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ABSTRACT
Despite improved digital access to scholarly knowledge in recent
decades, scholarly communication remains exclusively document-
based. In this form, scholarly knowledge is hard to process automat-
ically. We present the first steps towards a knowledge graph based
infrastructure that acquires scholarly knowledge in machine action-
able form thus enabling new possibilities for scholarly knowledge
curation, publication and processing. The primary contribution is
to present, evaluate and discuss multi-modal scholarly knowledge
acquisition, combining crowdsourced and automated techniques.
We present the results of the first user evaluation of the infras-
tructure with the participants of a recent international conference.
Results suggest that users were intrigued by the novelty of the pro-
posed infrastructure and by the possibilities for innovative scholarly
knowledge processing it could enable.
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1 INTRODUCTION
Documents are central to scholarly communication. In fact, nowa-
days almost all research findings are communicated by means of
digital scholarly articles. Unfortunately, it is difficult to automati-
cally process scholarly knowledge communicated in this form. The
key issue is that digital scholarly articles are mere analogues of
their print relatives [11]. Print and digital media suffer from similar
challenges. Scholarly knowledge remains as ambiguous and diffi-
cult to reproduce in digital as it used to be in print [7]. Moreover,
addressing modern societal challenges relies on interdisciplinary
research. Answers to such challenges are debated in scholarly dis-
course spanning often dozens and sometimes hundreds of articles
[1]. While citation does link articles, their contents are hardly inter-
linked and generally not machine actionable. Therefore, processing
scholarly knowledge remains a manual, and tedious task.

Furthermore, document-based scholarly communication stands
in stark contrast to the digital transformation seen in recent years
in other information rich publishing and communication services.
Examples include encyclopedia, mail order catalogs, street maps
or phone books. For these services, traditional document-based
publication was not just digitized but has seen the development of
completely new means of information organization and access.

There is an urgent need for a more flexible, fine-grained, con-
text sensitive and machine actionable representation of scholarly
knowledge and corresponding infrastructure for knowledge cu-
ration, publishing and processing. We suggest that representing
scholarly knowledge as structured, interlinked, and semantically
rich knowledge graphs is a key element of a technical infrastruc-
ture [3]. While the technology for representing, managing and
processing scholarly knowledge in such form is largely in place,
we argue that one of the most pressing concerns is how scholarly
knowledge can be acquired as it is generated along the research
lifecycle.
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In this article, we introduce the Open Research Knowledge
Graph1 (ORKG) as an infrastructure for the acquisition, curation,
publication and processing of semantic scholarly knowledge. We
present, evaluate and discuss ORKG based scholarly knowledge
acquisition using crowdsourcing and text mining techniques as
well as knowledge curation, publication and processing. The al-
pha release of the ORKG is available online2. Users can provide
feedback on issues and features, guide future development with
requirements, contribute to the implementation3 and last but not
least populate the ORKG with content.

In this article, we tackle the following research questions:
• Are authors willing to contribute structured descriptions of
the key research contribution(s) published in their articles
using a fit-for-purpose infrastructure, and what is the user
acceptance of the infrastructure?

• Can the infrastructure effectively integrate crowdsourcing
and automated techniques for multi-modal scholarly knowl-
edge acquisition?

Representing encyclopedic and factual knowledge in machine
actionable form is increasingly feasible. This is underscored by
knowledge graphs such as Wikidata [24], domain-specific knowl-
edge graphs [10] as well as industrial initiatives at Google, IBM,
Bing, BBC, Thomson Reuters, Springer Nature, among others. In
the context of scholarly communication and its operational infras-
tructure the focus has so far been on representing, managing and
linking metadata about articles, people, data and other relevant en-
tities [2, 9, 16]. Some initiatives [13, 21] extended the representation
to document structure and more fine-grained elements. Others pro-
posed comprehensive conceptual models for scholarly knowledge
that capture problems, methods, theories, statements, concepts and
their relations [8, 12, 17, 19].

2 OPEN RESEARCH KNOWLEDGE GRAPH
We propose to leverage knowledge graphs to represent scholarly
knowledge communicated in the literature. We call this knowledge
graph the Open Research Knowledge Graph (ORKG). Crucially, the
proposed knowledge graph does not merely contain (bibliographic)
metadata (e.g., about articles, authors, institutions) but semantic
(i.e., machine actionable) descriptions of scholarly knowledge.

2.1 Architecture
The infrastructure design follows a classical layered architecture.
A persistence layer abstracts data storage implemented by labeled
property graph (LPG), triple store, and relational database stor-
age technology, each serving specific purposes. Versioning and
provenance handles tracking changes to stored data.

The domain model specifies ResearchContribution, which
is the core ORKG information object. A ResearchContribution
relates the ResearchProblem addressed by the contribution, the
ResearchMethod and (at least one) ResearchResult. Currently, we
do not further constrain the description of these resources. Users
can adopt arbitrary third-party vocabularies to describe problems,
methods, and results.
1http://orkg.org
2https://labs.tib.eu/orkg/
3https://gitlab.com/TIBHannover/orkg

RDF import and export enables data synchronization between
LPG and triple store, which enables SPARQL and reasoning. Query-
ing handles the requests by services for reading, updating, and
creating content in databases. The following layer is for modules
that implement infrastructure features such as authentication or
comparison and similarity computation. The REST API acts as the
connector between features and services for scholarly knowledge
contribution, curation and exploration.

ORKG users in author, researcher, reviewer or curator roles in-
teract differently with its services. Exploration services such as
literature comparisons are useful in particular for researchers and
reviewers. Contribution services are primarily for authors who
intend to contribute content. Curation services are designed for
domain specialists more broadly to include for instance subject li-
brarians who support quality control, enrichment and other content
organization activities.

2.2 Features
The ORKG services are underpinned by numerous features that,
individually or in combination, enable services. We present the
most important current features.

Literature comparison extracts similar information shared by
user-selected research contributions and presents comparisons in
tabular form. Such comparisons rely on extracting the set of seman-
tically similar predicates among compared contributions. We use
FastText [6] word embeddings to generate a similarity matrix γ

γ =
[
cos(−→pi ,

−→pj )
]

(1)

with the cosine similarity of vector embeddings for predicate
pairs (pi ,pj ) ∈ R, whereby R is the set of all research contributions.

Furthermore, we create a mask matrixΦ that selects predicates of
contributions ci ∈ C, whereby C is the set of research contributions
to be compared. Formally,

Φi, j =

{
1 if pj ∈ ci

0 otherwise
(2)

Next, for each selected predicate p we create the matrix φ that
slices Φ to include only similar predicates. Formally,

φi, j = (Φi, j ) ci ∈C
pj ∈sim(p)

(3)

where sim(p) is the set of predicates with similarity valuesγ [p] ≥
T = 0.9 with predicate p. The threshold T is computed empirically.
Finally,φ is used to efficiently compute the common set of predicates
and their frequency.

Contribution similarity is a feature used to explore related
work, find or recommend comparable research contributions. The
sub-graphs G(ri ) for each research contribution ri ∈ R are con-
verted into document D by concatenating the labels of subject s ,
predicate p, and object o, of all statements (s,p,o) ∈ G(ri ). We then
use TF/iDF [22] to index and retrieve the most similar contribu-
tions with respect to some query q. Queries are constructed in the
same manner as documents D.

The ORKG uses machine learning for automated extraction
of scientific knowledge from literature. Of particular interest are
the NLP tasks named entity recognition as well as named entity
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Table 1: Overview of answers to the key aspects covered
by the evaluation questionnaire and other metrics recorded
during the interviews.

Partici-
pant Nr

Nav-
igation

Term-
inology

Auto
Complete

Guidance
Needed

Suggest
To Others

UI
likeness Time

5 = Very
intuitive

5 = Easy to
understand

5 = Very
helpful

5 = All
the time

9 = Very
likely

9 = Very
much in mins

1 4 4 5 3 2 6 16
2 2 3 5 4 8 7 19
3 4 5 5 3 9 7 15
4 3 3 5 3 6 7 13
5 4 3 5 3 6 8 14
6 4 3 5 3 8 9 13
7 3 4 5 3 7 6 19
8 3 2 4 3 8 6 13
9 4 5 3 3 7 5 14
10 4 5 5 1 8 8 22
11 4 5 5 1 8 8 20
12 - - - - - - 21

Average 4 4 5 3 7 7 17

classification and linking. As a first step, we trained a neural net-
work based machine learning model for named entity recognition
using in-house developed annotations on the Elsevier Labs corpus
of Science, Technology, and Medicine4 (STM) for the following
generic concepts: process, method, material and data. We use the
Beltagy et al. [4] Named Entity Recognition task-specific neural ar-
chitecture atop pretrained SciBERT embeddings with a CRF-based
sequence tag decoder [18].

Linking scholarly knowledge to other knowledge graphs
including those from the open domain as well as domain specific
graphs such as ULMS [5] is another important feature. Most impor-
tantly, such linking enables semi-automated enrichment of research
contributions.

3 EVALUATIONS
The ORKG infrastructure, its services, features, performance and
usability are continually evaluated to inform the next iteration and
future developments. Among other preliminary evaluations and
results, we present here the first front end user evaluation.

Following a qualitative approach, the evaluation of the first it-
eration of front end development aimed to determine user perfor-
mance, identify major (positive and negative) aspects, and user
acceptance/perception of the system. The evaluation process had
two components: (1) instructed interaction sessions and (2) a short
evaluation questionnaire. This evaluation resulted in data relevant
to our first research question.

Supported by two instructors, we conducted instructed interac-
tion sessions with 12 authors of articles presented at the DILS20185
conference. At the start of each session, the instructor briefly ex-
plained the underlying principles of the infrastructure. Then, par-
ticipants engaged with the system without further guidance from
the instructor. However, at any time they could ask the instructor
for assistance. For each participant, we recorded the time required
to complete the task (to determine the mean duration of a session),
the instructor’s notes and the participant’s comments.

4https://github.com/elsevierlabs/OA-STM-Corpus
5https://www.springer.com/us/book/9783030060152

Table 2: Time (in seconds) needed to perform State-of-the-
Art comparisons with 2-8 research contributions using the
baseline and ORKG approaches.

Number of compared research contributions
2 3 4 5 6 7 8

Baseline 0.00026 0.1714 0.763 4.99 112.74 1772.8 14421
ORKG 0.0035 0.0013 0.01158 0.02 0.0206 0.0189 0.0204

In addition to the instructed interaction sessions, participants
were invited to complete a short evaluation questionnaire. The ques-
tionnaire is available online6. Treated as a qualitative instrument,
its aim was to collect further insights into user experience. The
paper-based questionnaire consisted of 11 questions. These were
designed to capture participant thoughts regarding the positive
and negative aspects of the system following their instructed in-
teraction session. Participants completed their questionnaire after
the instructed interaction session. All 12 participants answered the
questionnaire. The interaction notes, participant comments and
the time recordings were collected together with questionnaire
responses and analysed in light of our research questions.

A dataset summarizing the research contributions collected in
the experiment is available online7. The data is grouped into four
main categories. Research Problem describes the main question or
issue addressed by the research contribution.Approach describes the
solution taken by the authors. Implementation & Evaluation were
the most comprehensively described aspects, arguably because it
was easier for participants to describe technical details compared
to describing the problem or the approach.

In summary, 75% of the participants found the front end devel-
oped in the first iteration fairly intuitive and easy to use. Among
the participants, 80% needed guidance only at the beginning while
10% did not need guidance. The time required to complete the task
was 17 minutes on average, with a minimum of 13 minutes and a
maximum of 22 minutes.

Further details of the questionnaire, including participant ratings
on main issues, are summarized in Table 1. While the cohort of
participants was too small for statistically significant conclusions,
these results provided a number of important suggestions that
informed the second iteration of front end development, which had
a first evaluation at TPDL20198.

We have performed preliminary evaluations also of other com-
ponents of the ORKG infrastructure. The experimental setup for
these evaluations was an Ubuntu 18.04 machine with Intel Xeon
CPUs 12 × 3.60 GHz and 64 GB memory.

With respect to the literature comparison feature, we compared
our approach in ORKG with a baseline approach that uses brute
force to find the most similar predicates and thus checks every
possible predicate combination. Table 2 shows the time needed to
perform the comparison for the baseline approach and for the ap-
proachwe implemented and presented above. As the results suggest,
our approach clearly outperforms the baseline and the performance
gain can be attributed to more efficient retrieval. The experiment is

6https://doi.org/10.5281/zenodo.2549918
7https://doi.org/10.5281/zenodo.3340954
8http://www.tpdl.eu/tpdl2019/
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limited to 8 contributions because the baseline approach does not
scale to larger sets.

We also tested the vertical scalability in terms of response time.
For this, we created a synthetic dataset of papers. Each paper in-
cludes one research contribution described by three statements.
The generated dataset contains 10 million papers or 100 million
nodes. We tested the system with variable numbers of papers and
the average response time to fetch a single paper with its related
research contribution is 60 ms. This suggests that the infrastructure
can handle large amounts of scholarly knowledge.

Figure 1: Coverage values of different NED systems over the
annotated entities of the STM corpus.

We evaluated the performance of a number of existing NED
tools on scholarly knowledge, specifically Falcon [23], DBpedia
Spotlight [20], TagME [15], EARL [14], TextRazor9 and Meaning-
Cloud10. These tools were used to link to entities fromWikidata and
DBpedia.We used the annotated entities from the STM corpus as the
experimental data. However, since there is no gold standard for the
dataset, we only computed the coverage metric ζ = # of linked entities

# of all entities .
Figure 1 summarizes the coverage percentage for the evaluated
tools. The results suggest that Falcon is most promising.

4 CONCLUSION
This article described the first steps of a larger research and devel-
opment agenda that aims to enhance document-based scholarly
communication with semantic representations of communicated
scholarly knowledge. We presented the architecture of the pro-
posed infrastructure and some of its key features. We reported the
results of a first user evaluation. By integrating crowdsourcing and
automated techniques in natural language processing, initial steps
were also taken and evaluated that advance multi-modal scholarly
knowledge acquisition using the ORKG.
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