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A B S T R A C T 
 
We present a software system for automated projection of situational knowledge for 
disease outbreak in agriculture. The system supports farmers and agricultural advisers in 
obtaining and maintaining awareness of present and future disease outbreaks in crops 
grown at agricultural parcels. It models objects such as plant pathogens and agricultural 
parcel crops, and their relations, as entities in situations observed by an environmental 
monitoring system. It utilizes a mechanistic disease pressure model to obtain knowledge 
about observed situations from forecast data for various weather parameters. It represents 
obtained situational knowledge explicitly and manages represented knowledge in a 
knowledge base. We evaluate the system for 3 fungal plant pathogens, 2 cereal crops, and 
17 agricultural parcels located in Finland, for a growing season. We underscore how the 
explicit representation of situational knowledge is useful toward various purposes, 
including reasoning, query and visualization, and is, thus, vastly superior to having 
situational knowledge only implicit in high-level data products such as maps. 

  

1. Introduction 
Farmers have arguably been relying on timely information about factors that influence crop growth 

and quality since the dawn of agriculture, and modern Precision Agriculture is “intrinsically 
information intensive” (Fountas et al., 2006). Plant disease is a factor that influences crop growth and 
quality, and the continuous assessment of plant disease pressure is important as it supports farmers in 
their decision for when and how to protect crops (Roberts et al., 2006). Ideally, the assessment should 
forecast disease pressure (Roberts et al., 2006) and include necessary information. The requirement of 
forecast is important because it gives farmers time to plan and take action, and reduce losses (Bourke, 
1970).  

During a growing season, disease pressure can rapidly increase and various models have been 
proposed to describe disease progress (van Maanen and Xu, 2003). It is therefore necessary to assess 
disease pressure regularly. Already with relatively few agricultural parcels it becomes quickly evident 
that disease pressure assessment is laborious. In fact, agricultural parcels are often spatially scattered 
over large areas. Visiting them requires time and material resources. Both visual and laboratory 
assessments are time consuming and costly. Lacking direct observation, disease pressure assessment is 
overly dependent on educated guesses by farmers. Automated assessment using computer systems 
may address this problem. Indeed, computer systems have served farmers and agricultural advisers for 
many decades and purposes, including as decision support systems for plant protection. Bouma (2007) 
recently reviewed the historical development of computer-based support for plant protection since the 
1980s in various European countries. 
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Disease outbreak caused by a plant pathogen in a crop of an agricultural parcel at a particular point 
in time can be modelled as a situation, following the formalization of the concept proposed in 
Situation Theory (Barwise and Perry, 1981; Devlin, 1991). The situation involves five objects, namely 
the pathogen, crop, agricultural parcel, spatial location, and temporal location. The outbreak relates the 
pathogen and the crop in the situation. Disease outbreak assessment can, thus, be understood as a 
particular type of situation assessment, which is the process used to achieve situation awareness. 
Endsley (1995) defined situation awareness as “the perception of the elements in the environment 
within a volume of time and space, the comprehension of their meaning, and the projection of their 
status in the near future.” Situation awareness is the state of knowledge held, for instance, by farmers. 

Our objective is to discuss the implementation – as well as the execution, for a growing season – of 
a software system that performs automated daily situation assessment to support the maintenance of 
situation awareness for disease outbreak in agricultural crops. The result is a plant disease predictive 
system (Gent et al., 2013), in particular a weather-related situation awareness system that 
automatically predicts – or, in Endsley's terms, projects – situations for disease outbreak. Situation 
assessment is performed daily during a growing season and encompasses 3 fungal plant pathogens, 2 
cereal crops, and 17 agricultural parcels, located in Finland.  

We implement the system by extending a software framework for situation awareness in 
environmental monitoring with knowledge and program logic required for the domain and problem of 
interest here. Specifically, extensions include (1) knowledge about the agricultural parcels, such as 
crop susceptibility to disease and tillage method, and (2) program logic necessary to obtain forecast 
data for various weather parameters as well as to compute accumulated risk from forecast data using 
an implementation for a disease pressure model. Situational knowledge for (acute) outbreak of 
pathogens in crops is obtained from accumulated risk, is represented explicitly in machine readable 
form, and is persisted in a knowledge base. The knowledge base serves as a repository for situational 
knowledge. We present how such knowledge can be visualized in time and space to provide experts, 
such as farmers and agricultural advisers, with an intuitive overview of (projected) outbreak situations 
at agricultural parcels and, thus, contribute to expert situation awareness. 

The contribution of this work is three fold. First, we show that disease outbreak in agriculture can 
be modelled as situations grounded in formal Situation Theory (Barwise and Perry, 1981; Devlin, 
1991). Second, we show that forecasting disease outbreak from weather forecast data can be 
understood as a situation assessment process. Hence, we ground the problem of disease outbreak 
forecast in situation awareness theory (Endsley, 1995). Third, we demonstrate the application of a 
generic software framework for situation awareness in environmental monitoring to a software system 
that performs automated daily situation assessment to support the maintenance of situation awareness 
for disease outbreak in agricultural crops. 

The most interesting feature of the presented system is arguably the explicit and machine readable 
representation of situational knowledge. Information is not implicit in maps or reports designed for 
experts. Rather, information is explicit, readable and interpretable by computer systems. The system 
thus aims at automated interpretation of data using terminology and semantics shared with experts. 
Automating this process is interesting in particular because the amount of data, in particular 
environmental monitoring data, can be overwhelming (Wang et al., 2006; Gaire et al., 2013). 

2. Materials and methods 
We first describe the materials and then the methods relevant to this study. Materials consist 

primarily of software, data, and a disease pressure model. Methods are for data processing, knowledge 
extraction, and knowledge representation. 

2.1 Materials 

Situation assessment was implemented using the Wavellite software framework for situation 
awareness in environmental monitoring. Wavellite supports data acquisition and processing, the 
representation of situational knowledge extracted from processed data, and situational knowledge 
processing. Situations are structured parts of reality (Devlin, 1991) and in environmental monitoring 
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(Wiersma, 2004) they are ‘observed’ by an environmental monitoring system consisting of hardware, 
software, and experts, as well as, often, an environmental sensor network (Martinez et al., 2004; Hart 
and Martinez, 2006). Generally, environmental sensor networks do not observe situations directly. 
Rather, they monitor certain physical properties of environmental phenomena that occur in observed 
parts of reality. 

Wavellite supports two abstractions for data: sensor observation and dataset observation. Sensor 
observation is the abstraction for sensor data while dataset observation is the abstraction for processed 
data. Situation is the abstraction for knowledge. Situations are grounded in Situation Theory (Barwise 
and Perry, 1981; Devlin, 1991). Following the notation by Devlin (1991), situations are formalized by 
means of the expression s ⊧ σ (read s supports σ) meaning that the infon σ is “made factual” by the 
situation s. The object ‹‹R, a1, …, am, i›› is a well-defined infon if R is an n-place relation and a1, …, 
am (m ≤ n) are objects appropriate for the argument places i1, …, im of R, and if the filling of argument 
places i1, …, im is sufficient to satisfy the minimality conditions for R, and i = 0,1 is the polarity. 
Minimality conditions “determine which particular groups of argument roles need to be filled in order 
to produce an infon” (Devlin, 1991). The polarity is the ‘truth value’ of the infon. If i = 1 then the 
objects a1, …, am stand in the relation R; else the objects do not stand in the relation R. Parameters, 
denoted as ȧ, make reference to arbitrary objects of a given type. For instance, l̇ and ṫ typically denote 
parameters for arbitrary objects of type spatial location and temporal location, respectively. Anchors 
are a mechanism to assign values to parameters. The parameter ṫ may anchor the value for the current 
time. 

Sensor observation, dataset observation, and situation are concepts defined in upper ontologies. 
Sensor observation is aligned with the concept SSN Observation of the Semantic Sensor Network 
(SSN) ontology (Compton et al., 2012); dataset observation is aligned with the concept QB 
Observation of the RDF Data Cube Vocabulary (QB) (Cyganiak et al., 2014); situation is defined in 
the Situation Theory Ontology (STO) (Kokar et al., 2009), as STO Situation. Sensor observations, 
dataset observations, and situations are persisted and managed by a knowledge base.  

The study was for 17 agricultural parcels, which are part of the Vakola precision agriculture 
research station located in Vihti, Finland, operated by the Natural Resources Institute Finland (LUKE). 
For each agricultural parcel, we required its preceding crop (wheat or barley), current crop (wheat or 
barley), current crop susceptibility (sensitive, normal, or resistant), tillage method (reduced or 
intensive), and seeding date. This data was for a growing season. In addition, we had the polygon data 
for the spatial extent of each agricultural parcel. This data was available encoded as ArcGIS shapefile. 
Agricultural parcel data was made available by LUKE. 

We used 48-hours hourly forecast data for the four properties temperature [C], wind speed [m/s], 
relative humidity [%], and precipitation amount [mm] and for six grid points that delimited a 
geographical area that spatially contained the 17 agricultural parcels. Forecast data was computed by 
the Finnish Meteorological Institute (FMI) and was made available via the FMI Open Data Web 
service interface. NetCDF (Rew and Davis, 1990) was the encoding of the forecast data obtained by 
FMI. We used forecast data in order to run the presented system ahead of current time so that it 
predicts disease pressure, i.e. projects situations. 

We employed a disease pressure model developed by LUKE and Rural Advisory Centre Nyland 
Finland (NSL) (Nikander et al., 2015). It is a mechanistic model in which the state of disease pressure 
is updated once per day. Disease pressure stands for the progress of a disease infection in the field and 
tells the probability for the need of additional plant protection measures. Disease pressure is computed 
as the cumulative value ARt = ARt-1 + DR, where ARt is the accumulated disease pressure value on 
day t, and DR is the change on a given day. The magnitude of AR tells the current probability of a 
disease outbreak in a field. Typically, AR is a monotonic never decreasing variable. However, plant 
protection measures, such as chemical spraying, can decrease the value and prevent the progress of 
disease for a defined amount of time. DR is constructed from a base risk value (BR) modified by daily 
modifiers (DM), namely DR = BR x DM. The base risk BR depends on the susceptibility of the 
selected crop and farming history. The daily modifiers DM are related to the weather for the given 
day, specifically average temperature, humidity, wind, and the amount of rainfall. All diseases 
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included in the model follow this general disease pressure model. How the base risk or the daily 
modifiers are used, however, depends on the disease, as all diseases react to changes in the 
environmental variables in a unique manner. 

Accumulated disease pressure is computed for the pair (cap, p) consisting of the crop cap of an 
agricultural parcel ap and a pathogen p. The fungal pathogens currently supported by the model are 
Pyrenophora teres, Pyrenophora tritici-repentis, and Stagonospora nodorum. Pyrenophora teres 
affects barley while the other two pathogens affect wheat. Thus, valid pairs (cap, p) are those in which 
the pathogen p affects the crop cap. The disease pressure model served as mechanistic (physically-
based) model in the computation of accumulated risk. Situations were for outbreak and acute outbreak 
of pathogens in the crop of an agricultural parcel. The disease pressure model was available as textual 
description in Finnish language. 

All software was developed using the Java programming language. The knowledge base was 
implemented by the Stardog RDF database. The Resource Description Framework (RDF) (Manola et 
al., 2004) is a data model. RDF is used to represent sensor observations, dataset observations, and 
situations. RDF Schema (RDFS) (Brickley and Guha, 2004) is a semantic extension of RDF (Hayes 
and McBride, 2004) and provides the basic constructs to build ontologies. Ontology is a means to 
represent knowledge of a domain, i.e. the concepts of interest and relations that hold among them as 
well as concept and role assertions. Among other features, RDFS supports the building of subclass 
hierarchies. The Web Ontology Language (OWL 2) (Hitzler et al., 2012) builds on RDF and RDFS 
and introduces further constructs that allow for the building of ontologies with richer semantics. RDFS 
and OWL ontologies are machine readable and interpretable. The Simple Protocol and RDF Query 
Language (SPARQL) (Prud'hommeaux and Seaborne, 2008) is a query language for RDF, and 
together with RDFS and OWL they are technologies of the Semantic Web (Berners-Lee et al., 2001).  

2.2 Methods 

We created a domain ontology to define the class AgriculturalParcel as sub class of the class 
Feature as defined by GeoSPARQL (Perry and Herring, 2012). Each agricultural parcel considered in 
this study was an individual instance of the class AgriculturalParcel. As described in Section 2.1, for 
each agricultural parcel we had data for the growing season in textual form and ArcGIS spatial data. 
This data was converted into RDF. In addition to agricultural parcel data for the growing season, we 
also processed the ArcGIS shapefile to extract the polygons that located agricultural parcels. 

The textual description of the disease pressure model needed to be first translated into software. In 
the presented system, this software served as an independent library and was responsible for 
computing the daily accumulated risk for crop and pathogen pairs, given the model input parameters 
for pathogen, preceding crop, current crop susceptibility, tillage, daily mean temperature, daily mean 
precipitation amount, daily mean wind speed, daily duration leaves are wet [hours], daily flag for 
whether or not leaves are wet [true/false], and the current total accumulated risk. The library was 
created for the particular purpose of this study. 

Each day between April 30 and August 27 we collected NetCDF encoded forecast data via the FMI 
Open Data Web service interface. The forecast data was processed to a daily dataset consisting of 
dataset observations with component properties for temporal location, spatial location, and the forecast 
data for the four properties. The forecast data collection and processing was automated. The data 
collection process was responsible to fetch the NetCDF encoded forecast data and persist the file on 
local disk. The data processing process was responsible to read the NetCDF file from disk and parse 
the data to dataset observations, elements of the corresponding daily dataset for forecast data. 

On April 30, the current total accumulated risk was zero for all valid pairs (cap, p) of agricultural 
parcel crop cap and pathogen p. We determined April 30 to be the first day following 5 consecutive 
days with temperature > 5°C and, thus, the start of the growing season in Vihti, Finland. Starting April 
30, for each day and applicable pair (cap, p), the system computed the total accumulated risk for the 
next day using the forecast data, the agricultural parcel data, and current total accumulated risk for 
(cap, p). A pair (cap, p) was applicable if the current date was greater than the seeding date of the crop 
cap and cap was not protected (e.g. by a chemical agent). The first day for which total accumulated risk 
doi: 10.17700/jai.2016.7.2.290   32 
Markus Stocker, Jussi Nikander, Hanna Huitu, Marja Jalli, Markku Koistinen, Mauno Rönkkö, Mikko Kolehmainen: 
Representing Situational Knowledge for Disease Outbreaks in Agriculture 

http://dx.doi.org/10.17700/jai.2016.7.2.290


Journal of Agricultural Informatics (ISSN 2061-862X) 2016 Vol. 7, No. 2:29-39 
 
 

was computed was, thus, May 1. The result of such daily computation were dataset observations 
consisting of temporal location, spatial location, pathogen, and total accumulated risk. Such dataset 
observations were elements of the disease pressure dataset. This computation made use of the library 
that implemented the disease pressure model.  

Situational knowledge was extracted from disease pressure dataset observations. Knowledge was 
for situations of outbreak or situations of acute outbreak. Using the notation by Devlin (1991), a 
situation s of outbreak s ⊧ <<outbreak, ṗ, ṫ, l̇, 1>> supports an outbreak relation infon with 
parameters for pathogen, ṗ, temporal location, ṫ, and spatial location, l̇, which refer to the arbitrary 
objects that stand in the outbreak relation. An outbreak situation is represented for each disease 
pressure dataset observation with total accumulated risk r such that 50 < r ≤ 75. A situation s of acute 
outbreak s ⊧ <<acute-outbreak, ṗ, ṫ, l̇, 1>> supports an acute-outbreak relation infon with parameters 
ṗ, ṫ, and l̇, which refer to the arbitrary objects that stand in the acute-outbreak relation. An acute 
outbreak situation is represented for each disease pressure dataset observation with total accumulated 
risk r such that r > 75. 

In addition to outbreak and acute outbreak situations, we also model chemical plant protection 
situations. Plant protection is the result of applying a chemical agent, specifically fungicides, to the 
crop, with the aim of protecting the crop from infection. Aside killing pathogens, for a certain time 
period chemical agents also prevent pathogens from developing. Experts determined this time period 
to be two weeks. 

To represent situations lasting for periods longer than the next projected day, e.g. a one-week acute 
outbreak, we implemented temporal reasoning for situations covering 11 of the 13 relations of Allen's 
interval algebra (Allen, 1983). Temporal reasoning inferred continuous periods of unchanged 
situations. Temporal reasoning on situations was implemented as a post-processing step on situational 
knowledge. 

3. Results and discussion 

For the growing season, the system represented 112 situations, considering plant protection 
situations and temporal reasoning. For agricultural parcels at which wheat was grown the system 
represented outbreaks and acute outbreaks for both Stagonospora nodorum and Pyrenophora tritici-
repentis. In contrast, for agricultural parcels at which barley was grown the system represented 
outbreaks and acute outbreaks for Pyrenophora teres. This is expected. The greatest number of 
situations was 11 at the only agricultural parcel that was sprayed with fungicides twice, the first time 
in the second half of May shortly after the system had projected Stagonospora nodorum outbreak. All 
other outbreak situations turned into acute outbreak situations before agricultural parcels were sprayed 
with fungicides. The least number of situations was 1. 

Notable is the considerable difference in number of represented situations involving Stagonospora 
nodorum or Pyrenophora tritici-repentis and situations involving Pyrenophora teres. This difference 
is explained by the current crop and its susceptibility grown at agricultural parcels. In fact, the current 
crop at agricultural parcels with 9 or more situations was wheat and its susceptibility was either 
normal or sensitive. In contrast, the current crop at agricultural parcels with one or two situations was 
barley and its susceptibility was resistant. The exception is an agricultural parcel growing wheat of 
susceptibility normal with a total of 4 situations. The parcel was never sprayed with fungicides; the 
few situations started hence in the second half of May and lasted throughout the growing season. 

With current crop barley and not having been sprayed with fungicides, two agricultural parcels 
developed outbreaks for Pyrenophora teres. However, such situations occurred during the first half of 
July, which is almost two months after the first onset of outbreaks at agricultural parcels with wheat as 
current crop. Three agricultural parcels growing resistant barley were sprayed with fungicides during 
the second half of June and no situations developed at these parcels as the remainder of the season 
(July and August) was not sufficiently long for development of disease outbreaks in resistant barely, 
according to our system. 
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This suggests that resistant barley is less prone to outbreaks than sensitive wheat, which is expected 
by definition of resistant. The system represented 4 outbreaks of Pyrenophora teres (which affects 
barley) and 93 outbreaks for Stagonospora nodorum or Pyrenophora tritici-repentis (which affect 
wheat). Stagonospora nodorum outbreaks occurred generally before Pyrenophora tritici-repentis and 
in one instance the agricultural parcel was protected before the Stagonospora nodorum outbreak 
turned into an acute outbreak. 

The mean and standard deviation duration of outbreaks is 4.6 ± 4.5 days while acute outbreaks last 
on average 33.7 ± 22.2 days. Outbreaks relatively quickly turn into acute outbreaks. Given that 
agricultural parcels have typically been sprayed with fungicides only once, the duration of acute 
outbreaks is relatively long. With 23 ± 4 days mean duration, Pyrenophora teres outbreaks lasted 
considerably longer than Stagonospora nodorum (4.7 ± 2.9) and Pyrenophora tritici-repentis (3.4 ± 
1.3) outbreaks. Arguably, this can be ascribed to different crops and crop susceptibility. 

Figure 1 illustrates the temporal visualization of situations. We show the time line of one 
agricultural parcel. Outbreak, acute outbreak, and plant protection situations extend over time 
intervals. The growing season started in May and, according to the system, at the agricultural parcel 
the first outbreaks started around mid-May, Stagonospora nodorum first and Pyrenophora tritici-
repentis later. The first outbreak of Stagonospora nodorum lasted four times longer than the first 
outbreak of Pyrenophora tritici-repentis. On June 7, the parcel was plant protected and the protection 
lasted for two weeks (expert assessment). After the protection came to an end, it took about 10 days 
for the system to model new situations. Notably, the second Stagonospora nodorum outbreak was four 
times shorter than the first. The vertical line represents current time. As we can see, system modelling 
of situations is one day ahead of current time. 

 

 
Figure 1. Temporal visualization of situations for an agricultural parcel. Situations of relatively short 
duration (orange) are for outbreaks while situations of longer duration (red) are for acute outbreaks. 

The additional situation (green) is for plant protection. 

We have described the application of an open source software framework, called Wavellite, for 
situation awareness in environmental monitoring to the problem of disease outbreak forecast in 
agriculture. The framework supports the modelling of disease outbreak as situations grounded in 
formal Situation Theory (Devlin, 1991) and the modelling of disease outbreak assessment as situation 
assessment (Endsley, 1995). The state of knowledge, achieved and maintained by the system and 
shared with experts (Stanton et al., 2006, 2010), for the projected situations of outbreak and acute 
outbreak of pathogens in agricultural parcel crops in time is situation awareness (Endsley, 1995). 

The software system presented here evolved from an earlier prototype for the computation and 
visualization of disease pressure in agriculture (Thessler et al., 2011). Earlier, the computation was on 
weather observation data by the SoilWeather WSN (Kotamäki et al., 2009) and the result of 
computation was a static color-coded GIS map with coarse information for disease pressure in the 
region. There are significant differences between the earlier prototype and the system presented here. 
First, the system presented here executes the disease pressure model on (FMI) forecast weather data 
while the earlier prototype was based on (SoilWeather WSN) observation weather data. Second, 
visualizations presented here (e.g. Figure 1) are interactive, meaning that temporal and spatial features 
can be selected to obtain information for the situations that occurred at particular locations. Third, the 
granularity of information is at agricultural parcels, rather than larger regions, typically including 
many agricultural parcels. Fourth, there are major technological differences between the two systems. 
Most importantly, the system presented here builds on Semantic Web technologies and, thus, holds 
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semantically rich representations of data and metadata. Fifth, and perhaps most importantly, here the 
information is explicit. The software system ‘knows’ about agricultural parcels, crops, pathogens, and 
situations. Because information is represented explicitly, in symbolic form, software can manipulate it 
to produce many more results beyond a map. For instance, we can employ inference techniques to 
obtain new information, compute summary statistics for situations, provide access to situational 
knowledge to other systems, or integrate situational knowledge provided by other systems to enrich 
shared expert-machine situation awareness. In contrast, in an image the information is implicit in the 
colouring of particular regions. While experts can interpret the visualization to obtain relevant 
information, computer systems can hardly access and manipulate such implicit information. 

The use of weather forecasts in the prediction of plant disease has a long history dating back to at 
least the early second half of the last century (Bourke, 1970), with modern computer-based weather-
related decision support systems surfacing towards the end of the century (Bouma, 2007). Jensen et al. 
(2000) describe a Web-based decision support system for crop management which, among other 
information, included graphical maps for risk of disease and pests. As for the earlier LUKE prototype 
briefly discussed above, the key difference with the system presented here is arguably the explicit 
representation of the information content in maps, abstracted as situational knowledge.  

More recently, semantic technologies also gained traction in agriculture informatics. Gaire et al. 
(2013) provide a brief overview of the Kirby smart farm in Armidale, New South Wales, Australia, 
and its ICT infrastructure, which builds on Semantic Web technologies and Complex Event Processing 
to support event notification. Contrary to Gaire et al. (2013), who adopt the concept of event, we use 
the concept of situation in knowledge modelling. Combining the notion of situation and event may be 
an interesting future direction. Dutta et al. (2014) employ semantic technologies in an agricultural 
decision support system for water resource estimation. Of particular interest here is that their system 
seems to explicitly represent knowledge obtained from data using models, data-driven models in 
particular (Morshed et al., 2013). Pokharel et al. (2014) present the integration of data from 
heterogeneous sources using Semantic Web technologies in the domain of agriculture, with the aim of 
improving the effectiveness of farming, specifically in Nepal. The authors make use of AGROVOC8 
(Caracciolo et al., 2013), a thesaurus covering Food and Agriculture Organization of the United 
Nations (FAO) terminology, also available in RDF. AGROVOC could be used in the work presented 
here. For instance, the thesaurus provides a term for Pathogenic fungi (Term Code 29233) which could 
serve in the classification of the fungal pathogens of interest here, e.g. Pyrenophora teres (Term Code 
34565). 

The framework for situation awareness in environmental monitoring has been used in various 
applications. Stocker et al. (2014b) describe the application of an early version of the framework to 
intelligent transportation systems. The objects in situations are vehicles, which were detected and 
classified using observation data by a sensor network that monitored road-pavement vibration, by 
means of machine learning (Mitchell, 1997). Stocker et al. (2014a) describe the application of the 
framework to the representation of situational knowledge for atmospheric phenomena. The objects in 
situations are new particle formation and (rainy) cloud events, which were detected and characterized 
in observation data by an environmental sensor network that monitored aerosols, visibility and 
precipitation. Machine learning was used to detect and characterize new particle formation in daily 
observation data of particle size distribution for polydisperse aerosols. Cloud events were detected and 
characterized using complex event processing (Luckham, 2002). 

There are three important differences between the applications developed so far and the application 
described here. First, so far the applications were on historical data. In contrast, the application 
presented here occurs in real time. Second, in previous applications, situations were represented as 
they occurred (in historical data). In contrast, here situations are projected into the near future. Third, 
in previous applications, situational knowledge acquisition was by means of data-driven techniques, in 
particular machine learning. In contrast, the application presented here relies on a mechanistic 
ecological model, i.e. the disease pressure model. The application shows that the framework can 
support extensions which include mechanistic ecological that use processed data (of environmental 
sensor networks). In the framework, situational knowledge obtained via models, including mechanistic 

doi: 10.17700/jai.2016.7.2.290   35 
Markus Stocker, Jussi Nikander, Hanna Huitu, Marja Jalli, Markku Koistinen, Mauno Rönkkö, Mikko Kolehmainen: 
Representing Situational Knowledge for Disease Outbreaks in Agriculture 

http://dx.doi.org/10.17700/jai.2016.7.2.290


Journal of Agricultural Informatics (ISSN 2061-862X) 2016 Vol. 7, No. 2:29-39 
 
 

ecological models, is represented explicitly, in symbolic form, as situations, i.e. information objects 
grounded in formal Situation Theory (Devlin, 1991). Situations of a knowledge base can be queried, 
shared, integrated, manipulated, visualized. To explicitly represent situational knowledge is a 
mechanism that addresses the problem of having such knowledge only implicitly in, for instance, 
maps, plots, or tables. 

We highlight an important limitation of this study. Lacking data for ground truth during the 
growing season we cannot evaluate the agreement of situations modelled by the system with actual 
situations on the ground. Experts did perform a quantitative analysis for the percentage of infected 
samples on July 7 for several agricultural parcels. We summarize here the results for two agricultural 
parcels. For the first parcel, the analysis shows that on July 7 44% of the samples were infected with 
Stagonospora nodorum and Pyrenophora tritici-repentis. On July 7, the system modelled acute 
outbreak situations at this parcel for Stagonospora nodorum since May 29 and for Pyrenophora tritici-
repentis since June 1, i.e. for over one month. For the second parcel, the analysis shows that on July 7 
10% of the samples were infected with Pyrenophora teres. On July 7, the system modelled outbreak 
situation at this parcel for Pyrenophora teres for the second day. Experts estimate the acute outbreak 
threshold at 20% infection. At 44%, infection at the first parcel is thus well beyond the threshold. This 
may suggest agreement with system modelling for the acute outbreaks that had been lasting for over 
one month. At 10%, infection at the second parcel is below the threshold and, according to expert 
opinion, in line with system modelling for outbreak, in particular if the crop is dense and keeps the 
night humidity for some hours, enough for spores to infect. While these results are promising, the 
currently available data is unfortunately insufficient to systematically validate system performance. 
We consider a comprehensive system performance evaluation using laboratory analysis and/or surveys 
to be an opportunity for future work. 

4. Conclusion 
We have presented and evaluated the application of an open source software framework for 

situation awareness in environmental monitoring to the problem of disease outbreak situation 
awareness in agriculture. The resulting system was capable of real time and automated explicit 
representation of knowledge for outbreak situations of plant pathogens in agricultural crops. 
Situational knowledge was obtained using forecast data for various weather parameters and a disease 
pressure model that acted as mechanistic ecological model for the computation of accumulated risk 
using weather and agricultural parcel data. The system was evaluated on 3 fungal pathogens, 2 crops, 
and 17 agricultural parcels located in Finland during a growing season. We also briefly compared the 
system presented here to an earlier prototype for the computation and visualization of disease pressure 
in agriculture. 

The study shows that disease outbreak in agriculture--in particular the objects involved, such as 
pathogens and agricultural crops--can be modelled as situations. Situation Theory is a mathematical 
ontology for the modelling of information about situations. Based on various applications in 
environmental monitoring, including the one presented here, we think that situation is a powerful 
abstraction for information about the structured parts of reality monitored by environmental 
monitoring systems, specifically also those involving environmental sensor networks. 

The explicit representation of (situational) knowledge obtained in environmental monitoring 
systems from processed data is arguably an interesting and important step. In fact, symbolic 
knowledge managed by a knowledge base can be queried, shared, integrated, and reasoned on. Generic 
tools can be developed to process symbolic knowledge toward various aims, e.g. visualization. 
Together with our previous studies, we think that the application presented here further supports the 
claim that the explicit representation of (situational) knowledge obtained using data-driven or 
mechanistic ecological models from processed data in environmental monitoring systems is a powerful 
mechanism to avoid that such knowledge only remains implicit in maps, plots, or text. 
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