International Environmental Modelling and Software Society (iIEMSs)

7th Intl. Congress on Env. Modelling and Software, San Diego, CA, USA,
Daniel P Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (Eds.)
http://www.iemss.org/society/index.php/iemss-2014-proceedings

Abstractions from Sensor Data with Complex Event
Processing and Machine Learning

Markus Stocker, Mauno Ronkkoé, Mikko Kolehmainen

University of Eastern Finland, PO. Box 1627, 70211 Kuopio, Finland
markus.stocker@uetf.fi, mauno.ronkko@uet.fi, mikko.kolehmainen@uet.fi

Abstract: Environmental knowledge systems that build on sensor-based environmental monitoring rely on
techniques in knowledge acquisition and representation to interpret the numbers obtained in measurement
for what they tell about the monitored environment. Languages and systems in knowledge representation
and reasoning, specifically Semantic Web technologies, support the formulation and execution of rules, a
technique that enables deductive inference in a knowledge base. This technique has been used to demon-
strate inference on sensor data. While the approach certainly has its merits, it is often demonstrated for
numerical thresholds and, thus, for relatively trivial “semantic enrichment.” In reality, knowledge acquisition
tasks of interest to environmental knowledge systems that build on sensor-based environmental monitoring
are often more challenging. They rely on advanced computational techniques and models, e.g. in machine
learning or complex event processing. In order to ease the formulation and execution of such tasks, systems
need to integrate such techniques. Towards this end, we present the integration of machine learning with
WEKA and complex event processing with Esper in Wavellite.
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1 INTRODUCTION

Wavellite! (Stocker et al., 2014b, 2013a, 2014a, 2013b) is a modelling and software framework for situ-
ation awareness (Endsley, 1995) in environmental monitoring. It builds on (typically, but not exclusively)
sensor-based environmental monitoring and supports the representation of situational knowledge acquired,
or extracted, from sensor data. Hence, its core functionality is for situation assessment (Endsley, 1995), i.e.
for gaining situation awareness (Salfinger et al., 2013). Wavellite also builds on knowledge representation
and reasoning, in particular ontology languages (W3C OWL Working Group, 2012; Brickley et al., 2004) and,
more generally, Semantic Web (Berners-Lee et al., 2001) technologies.

The logical structure of the Wavellite architecture consists of four layers: measurement, observation, deriva-
tion, and situation. The four layers build on each other, from measurement to situation. Each layer serves a
purpose and abstracts from underlying complexity. Layers consist of components. We briefly describe the
layers with their most important components. For the interested reader, Stocker et al. (2014a) includes a
diagram representing the logical structure of the Wavellite architecture.

The measurement layer abstracts from the physical sensor network and data communication links and proto-
cols. It consists of measurement readers. A measurement reader implements the software logic required to
process sensor data into measurement results. In addition to contextual data, measurement results include
measurement values, i.e. the numbers assigned to properties of objects or events of the real world in the
process of measurement (Finkelstein, 1982).

Lhttp://www.uef.fi/en/envi/projects/wavellite
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The observation layer abstracts from the heterogeneity of sensor data. It includes observation engines, which
translate measurement results into sensor observations. The semantics of sensor observations are defined
by the Semantic Sensor Network (SSN) ontology (Compton et al., 2012). This translation overcomes the
syntactic and semantic heterogeneity of sensor data by aligning sensor data to the syntax and semantics of
the SSN ontology.

The derivation layer abstracts from the sensor network dimension of sensor observations. It includes dataset
engines and derivation engines. Dataset engines translate sensor observations into dataset observations,
elements of datasets. The semantics of dataset observations, and datasets, are defined by the RDF Data
Cube Vocabulary (QB) (Cyganiak et al., 2013). Derivation engines perform computations on dataset obser-
vations. Such computation amounts to dataset processing, in that the dataset observations of one or more
source datasets are processed to dataset observations of a target dataset. Computations may be for, e.g.,
despiking, aggregation, interpolation, merging, filtering.

The situation layer abstracts from data with situational knowledge for the monitored environment. It includes
situation engines, which extract situational knowledge from datasets. Computations may include methods
in, e.g., machine learning or complex event processing. Situation engines represent situational knowledge
as situations. The semantics of situations are defined by the Situation Theory Ontology (STO) (Kokar et al.,
2009) which is grounded in Situation Theory (Barwise and Perry, 1983; Devlin, 1995). There are two aspects
to situations. First, a situation is “a structured part of Reality” (Devlin, 1995). Thus, a parent observing a child
constructing a castle in a sandbox is a situation. Second, a situation is an ontological individual instance of
the ontology class for situations, defined by the STO. In order to represent situations and information about
them that is known to be true or false, situations are formalized by means of the expression s |= o, meaning
that the infon ¢ is “made factual” by the situation s. Aninfon o has the structure < R, a,, . .., am, >, whereby
R is an n-place relation and aq, ..., a,, (m < n) are objects appropriate for the argument places i1, ..., ,, of
R, and i = 0,1 is the polarity, i.e. the ‘truth value’ of the infon. If i = 1 then the objects a1, ..., a,, stand in the
relation R; else the objects do not stand in the relation R. Objects a4, ..., a,, may be, among other types,
relevant individuals (e.g. the child, the parent, or the sandbox) and temporal or spatial locations.

In the context of environmental monitoring and science, awareness is for situations, i.e. structured parts of
reality (Devlin, 1995), monitored by environmental sensor networks (Martinez et al., 2004; Hart and Martinez,
2006). Relevant individuals in situations are, typically, environmental phenomena, such as storm, wind, or
pollution. Relevant individuals may also be non-physical, such as growing season. Generally, environmental
sensor networks do not monitor situations directly. Instead, they monitor the properties of certain phenom-
ena. ltis in situation assessment that situational knowledge is extracted from data obtained in monitoring the
properties of phenomena. For instance, we may gain awareness of the situation whereby the 2014 Finnish
growing seasons is longer than average by situation assessment on data obtained via an environmental
sensor network that monitors the temperature of air.

As suggested by the survey conducted by Salfinger et al. (2013), systems for situation awareness have been
developed and demonstrated predominantly for the military and safety & security domains. This is even
though much of the generic architecture of situation awareness systems described by Salfinger et al. (2013,
Fig. 1) is applicable to the domain of environmental monitoring and science. The main difference seems
to be the client and consumer of represented situational knowledge, which in the latter domain is, typically,
a researcher, rather than an operator of a control centre As an example, Stocker et al. (2013a, 2014a)
demonstrated the application of Wavellite to the acquisition and representation of situational knowledge
for atmospheric phenomena, specifically new particle formation, an environmental phenomenon studied by
aerosol scientists.

The use of ontology-based systems for the management of, and reasoning on, sensor data has recently
gained some popularity, not least due to the development of the SSN ontology. Beyond the mere represen-
tation and, thus, management of sensor observations, ontology-based systems may leverage on inference
engines in order to automatically represent knowledge that is implicit to sensor observations and a domain
model (Sheth et al., 2008; Henson et al., 2009; Wei and Barnaghi, 2009; Kessler et al., 2009; Stocker et al.,
2011). It has, however, been recognized that such deductive inference is only one of many techniques aimed
at “making sense of sensor data” and, specifically, the problem of converting sensory observations to ab-
stractions reflecting the sensed environment (Henson et al., 2012). Hence the predominant development of
hybrid systems in concrete applications (Jajaga et al., 2013). Inherent to systems for situation awareness,
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<<interface>> <<interface>>
SituationEngine 1, LearningModule
+ex¢cut§(obs§rvat§on:Dgtasetobgervation): void L";> +consider(observation:DatasetObservation): void
+emit(situation:Situation): void +considerAll(observations:Collection<DatasetObservation>): void
+result(): Queue<Situation>
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<<interface>> <<interface>>
SituationExtractorListener elllo SituationExtractor
+setSituations(situations:Collection<Situation>): void +setListener(listener:SituationExtractorListener): void

situations:Collection<Situation>): void

l?& +extract(observations:Collection<DatasetObservation>,

<<interface>> 1 1
SituationExtractorListenerWeka SituationExtractorEsper 1
+onClassification(label:String): void +addExpression(expression:String): void :

I
<<interface>> SituationExtractorWeka
SituationExtractorListenerEsper +setClassifier(classifier:Classifier): void
+setUpdateListener(listener:UpdateListener): void +setDataSource(source:DataSource): void

Figure 1. Diagram showing the Wavellite interfaces and classes that are involved in situational knowledge
extraction from dataset observations and knowledge representation as situations, using machine learning
classification and complex event processing.

this problem is of interest to various domains, including the Internet of Things (Ganz et al., 2013) or robotics
and autonomous systems (Daoutis, 2013). Various approaches for tackling aspects of this problem have
been discussed in the literature (e.g. Gaglio et al. (2007); Henson et al. (2012); Barnaghi et al. (2012);
Calbimonte et al. (2012); Stocker et al. (2014b)).

However, to the best of our knowledge, a generic approach that suits arbitrary monitored environments and
is specific to environmental monitoring and science does not exist. The domain has traditionally relied on a
broad range of methods, encompassing, among others, digital signal processing, complex event processing,
machine learning, and physically-based modelling. With Wavellite we aim at a coherent representation
of data involved in, as well as the integration of methods relevant to, the representation of (situational)
knowledge acquired from sensor data. Towards this aim, in this paper, we discuss the integration of machine
learning classification and complex event processing in Wavellite, specifically using the libraries WEKA (Hall
et al., 2009) and Esper.2 WEKA implements a set of machine learning algorithms and is a popular software
for data mining. Esper implements an engine for event stream processing and supports the analysis of
streams for complex events expressed using an event processing language. Both WEKA and Esper are
open source, are implemented in Java, and can serve as libraries in applications.

2 INTEGRATION

In Wavellite, situation engines orchestrate knowledge extraction from datasets and knowledge representation
as situations. The actual work required for knowledge extraction is executed by learning modules, to which
situation engines associate. Specifically, in executing a dataset observation, a situation engine needs to
decide which learning module is going to consider the dataset observation. In addition, a situation engine
emits the situations returned by learning modules, i.e. implements the logic for what happens to represented
situations (e.g. a request for storing). Figure 1 provides an overview of the Wavellite interfaces that are
involved in situational knowledge extraction and representation. For the interested reader, Stocker et al.
(2014a) includes a diagram that places the situation engine in context of the entire Wavellite architecture.

2http://esper.codehaus.org/
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Generally, the representation of a situation can require on one or more knowledge extraction tasks. Due to
the vast diversity of situational knowledge of interest in environmental monitoring (and, thus, the vast diver-
sity of knowledge extraction tasks) situation engines and learning modules are typically domain specific and,
thus, require domain implementations. This diversity also motivates the integration of various computational
methods in, e.g., complex event processing, machine learning, or physically-based modelling. Therefore, in
order to support applications in their implementation of knowledge extraction tasks from dataset observa-
tions, Wavellite wraps the heterogeneous families of computational methods behind Wavellite operators, the
so-called situation extractors. Learning modules can associate to one or more situation extractors.

Situation extractors are implemented for specific libraries of computational methods, such as Esper or WEKA.
Naturally, a Wavellite application can implement own situation extractors, for instance one backed by a spe-
cific physically-based model. Extractors operate on dataset observations provided by learning modules.
Generally, the learning module configures situation extractors according to application requirements, e.g.
with a particular Event Processing Language (EPL) expression in case of the extractor backed by Esper or
with a particular machine learning classifier and labelled dataset in case of the extractor backed by WEKA.
Moreover, learning modules provide extractors with listeners, which are called upon completed extraction,
e.g. upon classification by WEKA or upon events detected by Esper. Listeners implement how extracted
situational knowledge is represented as situations.

3 EXAMPLES

We briefly describe how the integration works on two concrete examples, one for complex event processing
and one for machine learning.

The example for machine learning builds on our previous work (Stocker et al., 2012, 2014b). The setting is
as follows. A small sensor network consisting of three vibration sensors is used to monitor the pavement
vibration of a road section. The sensors are installed at three, roughly equidistant, points on a metal bar
that is horizontally inserted into the ground below the pavement at one side of the road. The purpose of
the sensor network, and of road-pavement vibration monitoring, is to detect and classify vehicles as they
move on the road section. The presence of a vehicle close to a sensor induces vibration that is distinct from
background vibration. With data processing, vibration over time is transformed into vibration patterns indexed
in time (e.g. a pattern every second). The data of vibration patterns is represented as dataset observations.
Hence, the dataset represents an unbounded set of vibration patterns indexed in time. Given a classifier
and appropriately labelled training samples, we develop a learning module that uses the situation extractor
backed by WEKA to classify dataset observations, i.e. vibration patterns. The result of such classification
indicates the presence (or absence) of a vehicle as well as vehicle characteristics (e.g. light or heavy). Such
extracted knowledge is part of situations describing the state of the monitored road section, in particular
w.r.t. traffic. Situations are returned by the learning module to the situation engine which eventually forwards
situations to other components of the Wavellite architecture.

The example for complex event processing is a proof of concept with implementation included in the wavellite-
example project® and has the following setting. A sensor measures wind speed over time at a certain location.
Such measurement data is represented as sensor observations, which are then translated to observations of
a unbounded dataset for wind speed data. We implement a learning module that uses the situation extractor
backed by Esper to detect situations of “strong wind.” The extractor is configured with a listener, which is
called upon events detected by Esper. The listener specifies how Esper event information is translated into
situational knowledge. Furthermore, the extractor is configured with an EPL statement that selects dataset
observations for wind speed with value greater than 10. Dataset observations are provided to the learning
module as input. The learning module forwards dataset observations to the extractor, which translates them
to Esper events and submits the events to the Esper runtime. According to the EPL statement, our listener
is called when the Esper runtime detects a dataset observation with value for wind speed greater than 10.
Upon such detection, the learning module creates a situation of “strong wind” that includes information for
wind speed and time. Finally, situations queued by the learning module can be retrieved by the client of the
module (e.g. a situation engine) for further processing. This example is, admittedly, trivial. However, it is

3https://github.com/markusstocker/wavellite-example
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easy to see that, by exposing Esper EPL in the extractor, learning modules can specify more complex EPL
statements on dataset observations.

4 DiscuUsSION AND CONCLUSION

Based on our work and experience in environmental monitoring for scientific applications we are increasingly
confident that (ontology-based) practical systems aimed at abstractions from sensor data should support
and integrate a broad range of computational methods. This is particularly motivated by the vast diversity of
abstractions and the, perhaps more often than not, winding road from data to abstractions.

It may be attractive particularly to ontology-based systems to use inference mechanisms to tackle the prob-
lem. While (deductive) reasoning services may be an argument that speak for ontology-based systems, we
think they are generally not sufficient in environmental monitoring for scientific applications. Indeed, the ap-
plication of machine learning to sensor data is often aimed at obtaining abstractions (e.g. Kubat et al. (1998);
Athanasiadis et al. (2003); Moraru et al. (2010); Ahmad et al. (2010)). We, thus, think that ontology-based
systems aimed at abstractions from sensor data should support and integrate a broad range of computa-
tional methods, including machine learning. With Wavellite we aim at such integration and in this paper we
briefly discussed the integration of complex event processing and machine learning using two popular open
source software packages.

Taylor and Leidinger (2011) present a method that uses ontology to drive complex event detection in sen-
sor data. The ontology models domain knowledge as well as concepts for event, observation, and sensor
network. (The authors also build on the SSN ontology.) The ontology drives a user interface that facilitates
the definition of events of interest to a domain. Such definitions, represented in terms of the ontology, are
transformed to EPL statements (the authors used Coral8, nowadays Sybase CEP). The CEP engine is re-
sponsible for processing the statements on (streamed) observation data. While the method presented by
Taylor and Leidinger (2011) is far more sophisticated than the current state in Wavellite, the core of the idea
and implementation is comparable. Both systems operate on observation data with shared representation
grounded in ontology. Also, both systems allow for the definition of events which are processed by a CEP en-
gine. A key difference is that Taylor and Leidinger (2011) ground event definition in ontology and implement
a translation of definitions to EPL statements whereas Wavellite, in its current state, requires implementers
to write EPL statements. The second difference is that, in addition to complex event processing, Wavellite
integrates machine learning. A third difference is that in Wavellite information extracted by means of complex
event processing is part of knowledge represented as situations. In contrast, in Taylor and Leidinger (2011)
the result of complex event processing is an alert, in form of an email or mobile phone text message. In
Wavellite, such alerts could be the result of complex event processing on dataset observations or situations.

On a similar line, Llaves and Kuhn (2014) present the ontology-based architecture and implementation for an
event abstraction layer that analyses observation time series to create event streams. The event abstraction
ontology proposed by the authors also extends the SSN ontology and introduces the core concept for event
abstraction. The system accepts time series data encoded in O&M,* which are translated into CEP objects
processed by the CEP engine, implemented by Esper. Event patterns are pairs consisting of an Esper EPL
statement and an ontological class for the event type. Upon events detected by the CEP engine, an ontolog-
ical individual, instance of the ontological class associated to the returned event, is created. Individuals are
then published to an event bus, implemented by RabbitMQ.5 Consumers, such as a triple store, can, thus,
subscribe to the bus to further process the data. The core of the idea and implementation is comparable to
Taylor and Leidinger (2011) as well as Wavellite. Contrary to Taylor and Leidinger (2011) and Llaves and
Kuhn (2014), Wavellite is however not limited to complex event processing.

Our discussion begs the question: events or situations? Is one of them the better concept for abstractions
obtained from sensor data? Are they complementary? Having chosen the STO in Wavellite, we are perhaps
biased towards situations. However, quoting Barwise and Perry (1980), Devlin (2006) notes that “events
and episodes are situations in time, scenes are visually perceived situations, changes are sequences of
situations, and facts are situations enriched (or polluted) by language.” This seems to at least suggest that

4http://www.opengeospatial.org/standards/om
5https://www.rabbitmg.com/
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situations are more generic than events. We also highlight Riker (1957) who called situations “the boundaries
of events” and events the action occurring between situations. We do not attempt to discuss this matter
further, being it beyond the scope of this paper as well as our expertise. However, one practical advantage of
situations over events seems to be that, contrary to Taylor and Leidinger (2011) and Llaves and Kuhn (2014)
who constructed two distinct event ontologies, in Wavellite we could simply adopt the STO.

We have briefly described the integration of complex event processing and machine learning in Wavellite,
as learning modules of its architecture, using two popular software packages. We conclude this paper by
noting that physically-based models that create abstractions from sensor data can arguably be understood
as Wavellite learning modules. The architecture does not set restrictions on such models being third party
or implemented natively. In fact, we are in the process of developing a Wavellite application in which sensor
data and a physically-based model are used to create abstractions for the disease pressure at agricultural
fields. In this application, information returned by the disease pressure model is part of situational knowledge
representing the state of agricultural fields, in particular w.r.t. disease pressure.

ACKNOWLEDGMENTS

This research is funded by the Academy of Finland project “FResCo: High-quality Measurement Infrastruc-
ture for Future Resilient Control Systems” (Grant number 264060).

REFERENCES

Ahmad, S., Kalra, A., and Stephen, H. (2010). Estimating soil moisture using remote sensing data: A
machine learning approach. Advances in Water Resources, 33(1):69-80.

Athanasiadis, I. N., Kaburlasos, V. G., Mitkas, P. A., and Petridis, V. (2003). Applying machine learning
techniques on air quality data for real-time decision support. In First international NAISO symposium on
information technologies in environmental engineering (ITEE’2003), Gdansk, Poland.

Barnaghi, P., Ganz, F,, Henson, C., and Sheth, A. (2012). Computing Perception from Sensor Data. Technical
report, knoesis.org.

Barwise, J. and Perry, J. (1980). The Situation Underground. In Barwise, J. and Sag, |., editors, Stanford
Working Papers in Semantics, volume 1, pages 1-55. Stanford Cognitive Science Group.

Barwise, J. and Perry, J. (1983). Situations and attitudes. Bradford books. MIT Press.
Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web. Scientific American, 284(5):28-37.

Brickley, D., Guha, R., and McBride, B. (2004). RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, W3C.

Calbimonte, J.-P,, Yan, Z., Jeung, H., Corcho, O., and Aberer, K. (2012). Deriving Semantic Sensor Metadata
from Raw Measurements. In Henson, C., Taylor, K., and Corcho, O., editors, Proceedings of the 5th In-
ternational Workshop on Semantic Sensor Networks, volume 904, pages 33—48, Boston, Massachusetts,
USA. CEUR-WS.

Compton, M., Barnaghi, P,, Bermudez, L., Garca-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth,
M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W. D., Phuoc, D. L., Lefort, L., Leggieri, M.,
Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., and Taylor, K. (2012). The SSN ontology of the
W3C semantic sensor network incubator group. Web Semantics: Science, Services and Agents on the
World Wide Web, 17(0):25-32.

Cyganiak, R., Reynolds, D., and Tennison, J. (2013). The RDF Data Cube Vocabulary. W3C Candidate
Recommendation, W3C.

Daoutis, M. (2013). Knowledge Based Perceptual Anchoring. Kl - Kiinstliche Intelligenz, 27(2):179-182.

Devlin, K. (1995). Logic and information. Cambridge University Press.



Stocker et al. / Abstractions from Sensor Data in Wavellite

Devlin, K. (2006). Situation theory and situation semantics. In Gabbay, D. M. and Woods, J., editors, Logic
and the Modalities in the Twentieth Century, volume 7 of Handbook of the History of Logic, pages 601-664.
North-Holland.

Endsley, M. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors: The
Journal of the Human Factors and Ergonomics Society, 37(1):32—64.

Finkelstein, L. (1982). Theory and Philosophy of Measurement. John Wiley & Sons.

Gaglio, S., Gatani, L., Lo Re, G., and Ortolani, M. (2007). Understanding the Environment Through Wireless
Sensor Networks. In Proceedings of the 10th Congress of the ltalian Association for Artificial Intelligence
on AI*IA 2007: Atrtificial Intelligence and Human-Oriented Computing, Al*IA 07, pages 72-83, Berlin,
Heidelberg. Springer-Verlag.

Ganz, F., Barnaghi, P, and Carrez, F. (2013). Information Abstraction for Heterogeneous Real World Internet
Data. Sensors Journal, IEEE, 13(10):3793-3805.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA Data
Mining Software: An Update. In SIGKDD Explorations, volume 11.

Hart, J. K. and Martinez, K. (2006). Environmental Sensor Networks: A revolution in the earth system
science? Earth-Science Reviews, 78(3-4):177—-191.

Henson, C., Sheth, A., and Thirunarayan, K. (2012). Semantic Perception: Converting Sensory Observations
to Abstractions. Internet Computing, IEEE, 16(2):26-34.

Henson, C. A., Pschorr, J. K., Sheth, A. P., and Thirunarayan, K. (2009). SemSOS: Semantic Sensor
Observation Service. In Proceedings of the 2009 International Symposium on Collaborative Technologies
and Systems (CTS 2009), Baltimore, MD.

Jajaga, E., Ahmedi, L., and Bexheti, L. A. (2013). Semantic Web Trends on Reasoning Over Sensor Data.
Proceeding of the 8th South East European Doctoral Student Conference.

Kessler, C., Raubal, M., and Wosniok, C. (2009). Semantic Rules for Context-Aware Geographical Informa-
tion Retrieval. In Barnaghi, P., Moessner, K., Presser, M., and Meissner, S., editors, Smart Sensing and
Context, volume 5741 of Lecture Notes in Computer Science, pages 77-92. Springer Berlin Heidelberg.

Kokar, M. M., Matheus, C. J., and Baclawski, K. (2009). Ontology-based situation awareness. Inf. Fusion,
10(1):83-98.

Kubat, M., Holte, R., and Matwin, S. (1998). Machine Learning for the Detection of Qil Spills in Satellite
Radar Images. Machine Learning, 30(2-3):195-215.

Llaves, A. and Kuhn, W. (2014). An event abstraction layer for the integration of geosensor data. International
Journal of Geographical Information Science. (In Press).

Martinez, K., Hart, J. K., and Ong, R. (2004). Environmental Sensor Networks. Computer, 37(8):50-56.

Moraru, A., Pesko, M., Porcius, M., Fortuna, C., and Mladenic, D. (2010). Using machine learning on sensor
data. In Information Technology Interfaces (ITl), 2010 32nd International Conference on, pages 573-578.

Riker, W. H. (1957). Events and situations. The Journal of Philosophy, 54(3):pp. 57-70.

Salfinger, A., Retschitzegger, W., and Schwinger, W. (2013). Maintaining Situation Awareness Over Time —
A Survey on the Evolution Support of Situation Awareness Systems. In Conference on Technologies and
Applications of Artificial Intelligence (TAAI 2013), pages 274—281. IEEE Computer Society, IEEE.

Sheth, A., Henson, C., and Sahoo, S. (2008). Semantic Sensor Web. Internet Computing, IEEE, 12(4):78—
83.

Stocker, M., Baranizadeh, E., Hamed, A., Ronkkd, M., Virtanen, A., Laaksonen, A., Portin, H., Komppula, M.,
and Kolehmainen, M. (2013a). Acquisition and Representation of Knowledge for Atmospheric New Particle
Formation. In Hrebicek, J., Schimak, G., Kubsek, M., and Rizzoli, A. E., editors, Environmental Software
Systems. Fostering Information Sharing, volume 413 of IFIP Advances in Information and Communication
Technology, pages 98—108. Springer Berlin Heidelberg.



Stocker et al. / Abstractions from Sensor Data in Wavellite

Stocker, M., Baranizadeh, E., Portin, H., Komppula, M., Rénkkd, M., Hamed, A., Virtanen, A., Lehtinen, K.,
Laaksonen, A., and Kolehmainen, M. (2014a). Representing situational knowledge acquired from sensor
data for atmospheric phenomena. Environmental Modelling & Software, 58:27—-47.

Stocker, M., Rénkkd, M., and Kolehmainen, M. (2012). Making Sense of Sensor Data Using Ontology: A
Discussion for Road Vehicle Classification. In Seppelt, R., Voinov, A., Lange, S., and Bankamp, D., edi-
tors, 2012 International Congress on Environmental Modelling and Software, pages 2387-2394, Leipzig,
Germany. iEMSs.

Stocker, M., Rénkkd, M., and Kolehmainen, M. (2013b). The Wavellite Modelling and Software Framework
for Situation Awareness in Environmental Monitoring. Environmental Monitoring and Assessment. (Sub-
mitted).

Stocker, M., R6nkkd, M., and Kolehmainen, M. (2014b). Situational knowledge representation for traffic ob-
served by a pavement vibration sensor network. IEEE Transactions on Intelligent Transportation Systems.
(In Press).

Stocker, M., Ronkké, M., Villa, F., and Kolehmainen, M. (2011). The Relevance of Measurement Data in
Environmental Ontology Learning. In Environmental Software Systems. Frameworks of eEnvironment,
volume 359 of IFIP Advances in Information and Communication Technology, pages 445-453. Springer
Boston.

Taylor, K. and Leidinger, L. (2011). Ontology-Driven Complex Event Processing in Heterogeneous Sensor
Networks. In Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., and Pan,
J., editors, The Semanic Web: Research and Applications, volume 6644 of Lecture Notes in Computer
Science, pages 285-299. Springer Berlin Heidelberg.

W3C OWL Working Group (2012). OWL 2 Web Ontology Language. W3C Recommendation, W3C.

Wei, W. and Barnaghi, P. (2009). Semantic Annotation and Reasoning for Sensor Data. In Barnaghi, P,
Moessner, K., Presser, M., and Meissner, S., editors, Smart Sensing and Context, volume 5741 of Lecture
Notes in Computer Science, pages 66—76. Springer Berlin Heidelberg.



