business processes
is necessary in order to foster inter-organizational collaborations. This
paper presents our approach of using iSPARQL– our imprecise query
engine based on SPARQL– to query the OWL MIT Process Handbook–
a large collection of over 5000 semantic business processes. We partic-
ularly show how easy it is to use iSPARQL to perform the presented
process retrieval task. Furthermore, since choosing the best performing
similarity strategy is a non-trivial, data-, and context-dependent task, we
evaluate the performance of three simple and two human-engineered sim-
ilarity strategies. In addition, we conduct machine learning experiments
to learn similarity measures showing that complementary information
contained in the different notions of similarity strategies provide a very
high retrieval accuracy. Our preliminary results indicate that iSPARQL
is indeed useful for extending the reach of queries and that it, therefore,
is an enabler for inter- and intra-organizational collaborations.

1 Introduction

One of the cornerstones of the Semantic Web services vision is to enable the
design and execution of dynamic inter- and intra-organizational services (pro-
cesses). A major prerequisite for fulfilling this vision is the ability to find services
which have certain features (i.e., the ability for adaptive service discovery/-
matchmaking and/or mediation). Most approaches so far have relied on some
type of logical reasoning [4, 10]. In earlier works, we suggested that statistical
methods based on a catalog of simple predefined similarity measures might be
more suitable for this task [3]. Indeed, using the OWLS-TC matchmaking test
collection, we showed that a straightforward method based on simple, off-the-
shelf similarity metrics performed almost as well as the “best of bread” OWLS-
MX matchmaker that was engineered to the task of matching OWL-S services.

While this success was remarkable it left open some important questions.
First, the question of which similarity measure is applicable for a given problem
needs to be answered. Findings from machine learning [8], information retrieval



[1], and psychology [9] show that the best performing similarity measure might
be both task (e.g., OWL-S/WSML matchmaking, retrieval in ontologies, etc.)
and domain dependent (i.e., the ontologies involved). Indeed, finding the best
similarity measure for any given task and domain can be mapped to an opti-
mization problem, where the “No Free Lunch” theorem [15] has proven that no
uniformly best solution exists. Hence, the choice of the best performing similar-
ity measure for any given task given an application domain seems anything but
straightforward.

Second, given that our similarity-based approach was still slightly outper-
formed by the human-engineered, task-optimized OWLS-MX matchmaker, gives
rise to the question if a (human-) engineered, task-optimized similarity measure
would not perform better? This question is especially important since in many
practical applications a considerable amount of human (knowledge) engineering
is expended to improve the performance of systems. Hence, the engineering effort
would also go into similarity-based solutions.

Third, given that similarity is an inherently statistics-based notion almost
begs the use of statistical machine learning techniques for finding a similarity
measure optimized for a given task and application domain.

In this paper we use the iSPARQL framework to address exactly these
questions. iSPARQL is an extension of official SPARQL that allows for similarity
joins which employ any of about 40 different similarity measures implemented
in SimPack3 – our generic Java library of similarity measures for the use in
ontologies. It, therefore, lends itself as a platform for any kinds of similarity-based
retrieval experiments in ontologies. Specifically, the contributions of this paper
are that it (i) shows the simplicity of designing similarity based Semantic Web
applications with iSPARQL, (ii) analyzes the usefulness of human-engineered
task- and domain-specific similarity measures in comparison to some off-the-
shelf measures widely used in computer science and AI, and (iii) shows how
similarity measures learned through supervised learning techniques outperform
both the off-the-shelf as well as the human-engineered measures in a service
retrieval task. Last, the paper introduces a new data set for (process/service)
retrieval applications in ontologies based on the MIT Process Handbook [13] that
provides a very rich structural and textual description of the provided processes.

The remainder of this paper is structured as follows. The next section suc-
cinctly summarizes the most important related work. Given the importance as an
underlying framework, Section 3 introduces the relevant features of iSPARQL.
Section 4 is the heart of the paper: it introduces the experimental setup including
the data set used in the evaluations, provides some details on the experiments,
and discusses the results. To close, Section 5 discusses the results in the light of
the claims, related work, and limitations. We close the paper with our conclu-
sions and some insight into future work.

3 http://www.ifi.unizh.ch/ddis/simpack.html
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2 Related Work

Several other studies focus on the comparison of semantic business processes
either for retrieval, discovery, matchmaking, or process alignment. We introduced
in earlier works PQL – the Process Query Language to query the MIT Process
Handbook [4]. PQL does not make use of similarity measures to retrieve similar
query matches. However, PQL knows a “contains”-operator that can be roughly
compared with the SQL “like”-operator performing string comparisons.

We are aware of two other studies that address the task of aligning semantic
business processes using a similarity measure. Brockmans et al. and Ehrig et al.
[5, 7] propose an approach to semantically align business processes originally rep-
resented as Petri nets. After the nets have been transformed to OWL, similarity
measures from different categories are employed to measure the affinity between
elements of Petri nets. Since we are able to define similarity strategies (i.e., com-
positions of several atomic similarity measurements and weighting schemes) with
our iSPARQL system, we consider such an ontology alignment task as being in
the range of tasks which could be perfectly carried out by iSPARQL.

With respect to matchmaking, Klusch et al. [10] present an approach to per-
form hybrid Semantic Web service matchmaking. Their OWLS-MX matchmaker
uses both, semantic similarity measures, as well as logic-based reasoning tech-
niques to discover similar web services to a given query service. Again, Semantic
Web service/process matchmaking is a possible application for iSPARQL.

Last, imprecise RDQL (iRDQL) is the predecessor of iSPARQL [3]. In iRDQL,
special keywords are used to specify the similarity strategy (and parameters) to
measure the relatedness between resources in ontologies. We did not want to
introduce new keywords in iSPARQL since this would break the official W3C
SPARQL grammar. Hence, we decided to integrate imprecise statements as vir-
tual triples allowing us to add similarity measures and parameters by simply
extending the virtual triple ontology.

3 iSPARQL

This section succinctly introduces the relevant features of our iSPARQL frame-
work that serves as the technical foundation to all evaluations.4 iSPARQL is an
extension of SPARQL [14] that allows to query by triple patterns, conjunctions,
disjunctions, and optional patterns. iSPARQL extends the traditional SPARQL
grammar but does not make use of additional keywords. Instead, iSPARQL in-
troduces the idea of virtual triples. Virtual triples are not matched against the
underlying ontology graph, but used to configure similarity joins: they specify
which pair of variables (that are bound by SPARQL to resources) should be
joined and compared using what type of similarity measure. Thus, they estab-
lish a virtual relationship between the resources bound to the variables describ-
ing their similarity. A similarity ontology defines the admissible virtual triples
4 An online demonstration of iSPARQL is available at http://www.ifi.unizh.ch/

ddis/isparql.html
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1 ������ ph: <http://www.ifi.unizh.ch/ddis/ph /2006/08/ProcessHandbook.owl#>
2 ������ isparql : <java:ch.unizh.ifi.isparql .query.property .>
3
4 ����	
 ?process1 ?name1 ? overallsimilarity
5 ����� {
6 ?process1 ph:name ?name1 .
7 ?process1 ph:description ? description1 .
8 ?process2 ph:name ‘‘Sell’’ ; ph:name ?name2 .
9 ?process2 ph:description ? description2 .

10
11 # ImpreciseBlockOfTriples ( lines 13 -20, 22 -24, and 26 -33)
12
13 # NameStatement
14 ?strategy1 isparql :name ‘‘LoLN’’.
15 # ArgumentsStatement
16 ?strategy1 isparql :argument (?name1 ?name2 ) .
17 # IgnorecaseStatement
18 ?strategy1 isparql :ignorecase ‘‘true’’ .
19 # SimilarityStatement
20 ?strategy1 isparql :similarity ? sim1
21
22 ?strategy2 isparql :name ‘‘TFIDFD ’’ .
23 ?strategy2 isparql :arguments (?description1 ? description2) .
24 ?strategy2 isparql :similarity ? sim2 .
25
26 ?strategy3 isparql :name ‘‘ ScoreAggregator’’ .
27 # ScoresStatement
28 ?strategy3 isparql :scores (?sim1 ?sim2) .
29 # WeightsStatement
30 ?strategy3 isparql :weights (0.8 0.2) .
31 # AggregatorStatement
32 ?strategy3 isparql :aggregator ‘‘sum’’ .
33 ?strategy3 isparql :similarity ? overallsimilarity
34 } ���� �� ���	(? overallsimilarity);

Listing 1.1. iSPARQL example query for the MIT Process Handbook.

and links the different measures to their actual implementation in our library
of similarity measures called SimPack. The similarity ontology also allows the
specification of more sophisticated combinations of similarity measures, which
we call similarity strategies (or simply strategies) in the rest of this paper. Note
that the order of virtual triples is irrelevant since iSPARQL’s query processor
will inspect (reorder) them before the query is passed to the query engine. In
the remainder of this section, we will briefly discuss the iSPARQL grammar and
then introduce some of the similarity strategies employed in the evaluation.

3.1 The iSPARQL Grammar

The various additional grammar statements are explained with the help of the
example query in Listing 1.1. This query aims at finding processes (or services)
in a process ontology (we use the MIT Process Handbook introduced in Section
4.1) which are similar to the process “Sell” by comparing process names and
descriptions. To implement our virtual triple approach we added an Imprecise-
BlockOfTriples symbol to the standard SPARQL grammar expression of Fil-
teredBasicGraphPattern [14]. Instead of matching patterns in the RDF graph,
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the triples in an ImpreciseBlockOfTriples act as virtual triple patterns, which
are interpreted by iSPARQL’s query processor

An ImpreciseBlockOfTriples requires at least a NameStatement (lines 14,
22, and 26) specifying the similarity strategy. iSPARQL has two kinds of strate-
gies: similarity strategies and aggregation strategies. The former defines how the
proximity of resources should be computed. The latter aggregates previously
computed similarity scores to an overall similarity value. The example query
in Listing 1.1 defines the two similarity strategies “LoLN” (lines 13–20) and
“TFIDFD” (lines 22–24) as well as the aggregation strategy “ScoreAggregator”
(lines 26–33; see Section 3.2 for a discussion of the available strategies).

In addition, an ImpreciseBlockOfTriples requires an ArgumentsStatement
(lines 16 and 23) or a ScoresStatement (line 28), depending on whether it speci-
fies a similarity or an aggregation strategy. An ArgumentsStatement specifies the
resources under comparison to the iSPARQL framework. The ScoresStatement
takes a list of previously calculated values (typically from similarity strate-
gies) and summarizes the individual values in a user-defined way (e.g., average,
weighted sum, median, etc.). We found aggregators to be useful to construct
overall (sometimes complex) similarity scores based on two or more previously
computed similarity scores. The similarity ontology also allows the use of some
additional triple patterns (statements) for most strategies to pass parameters to
the strategies instructing them to, for example, ignore a string’s case during a
comparison operation (the IgnorecaseStatement on line 18) or to apply weights
to the aggregated values (using the WeightsStatement on line 30).

3.2 Similarity Strategies

Currently, iSPARQL supports all of the about 40 similarity measures imple-
mented in SimPack. The reference to the implementing class as well as all nec-
essary parameters are listed in the iSPARQL ontology. It is beyond the scope of
this paper to present a complete list of implemented strategies. Therefore, Table
1 summarizes the five similarity strategies we use to evaluate the performance
of iSPARQL on the MIT Process Handbook (see Section 4). We distinguish be-
tween simple and engineered strategies: simple strategies employ a single, atomic
similarity measure of SimPack, whereas engineered strategies are a (weighted)
combination of individual similarity measures whose resulting similarity scores
get aggregated by a user-defined aggregator. Table 1 lists in addition to the
explanation of each strategy if it is considered as simple or engineered.

4 Experimental Analysis

The goal of our experimental analysis was to find some empirical evidence to
answer the questions raised in the introduction: Which are the “correct” mea-
sures for a given task and domain? Do engineered measures outperform off-the-
shelf measures? And, can an “optimal” measure be learned? To that end we
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Strategy Explanation
TFIDFD (simple) TFIDF between process descriptions: the textual descriptions of two

processes are compared by TFIDF, the standard information retrieval
similarity measure. This measure makes use of pre-computed corpus of
process descriptions which serves to retrieve statistics about words in the
descriptions. The TFIDF measure extends the cosine measure with the
traditional IR weighing scheme [1].

LevN (simple) Levenshtein similarity of process names: two process names are compared
with the Levenshtein string similarity measure [11]. The Levenshtein-
based similarity measures are founded on the Levenshtein string edit dis-
tance that measures the relatedness of two strings (process names) in
terms of the number of insert, remove, and replacement operations to
transform one string into another string.

LoLN (simple) Levenshtein Level 2 (Levenshtein of Levenshtein) similarity of process
names: two process names such as “Buy over the internet” and “Sell via In-
ternet” are compared string-by-string with the (inner) Levenshtein string
similarity measure. If the similarity between two strings is above a user-
defined threshold, the strings are considered as equal (i.e., they match).
These scores are used by the outer Levenshtein string similarity measure
to compute an overall degree of similarity between the two process names
(sequences of strings).

MITPH-LoLNTFIDFD
(engineered)

Levenshtein Level 2 similarity between process names, TFIDF between
process descriptions: this strategy is a combination of two atomic mea-
sures. An overall similarity score is computed by aggregating the individ-
ual scores.

MITPH-LoLNTFIDFD-
JaccardAll (engineered)

Levenshtein Level 2 similarity between process names, TFIDF between
process descriptions, Jaccard (Tanimoto) set-based similarity [6] between
process exceptions, goals, resources, inputs, and outputs: a combination
of six atomic measures; in addition to MITPH-LoLNTFIDFD, four sin-
gle similarity scores are computed from two processes’ goal, exception,
resource, in- and output sets. An overall score is, again, determined by
accumulating (and weighting) the individual scores.

Table 1. Selection of five iSPARQL similarity strategies.

constructed a large ontology retrieval data set and performed two sets of exper-
iments: the pure retrieval experiments show a comparison of both off-the-shelf
and domain/task-specific, engineered similarity strategies using iSPARQL; The
machine learning experiments compare the performance of these predefined mea-
sures to learned strategies gained using supervised learning approaches. In the
following, we first describe the experimental setup, explain the generation of the
test set that is used to perform the aforementioned experiments, and present the
results of our evaluations.

We conducted all our experiments on a two processor dual core AMD Opteron
270 2.0GHz machine with 4GB RAM, 7200rpm disks, using a 32Bit version of
Fedora Core 5.

4.1 Test Set Generation – “Mutating” the MIT Process Handbook

In order to evaluate our ontology retrieval approach, we needed a substantial
database of instances, which includes a sizable number of queries with its asso-
ciated correct answers. The correct answers are crucial, as they allow the quan-
titative evaluation of the retrieval approach. But preparing manually a suitable
database that is large enough to enable statistical analysis can be impractica-
bly time-consuming. We, therefore, decided to bootstrap the data set generation
process by a large existing knowledge base that describes business processes:
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Fig. 1. Simplified structure of the OWL MIT Process Handbook Ontology.

The MIT Process Handbook is an electronic repository of best-practice busi-
ness processes and the result of over a decade of development by over 40 re-
searchers and practitioners centered around the MIT Center for Coordination
Science.5 The Handbook is intended to help people: (1) redesigning organiza-
tional processes, (2) inventing new processes, and (3) sharing ideas about or-
ganizational practices [13]. The Handbook includes a database of about 8000
business processes in addition to software tools for viewing, searching, and edit-
ing the database contents [12]. The Process Handbook is a process ontology:
it provides a specialization hierarchy of processes (verbs) and their interrela-
tionships in the form of properties, which connect the process to its attributes,
parts, exceptions and dependencies to other processes. Note that specialization
in the process handbook is non-monotonic. In other words, it is possible for a
“child” process to overwrite or delete an inherited property. The Process Hand-
book, thus, has the advantage of being a sizable data set that was developed in
a real-world setting (i.e., by end-users and not by Semantic Web researchers).

In order to use the MIT Process Handbook for an evaluation, we had to export
it into an OWL-based format. Given the non-monotonic inheritance structure the
straight-forward translation of processes to concepts was not possible. We, there-
fore, decided to model the Process Handbook meta-model in OWL and export
the processes in the Handbook as instances of the meta-model.6 Hence, all major
parts of the Handbook such as Process, Bundle, Goal, Exception, Resource, De-
pendency, and Trade-offs are represented as OWL classes (see Figure 1). With
the ontology, we transformed the approximately 5000 business processes to OWL
and stored them in their own files. Figure 2 shows a representative example of
such a process.

Next, we had to find a sizable number of realistic queries and their corre-
sponding correct answers in the Process Handbook. To that end we adopted a
novel approach for creating a test database that is based on semantics-preserving
process mutation. We began by selecting 105 distinct process models from within

5 Now called the MIT Center for Collective Intelligence (http://cci.mit.edu).
6 In order to preserve the inherent semantics of the MIT Process Handbook, some

additional rules in RuleML would be needed [2].
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@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix daml: <http://www.daml.org/2001/03/daml+oil#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix processHandbook: <http://www.ifi.unizh.ch/ddis/ph/2006/08/ProcessHandbook.owl#> .

<http://www.ifi.unizh.ch/ddis/ph/2006/08/E1024.owl#E1024> a processHandbook:Process ;
processHandbook:name "Determine cost" ;
processHandbook:description "This is a general activity to determine the cost

to the organization of purchase or production." ;
processHandbook:hasException <http://www.ifi.unizh.ch/ddis/ph/2006/08/E17159.owl#E17159> ;
processHandbook:hasSpecialization <http://www.ifi.unizh.ch/ddis/ph/2006/08/E6302.owl#E6302> ,

<http://www.ifi.unizh.ch/ddis/ph/2006/08/E8007.owl#E8007> ;
processHandbook:hasGeneralization <http://www.ifi.unizh.ch/ddis/ph/2006/08/E3356.owl#E3356> .

Fig. 2. The figure shows process E1024 (“Determine cost”) in Notation 3. E1024 has
one exception, two process specializations, and one process generalization.

the Process Handbook repository. These models represent the target set. For each
target process we then created 20 variants of that process that are syntactically
different but semantically equivalent using mutation operators. These variants
represent the “true positives” or correct answers (i.e., the database items that
should be returned when our retrieval algorithm is applied to find matches for
the target process). All other items in the database are viewed as non-matches,
and should not be returned by our retrieval algorithm if is it operating correctly.

Variants were created by applying semantics-preserving mutation operators
to the target processes. Every variant represented the application of between 1
and 20 randomly selected operators to a target process. We used the following
operators:

– a process step (i.e., part of a process) is
• split into two siblings (STEPSPLIT)
• split into a parent/child (STEPCHILD)
• merged with a (randomly selected) sibling (STEPMERGESIB)
• merged with its parent (STEPMERGEPARENT)
• deleted (STEPDELETE)

– a word in the name of a process is
• deleted (NAMEDELETE)

– a word in the description of a process is
• deleted (DESCRIPTIONDELETE)

The mutation operators were selected so that they produce a plausible alter-
native way of modeling the process they were applied to. If we were modeling
a restaurant process, for example, some people might combine the “order” and
“pay” actions into one substep (e.g., for a fast food restaurant), while others
might model the same process with separate substeps for “order” and “pay”.
These two approaches represent syntactically different, but semantically equiv-
alent, ways of modeling the same process. The STEPMERGESIB operator could
take a process model with distinct “order” and “pay” substeps and merge them
into one. Conversely, the STEPSPLIT operator could take a process model where
“order” and “step” are merged, and split them into two distinct substeps.
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It should be noted, as a caveat, that there is a substantial random element
in how the mutation operators work, since they do not perform a sophisticated
semantic analysis of a step before, for example, deciding how to perform a split.
Hence, the process variants may not look much like what a human might have
generated, even though they are generated by a process that is similar to what
a person might have used. It is our belief, however, that a semantics-preserving
mutation approach represents a promising way for generating large query collec-
tions enabling rapid and useful evaluations of different retrieval algorithms. The
algorithms that “rise to the top” as a result of this screening procedure can then
be evaluated using hand-generated test sets that, presumably, will produce re-
trieval and precision figures that are closer to what we can expect in “real-world”
contexts. The generated process retrieval test collection, including queries and
variants (true positives) is available at our project web site.7

4.2 Retrieval Experiments – Off-the-shelf vs. Engineered

In order to compare the performance of off-the-shelf versus specifically engi-
neered similarity strategies, we first chose three simple strategies from SimPack:
TFIDFD, LevN, and LoLN (see Section 3.2). Obviously, we did not choose
them randomly but actually chose the off-the-shelf measures that we thought
would perform well and then discarded the ones that were not performing suf-
ficiently well to compete with the top-ranking ones. Second, we manually de-
fined (or engineered) two task and domain specific complex similarity strate-
gies that are both a combination of multiple similarity measures based on our
experience with the Process Handbook: MITPH-LoLNTFIDFD and MITPH-
LoLNTFIDFDJaccardAll. Note that while almost no domain knowledge is nec-
essary to choose and define the off-the-shelf similarity strategies, some domain
expertise is needed for the human-engineered strategies since specifying which
measures should be used to determine the similarity between which elements of
processes means to have a profound understanding of the structure of the data.

To compare the performance of the similarity strategies, we had to execute
all 105 query processes with each of the five similarity strategies. Here, the
capabilities of iSPARQL were very useful: since it was designed to run SPARQL
queries with similarity joins, we could simply construct iSPARQL queries that
would correspond to the retrieval operations. Consider the query depicted in
Listing 1.2: it computes a similarity join between the process with the reference
http://www.ifi.unizh.ch/ddis/ph/2006/08/ProcessHandbook.owl#E16056 and all
other entries in the knowledge base using the TFIDFD strategy and returns
them ordered descending by similarity. Actually, we were able to run all five
strategies with one query by having an ImpreciseBlockOfTriples (see Section
3.1) for each strategy in the same query, exemplifying how iSPARQL simplifies
the implementation of Semantic Web retrieval applications.

To evaluate the performance of the queries we chose the traditional infor-
mation retrieval measures precision and recall. As a representative example, the

7 http://www.ifi.unizh.ch/ddis/ph-owl.html
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1 ������ ph: <http://www.ifi.unizh.ch/ddis/ph /2006/08/ProcessHandbook.owl#>
2 ������ isparql : <java:ch.unizh.ifi.isparql .query.property .>
3
4 ����	
 ?process2 ?name2 ? similarity
5 ����� {
6 ?process2 ph:name ?name2 .
7 ?strategy isparql :name ‘‘TFIDFD ’’ .
8 ?strategy isparql : arguments (ph:E16056 ? process2 ) .
9 ?strategy isparql : similarity ?similarity .

10 ���� �� ���	(?similarity)

Listing 1.2. iSPARQL retrieval query.

results for process E160568 are shown in Figures 3(a) and 3(b), which depict
precision and recall for the 100 most similar processes to the query process.
As one can see, TFIDFD outperforms all other strategies in terms of precision
closely followed by MITPH-LoLNTFIDFD. Both, simple as well as engineered
strategies start very high with precision=1, except for MITPH-LoLNTFIDFD
that starts around 0.9. LoLN rapidly falls below 0.2 in precision (∼25 returned
processes), which expresses its low usefulness for this retrieval task. Consider-
ing recall (Figure 3(b)), MITPH-LoLNTFIDFD starts highest (recall ∼0.7) but
gets outperformed by TFIDFD (around 15 returns) for larger query result sets.
Why does the standard TFIDF perform so well? We believe it is due to the
large descriptions that are typically associated with Process Handbook entries.
Given that the descriptions were not mutated in all cases and that mutation
did essentially consist of deleting words, TFIDF, which has been found to be
very useful in full text retrieval, may have an unfair advantage. Nonetheless,
even disregarding TFIDF as a competitor, it is interesting to observe that nei-
ther of the engineered measures uniformly outperforms the off-the-shelf ones
in terms of precision, but that they only gain with larger result sets. Why does
the engineered measure MITPH-LoLNTFIDFDJaccardALL not perform equally
well (LoLN initially outperforms it in terms of precision and almost uniformly
outperforms it in terms of recall)? This might be due to badly chosen weights
of the individual similarity strategies (i.e., instead of giving the same weights
to TFIDFD, LoLN, and Jaccard, TFIDFD should probably be weighted much
higher as indicated by the simple strategies). We discuss an approach of how to
learn such weights in the next subsection.

Figure 4 shows average precision and recall of the five employed similarity
strategies across all 105 queries. As the figure illustrates the performance of
all measures across all the queries is not as good as for the the single query.
Nonetheless, we can see that the findings from the one query generalize qual-
itatively. Specifically, Figure 4(a) illustrates that the simple TFIDFD measure
clearly outperforms all other strategies in terms of precision – it seems as if the
descriptions across all the queries again are of much higher importance than
other structure properties of a process. However note, that precision for all mea-
sures (including TFIDFD) on average is not as high as in the single query case.

8 http://www.ifi.unizh.ch/ddis/ph/2006/08/E16056.owl
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Fig. 3. Precision and recall for a representative example process.

This due to the fact, that there are processes in the test collection which have
shorter textual descriptions and/or fewer properties resulting in lower TFIDF
similarity scores, which, in turn, leads to reduced average precision. In terms of
precision, all three simple strategies outperform the engineered ones again for
few processes returned. For larger query result sets, the two engineered strate-
gies MITPH-LoLNTFIDFD and MITPH-LoLTFIDFDJaccardAll perform bet-
ter than LevN and LoLN but still worse than simple TFIDF. Inspecting recall
(Figure 4(b)), the best performing similarity strategy is the engineered MITPH-
LoLNTFIDFD until ∼40 returned processes. With larger result sets, it gets out-
performed by TFIDFD that starts with about the recall of low (recall ∼0.3). We
note, that also on average, similarity strategies incorporating TFIDF to measure
the relatedness of processes of the MIT Process Handbook perform substantially
better than strategies focusing on other modeling aspects. Thus, future strate-
gies should probably use TFIDF as one of their component measures, assigning
it a high enough weight in the overall similarity computation.

Summarizing, we can state, that the engineered measures do not uniformly
outperform the off-the-shelf ones. Indeed, it seems that the simple ones that are
heavily reliant on full-text (such TFIDF) are favored by this data set. Ignoring
the description (and the TFIDF measure), however, we can see that the engi-
neered measures perform better in terms of both precision and recall for large
return sets. For small return sets the off-the-shelf measures are better in terms
of precision and at least competitive for recall.

4.3 ML Experiments – Off-the-shelf and Engineered vs. Learned

The last question raised in the introduction demands clarification on the perfor-
mance on a learned measure in comparison to either the off-the-shelf or the engi-
neered ones. To that end we decided to employ the widely used machine learning
tool Weka9 in conjunction with iSPARQL to learn a similarity measure based on
9 http://www.cs.waikato.ac.nz/ml/weka/
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(b) Average recall.

Fig. 4. Average precision and recall for 105 queries and five similarity strategies.

the results obtained with the simple as well as engineered strategies. Specifically,
for each of the 105 queries we took all the off-the-shelf but the TFIDF measures
used so far. The rationale for not using the TFIDF measure was that we did not
want the description to have too much influence in this evaluation. Together with
the information if they were a correct or incorrect answer, we combined them
to a feature vector shelfi,j = [LevN(i, j), LoLN(i, j), correct(i, j)]T , where i is
the number of the target entity, j is the number of the entity from the Process
Handbook and correct(i, j) specifies if j is a correct answer to the query i. We
then combined all the vectors shelfi,j to the data set shelf . Analogously, we
constructed the vector engineeredi,j that extended shelfi,j with the engineered
measures to the data set engineered .

For each of these two data sets we then learned a similarity measure using a
logistic regression statistical learning algorithm performing an (almost) 10-fold
cross validation.10 We took 10% of the queries (always exactly 10, discarding the
rest), learned the similarity measure using the logistic regression learner on the
remaining 90% of the data, and then measured its effectiveness on these 10%.
This approach is standard practice in machine learning. The averages of the
results of the 10 runs are shown in Figure 5. As the Figures 5(a) and 5(b) show,
the performance of the learned measures vastly outperforms both the engineered
and the off-the-shelf measures (note the scale on the figures!). It, thus, seems
that each of the measures employed contains some latent (potentially different)
information about the similarity between the queries and its correct answers.
Combined, they provide an excellent performance. Note also, that the similarity
measure learned from the engineered data set (the upper line in Figures 5(a) and
5(b)) significantly outperforms the one learned from the shelf data set (lower
curves). Since precision/recall curves are sometimes misleading when evaluating
the performance of learning approaches, we also supply the average receiver
operating characteristic (ROC) curves for both learned measures. The ROC

10 We call it “almost” 10-fold cross validation because 105 queries cannot be divided
into 10 equally sized groups, but 5 groups of 10 and 5 groups 11 queries.
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Fig. 5. Results for the learned similarity measure (logistic regression).

curve graphs the true positive rate (y-axis) against the false positive rate (x-
axis), where and ideal curve would go from the origin to the top left (0,1) corner,
before proceeding to the top right (1,1) one. As Figure 5(c) clearly shows, the
similarity measure learned from the engineered data set almost perfectly mimics
a perfect prediction resulting in an accuracy of 99.469%; the one for the shelf
data set being not much worse with an accuracy of 98.523%.

5 Discussion, Limitations, and Future Work

The findings of the preceding analysis are relatively clear. First, the ease of
use of our iSPARQL framework for the presented semantic process retrieval
task has been clearly shown. Evaluations, that previously would have had to
be programmed tediously, could be effectuated by simply compose a query. The
seamless integration of simple, off-the-shelf as well as human-engineered similar-
ity strategies significantly simplified the implementation. We, therefore, believe
that a declarative query language containing statistical reasoning elements like
iSPARQL can significantly simplify the design and implementation of Semantic
Web applications that include some element of similarity. Since such elements
are included in many of the core Semantic Web applications (e.g., matchmak-
ing, retrieval in ontologies, ontology alignment, etc.), tools such as iSPARQL
can play an important role in simplifying the spread of the Semantic Web.

Second, as our retrieval experiments showed, the human-engineered measures
performed constantly better on large sets of processes than the off-the-shelf mea-
sures did. In contrast, the simple, off-the-shelf strategies turned out to be su-
perior for smaller sets. Furthermore, strategies including the TFIDF measure,
which heavily drew on the process descriptions performed better in terms of pre-
cision and recall. This indicates that the off-the-shelf methods captured a different
notion of the similarity between processes than the engineered ones. This finding
is further supported by the learned similarity measures. As Figure 5 shows the
results of the algorithm learned with only the off-the-shelf data is somewhat less
precise than the one learned with both the engineered and off-the-shelf methods.
Hence, the information contained in the engineered measures is at least partially
complimentary to the information contained in the off-the-shelf ones, which the
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learning algorithm can exploit. Arguably, this additional information is the latent
experience of the experts that was embedded in the engineered measures.

Third, the learned measures clearly outperformed the designed or off-the-shelf
ones. The learning algorithm’s ability to combine the complimentary information
contained in the different notions of similarity proved to provide an overall almost
overwhelming accuracy. We can, therefore, clearly conclude that the value of
using learned similarity measures seems immense, assuming that a sufficient
number of examples is available: irrespective of whether we used off-the-shelf or
expert measures, the learned measures performed close to perfect.

One major limitation of our work is the choice of experimental data. The
generalizability of our findings across tasks and domains is limited by the fact
that we (i) only used one data set, (ii) that this data set employed some generated
data, (iii) we only ran one task, and (iv) that the test suite generation strategy
might have influenced the results. Nonetheless, we believe that our findings are
likely to hold across domains and task: First, extrapolating from information
retrieval, where the choice of good similarity measures seem to permeate across
both tasks and domains. Second, while our data set is not ideal, it is one of
the first ones in the Semantic Web that contains a large data set with both
queries and associated true answers. Such data sets are very costly to design
and only their introduction to the community will allow comparative studies,
which, ultimately, is the basis of science. Last, even though the true positives
where generated (note that the data base itself was collected by domain experts),
their generation process was guided by many years of experience with the type
of data under study. We, therefore, believe that our findings will generalize at
least across domains and possibly, given the ubiquity of similarity measures in
computer science and AI, even across tasks.

We see a couple of future research directions: (1) extending our evaluation
to other domains and tasks to ensure our findings’ generalizability; (2) applying
iSPARQL to different Semantic Web tasks such as service matchmaking and
ontology alignment to shed some more light on its potential as a framework; and
(3) investigating extensions to iSPARQL that will further improve its usefulness
for additional tasks.

6 Conclusions

Our study investigated the use of similarity measures in a process ontology re-
trieval task using the iSPARQL framework. We found that the declarative nature
of iSPARQL did significantly simplify the task prompting us to a deeper inves-
tigation of the applicability of iSPARQL to different Semantic Web tasks such
as matchmaking and ontology alignment, beyond the presented process retrieval
task. We also found that the combination of different notions of similarity string
learning approaches significantly boosted the overall task performance. There-
fore, as seen from our evaluations, the use of statistics, either directly employed
by similarity strategies or by statistical learning algorithms, proved crucial for
the performance in this task. For the Semantic Web in general, these findings
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raise the question whether the more wide-spread use of statistical reasoning ele-
ments would not improve the overall performance of its tools and applications.
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