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Abstract. In this paper, we present PelletSpatial, a qualitative spatial
reasoning engine implemented on top of Pellet. PelletSpatial provides
consistency checking and query answering over spatial data represented
with the Region Connection Calculus (RCC). It supports all RCC-8 rela-
tions as well as standard RDF/OWL semantic relations, both represented
in RDF/OWL. As such, it can answer mixed SPARQL queries over both
relation types. PelletSpatial implements two RCC reasoners: (a) A rea-
soner based on the semantics preserving translation of RCC relations to
OWL-DL class axioms and (b) a reasoner based on the RCC compo-
sition table that implements a path-consistency algorithm. We discuss
the details of two implementation approaches and focus on some of their
respective advantages and disadvantages.

1 Introduction

It is a common practice use Web Ontology Language (OWL) ontologies to de-
scribe spatial regions and relations between these regions such as spatial contain-
ment and overlap. However, it is not possible to directly encode the semantics of
these relations using the expressivity of OWL and the Description Logics (DL)
that OWL is based on. As a consequence, there might be inconsistencies in spa-
tial relations that will not be detected by an OWL reasoner or an OWL reasoner
might not return all the answers to spatial queries since it cannot compute all
spatial inferences.

In this paper, we present PelletSpatial which supports qualitative spatial
reasoning based on the Region Connection Calculus (RCC) logic formalism.
PelletSpatial, extends the DL reasoning features of Pellet [10] with qualitative
spatial reasoning capabilities. PelletSpatial supports consistency checking and
answering SPARQL queries over a set of spatial relations and non-spatial se-
mantic relations.

We provide a proof-of-concept implementation for the translation of RCC re-
lations to OWL-DL class axioms presented in [7]. To the best of our knowledge,
there has not been an implementation for this translation. In this paper, we
present our experimental evaluation of this approach and explain why there are



major performance issues. Motivated by these poor performance results, we in-
vestigate an alternative spatial reasoning technique based on a path-consistency
algorithm and the RCC-8 composition table.

2 Related Work

The Region Connection Calculus (RCC), in the version of the theory we use,
was introduced by Randell et al. in [11]. At the basis of the formalism, the au-
thors define a primitive reflexive and symmetric dyadic relation C(x, y), meaning
that region x connects with region y. On top of this relation, a number of other
dyadic relations are defined, in particular eight jointly exhaustive pairwise dis-
joint relations known as the RCC-8 relations are defined. These relations are
disconnected (DC), externally connected (EC), equals (EQ), partially overlap
(PO), tangential proper part of (TPP), non-tangential proper part of (NTPP),
has tangential proper part (TPPi), and has non-tangential proper part (NTPPi).
Moreover, the authors define a composition table for these eight base relations
enumerating the inferences that can be drawn by composing two relations.

In [5], the authors give a succinct review of spatio-temporal reasoning in De-
scription Logic (DL), introduced in [6, 16]. In [4], they present an architecture
for combining RCC and the Web Ontology Language (OWL) by extending the
DL Knowledge Base (KB) with RCC specific components, namely a RCCBox, a
RCC reasoner that uses composition tables for RCC-1, RCC-2, RCC-3, RCC-5
and RCC-8 to check spatial consistency of the ABox, i.e. the consistency of spa-
tial role assertions. In PelletSpatial, we strictly separate spatial from non-spatial
relations and manage (defined as well as disjunctive) spatial relations in what
we call a RCC constraint network which provides functionality for consistency
checking and query answering.

In [7], the authors show how RCC-8 relations can be translated to OWL-DL
based on the correspondence between RCC and Modal Logics [9]. In particular,
each base RCC-8 relation is translated to a set of class axioms and every RCC
region is mapped to a DL concept such that the region follows the regularity
condition, which consists of two requirements: (1) to be a non-empty concept
and (2) to contain all of the region’s interior points. As the authors show, the
two requirements can be described in OWL-DL. PelletSpatial includes an im-
plementation of the this translation for which our experiments showed serious
performance drawbacks.

The reasoner implemented in PelletSpatial as an alternative to the seman-
tics preserving translation of RCC relations to OWL-DL class axioms uses a
path-consistency algorithm to check the consistency of a set of defined RCC-8
relations. In [12], the authors provide a reference implementation for a path-
consistency algorithm applied to consistency checking for RCC.

More recently, Gantner et al. proposed a Generic Qualitative Reasoner (GQR)
[3] a reasoning service for arbitrary binary qualitative calculi developed for spa-
tial and temporal reasoning based on Mackworth’s variant of the path-consistency
algorithm [8], backtracking search and an efficient queue data structure [14].



In [17], the authors test the assumption that algorithms tailored for qual-
itative calculi, generically, and RCC, specifically, computationally outperform
reasoning in more expressive formalisms. To support their statement, the au-
thors compare GQR [3] with, among others, the DL reasoner FaCT++ [13]. As
we will argue in this paper, with our implementation experience we arrive at
similar conclusions.

The authors of [15] propose with SparQ a reference implementation and
open platform for the development of spatial qualitative calculi for Qualitative
Spatial Reasoning (QSR). The authors argue that even though the development
of QSR algorithms and techniques has been an active area for decades, practical
applications are not very widespread.

3 Reasoning Engine Architecture

The main goal of PelletSpatial is the support for reasoning and querying for
both spatial RCC-8 relations and standard RDF semantic relations. To achieve
this goal, we represent every region as an OWL individual. We define an OWL
object property for each RCC-8 relation and a spatial relation between two re-
gions is represented as an OWL object property assertion. Non-spatial relations,
such as region type, size, etc., are represented as ordinary OWL assertions. For
reasoning, PelletSpatial extends Pellet’s standard reasoning capabilities to take
the semantics of RCC relations into consideration. In the next two subsections
we describe two different implementation approaches to support this extension.

3.1 The OWL-DL RCC-8 Reasoning Engine

Due to the close relationship between DLs and Modal Logics as well as between
Modal Logics and the RCC-8 formalism, it is possible to create translate RCC-8
relations to DL axioms as described in [7]. First, for each RCC region R we
define a corresponding OWL class CR. Then, an object property assertion like
DC(X, Y ) stating regions X and Y are disconnected, is translated to an OWL
disjointness axiom as in DisjointClasses(CX CY ). We refer the reader to [7]
for the details of the translation.

In addition to translation RCC relations to OWL class axioms, one axiom is
defined for each region to satisfy the regularity condition of region. This axiom
significantly affects non-determinism as well as the number of qualified existential
quantifiers in the ontology. This, as we experienced with our implementation,
significantly affects the system’s performance to the point that, without further
investigations and optimizations, the system lacks practicability even for only a
few regions.

Given this semantics preserving translation, consistency checking of a set of
spatial relations can be reduced to the problem of consistency checking in OWL.
Except for the translation itself , Pellet already supports what is required for
such a system.



We would like to point out two features of OWL 2 that was crucial for
the translation to work. First, is the addition of reflexive properties3 which is
required by the translation algorithm [7]. Second, we use the punning feature
of OWL 24 so that we can use the same URI to identify both the original
OWL individual representing the region and the OWL class generated by the
translation simplifying our implementation.

3.2 The Hybrid RCC-8 Reasoning Engine

Because of the performance problems experienced with the implementation de-
scribed above, we investigated an alternative reasoning technique for RCC-8
constraint networks.

The hybrid implementation in PelletSpatial strictly separates spatial rea-
soning and semantic OWL-DL reasoning by using a specialized RCC reasoner.
Spatial relations are managed as an RCC constraint network that provides – sim-
ilar to a KB – functionality to check its consistency and querying. Non-spatial
relations, i.e. standard OWL assertions, are managed as a Pellet KB as usual.

Consistency checking of a RCC constraint network in our hybrid implementa-
tion is performed by means of a path-consistency algorithm based on the RCC-
8 composition table. Currently, PelletSpatial supports path-consistency based
reasoning for the eight base RCC-8 relations. The details of this algorithm is
described in the next section.

4 Path-Consistency Algorithm

In this section, we describe the algorithm used in PelletSpatial for the hybrid
architecture (Section 3.2) to check the consistency of a RCC-8 constraint net-
work with defined RCC-8 relations. We compare our implementation with the
algorithm provided by the authors in [12] and discuss the differences.

In [12], the authors describe the standard path-consistency algorithm imple-
mentation for RCC-8 consistency checking. It is based upon the n × n matrix
M that represents the spatial relationships between n different regions. Here,
consistency checking is a process that iteratively performs the path-consistency
operation Mij ← Mij ∩Mik ◦Mkj for all regions i, j, k until a fixed point is
reached or Mij = ∅, in which case M is inconsistent.

We implemented a similar algorithm in PelletSpatial using slightly different
data structures and queing strategies. Algorithm 1 describes the details of our
implemenation. Given a RCC-8 constraint network N , i.e. a set of defined RCC-
8 relations, N is consistent if it is empty or if every relation in the network is
consistent. Note that, the requirement for the relations in N to be defined, i.e.
of the set of eight base relations, is relevant to the tractability of a sound and
complete path-consistency procedure. As it is argued in [12], sound and com-
plete path-consistency is tractable for the set of eight defined relations. Maximal
3 http://www.w3.org/TR/owl2-new-features/#F6: Reflexive
4 http://www.w3.org/TR/owl2-new-features/#F12: Punning



tractable subsets may contain more of the 256 RCC-8 relations but currently
we limit our implementation to defined relations as we have not investigated
extensions.

The complete step at Line 5 processes N to complete inverse and equals
relations. For every (defined) relation Rij ∈ N , we ensure that R^

ji ∈ N (in-
verse complete), e.g. for {TPP}(a, b) we ensure that {TPPi}(b, a) ∈ N , a, b
regions ∈ N . For every region a ∈ N , we ensure that {EQ}(a, a) ∈ N (equals
complete). Note that, in the notation used for this paper, Rij corresponds to
{R1, . . . , Rn}(i, j), being R the disjunctive set of several relations {R1, . . . , Rn}.
According to the notation used in [2], a defined relation D(i, j) can also be
written as {D}(i, j), i.e. Rij , R = {D}.

We use a queue Q as a structure to keep track of relations that have to be
processed. Hence, the algorithm runs until Q = ∅ or we found an inconsistency.
Q is initialized with all relations Rij ∈ N (which, currently, are only defined
relations).

A relation Rab (Line 15) is path-consistent if the rule for combining a com-
positional inference with existing information [2],

Vac ← Uac ∩Rab ◦ Sbc

results in a non-empty set V 6= ∅ for regions a, c; Sbc ∈ N relations with a
transitive path with Rab from a through b to c and Uac a relation (possibly ∈ N
as existing information). The compositional inference Tac ← Rab ◦ Sbc (Line 17)
is computed for regions a, c as the union set T for the composition of each pair
(r, s) in the set R × S, r ∈ R, s ∈ S. The composition of a pair (r, s) consists
in a lookup for the RCC-8 composition table given that r and s are elements of
the set of eight defined relations.

If Uac ∈ N , i.e. there is existing information for the pair (a, c), we complete
the rule by computing the intersection Vac ← Tac∩Uac (Line 33), where V is the
intersection set of relations v ∈ T ∩U . This step does refine the already existing
relation Uac ∈ N and is essential for the path-consistency algorithm as it defines
the inconsistent state: if V = ∅ we have found an inconsistency.

The state at Line 38 is also worth a note. If U = V , it means that the step at
Line 33 could not refine relation Uac. Hence, combining compositional inference
Tac with existing information Uac does not add new information. In this case,
we can return. Else, we remove Uac from N , add the refined Vac to N and Q
and process the inverse V ^

ca .
Our path-consistency implementation (Algorithm 1) presents several differ-

ences to the algorithm described in [12]. The first is in the structure used to
represent a finite set of RCC-8 constraints, input for the path-consistency al-
gorithm. The algorithm in [12] uses a n × n dense matrix M for n different
regions, where Mij represents the relation between the regions i, j. (Note that,
there is always at least the universal relation > between regions i, j.) Instead,
our implementation processes a sparse matrix with empty cells for Mij = >.

Consequently, the queue Q is initialized differently. While in our implemen-
tation Q corresponds to the array of elements Mij 6= >, in [12] Q is an array



Algorithm 1 PathConsistency
1: procedure PathConsistency(N)
2: if N = ∅ then
3: return true
4: end if
5: complete(N)
6: Q← {Rij |Rij ∈ N}
7: while Q 6= ∅ do
8: Rab ← remove(Q)
9: if !isConsistent(N, Q, Rab) then

10: return false
11: end if
12: end while
13: return true
14: end procedure

15: procedure IsConsistent(N, Q, Rab)
16: for Sbc ∈ N do
17: Tac ← Rab ◦ Sbc

18: add(N, Q, Tac)
19: if !isConsistent then
20: return false
21: end if
22: end for
23: return true
24: end procedure

25: procedure Add(N, Q, Tac)
26: if T = > then
27: return
28: end if
29: Uac ← {Rij |i = a, j = c, Rij ∈ N}
30: if 6 ∃Uac then
31: Vac ← Tac

32: else
33: Vac ← Tac ∩ Uac

34: if V = ∅ then
35: isConsistent = false
36: return
37: end if
38: if U = V then
39: return
40: end if
41: N ← N \ {Uac}
42: end if
43: N ← N ∪ {Vac}
44: Q← Q ∪ {Vac}
45: add(N, Q, V ^

ca )
46: end procedure



of triple pairs (i, j, k), (k, i, j) for regions that represent a path that needs to be
revised. Note that, an element Mij describes an edge M between two nodes i, j
while a triple (i, j, k) represents two edges Mij and Mjk between the nodes i, j
and j, k, holding, thus, more information.

As we process a sparse matrix (ignoring elements Mjk = >) in our algorithm
we iterate over fewer k nodes. Further, in our Q we don’t keep track of triples
(k, i, j) which correspond to a path with incoming edge for i. Given an edge i, j,
we look for nodes k and update i, k (which corresponds to triple (i, j, k)). In our
implementation, incoming edges for i are processed by keeping both i, j and j, i
in Q. On revising j, i, we look for nodes k (assuming edges k, i and i, k are in Q)
and update j, k as well as k, j (which corresponds to triple (k, i, j)).

The triple structure allows to be more compact in the rule for combining
compositional inference and existing information, as the triple already contains
all the required information to compute the rule. The algorithm in [12], thus,
computes the rule in one step while in our implementation we split the compo-
sitional inference from its combination with existing information. This allows us
to discard the compositional inference whenever it returns the universal relation
> from further processing as it cannot add any new information to the network.

The two implementations also differ in how they process inverses M^
ji . The

algorithm in [12] assigns the inverse directly to the corresponding matrix index,
not adding it, thus, to Q. Instead, in our implementation, we recurse for M^

ji .

5 Answering Spatial Queries

PelletSpatial supports a subset of SPARQL queries with Basic Graph Patterns
(BGP) that include spatial and non-spatial patterns, i.e. triple patterns for spa-
tial relations (joined) with triple patterns for semantic RDF relations. This type
of querying is supported for both reasoning architectures, i.e. SPARQL querying
is independent of the underlying reasoning engine. In the following, we refer to
a query that may have both spatial and non-spatial query patterns simply with
spatial query.

As PelletSpatial processes both spatial and standard semantic OWL relations
in RDF/OWL documents, it is natural to support spatial querying. (Note that
a subset of the semantic OWL relations may be metadata about the regions of
spatial relations.) It is, thus, possible to query for regions that are involved in
a specific spatial relation with another region and have certain characteristics
that are described by semantic RDF relations. For instance, we could query a
hypothetical ontology for all region names that are externally connected to a
given region (the spatial subset query) that have an area and population greater
than a given lower bound (the non-spatial subset query).

The algorithm used in PelletSpatial to answer spatial queries depends on
the underlying architecture. For the architecture in which we translate defined
RCC-8 relations to OWL-DL class axioms (Section 3.1) spatial and semantic
RDF relations are stored in a single Pellet KB (RDF graph). Hence, spatial
queries can be translated to SPARQL-DL queries that are answered by Pellet.



There is an important issue to note with respect to this query answering
algorithm. Some of the RCC-8 relations are translated to axioms with universal
role restrictions. Pellet does not support SPARQL-DL query atoms with variable
filler for role restrictions. However, it is possible, in spatial queries, that a region
translated to a role restriction filler may be variable. For instance, the query
atom EC(?x, Wisconsin) is translated, among others, to the axiom ∀R.x v
¬∀R.Wisconsin, where the left hand side has a variable filler in role restriction.

A workaround for variable fillers in role restrictions is to substitute them
with regions in a reformulation step during translation of RCC query atoms
to SPARQL-DL query atoms. In our example, provided a RCC-8 constraint
network with regions Iowa, Wisconsin, and Minnesota, we would reformulate
the spatial query EC(?x, Wisconsin) to a set of two elements, each containing,
among others, the axiom ∀R.Iowa v ¬∀R.Wisconsin and ∀R.Minnesota v
¬∀R.Wisconsin respectively. (Note that for EC we can avoid reformulating the
variable with the region Wisconsin.) It is not surprising that this query atom
reformulation affects query performance. In fact, depending on the number of
regions, a single spatial query may be reformulated into a prohibitive set size.

The reformulation is avoided with the algorithm used for spatial query an-
swering in the architecture based on the path-consistency algorithm (Section
3.2). Here we use a dual stage query answering technique by extending the con-
straint network with a dedicated query handler that, given a RCC query atom
and – for conjunctive queries – a set of prepared bindings, returns a set of RCC
query solutions, i.e. variable to region bindings. The set of query solutions re-
turned by the first stage is given as input to the second stage which consists of
further constraining the set of bindings such that the non-spatial query subset
is satisfied.

6 Experiments

In our preliminary experiments, we have been testing both reasoner architec-
tures with small manually created datasets containing only spatial relations or
combining spatial and non-spatial relations.

Our results show that, without further optimizations, the reasoner based on
the translation of RCC relations to OWL-DL class axioms (Section 3.1) lacks
practicability even for our small datasets. The axiom that is required for every
region to follow regularity condition significantly affects the performance of Pel-
letSpatial. This is caused by the interplay of qualified existential and universal
quantifiers, one of the source of complexity (AND-branching) in DL reasoning [1].
In [7], the authors ask whether DL optimizations work well for their translation.
With PelletSpatial we show that, without further optimizations, the translation
lacks practicability even for just a few defined RCC-8 relations.

As we mentioned earlier in Section 5, this architecture is furthermore prob-
lematic for querying of RCC relations that need to be reformulated because of a
variable in the filler position of role restrictions. Instead of investigating possible



solutions to improve the performance of this architecture, we opted for another
spatial reasoning technique (Section 3.2).

Our preliminary experiments show that the alternative spatial reasoner per-
forms much better on our manually created datasets as well as on the signifi-
cantly bigger Ordnance Survey5 ontology that describes administrative areas in
England, Wales and Scotland.

We have used a sample of the Ordnance Survey ontology with a mapping
for the terms used in PelletSpatial for RCC-8 relations and those used by the
Ordnance Survey ontology. The sample contains 223 (defined) RCC-8 regions.
Consistency checking for the sample runs in roughly 15 seconds on a Lenovo
X60. After consistency checking, the network contains 17,652 RCC relations, of
which 7,042 are defined.

Testing with the full Ordnance Survey ontology returned a few inconsistency
which have been forwarded and confirmed by Ordnance Survey. Results show
that consistency checking for the corresponding network with 72,688 relations
and 11,756 regions currently performs too slow for practical use.

We did plan to include some experimental results in collaboration with the
Swiss Federal Institute for Forest, Snow and Landscape Research6. Because of
time constraints we need to defer our experiments.

7 Conclusion and Future Work

With PelletSpatial, we provide a proof-of-concept for a system implemented on
top of Pellet for qualitative spatial reasoning and querying for data represented
with RCC and RDF/OWL. The experience has shown that the translation of
RCC relations to OWL-DL class axioms presented by the authors in [7] lacks
practicability even for very small networks (without further optimizations).

A spatial reasoner based on a path-consistency algorithm and the RCC-8
composition table has been more promising w.r.t reasoning and query perfor-
mance. There are a number of directions for future work. As the experiments
have shown, PelletSpatial does not scale to more than a few thousand relations.
We are planning to investigate the impact of heuristics as described in [12] and
newer approaches adopted in GQR [3] and SparQ [15] to improve the scalability
of PelletSpatial.

We are also planning to extend PelletSpatial support beyond eight base rela-
tions. Most tools support disjunctive relations between two regions to be asserted
and a maximal tractable set of disjunctive relations has been shown to ensure
the soundness and the completeness of the path-consistency algorithm [12]. With
this extension, we can then support more general relations like “proper part of”
(PP ) as a disjunction of {TPP,NTPP} both in the data and in queries.

5 http://www.ordnancesurvey.co.uk
6 http://www.wsl.ch
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