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Abstract: In environmental engineering, sensor measurement is a process undertaken
with respect to an environmental domain, i.e. an area of interest, to measure a domain
property. Knowledge of a domain, meaning its concepts and relations that hold among
them, can be formally represented by means of ontology. Therefore, given an ontology
for an environmental domain, it seems reasonable to suggest that sensor data acquisition
can be translated into ontological knowledge acquisition. We demonstrate this translation
for the domain of road vehicle classification by measurement of vibration. We show
how supervised machine learning is applied to learn a function that maps sensor data
to ontological concepts. Hence, we abstract from both the physical sensor layer and
the sensor data layer by discarding raw measurement data and retaining the knowledge
conveyed by these data. We show how rules can be used to infer new domain knowledge,
such as vehicle velocity.

Keywords: ontology; sensor data; machine learning; knowledge discovery; environmen-
tal ontology learning

1 INTRODUCTION

According to Finkelstein [1982] “measurement is the process of empirical, objective, as-
signment of numbers to properties of objects or events of the real world in such a way as
to describe them”. In environmental engineering, a sensor is a device that transforms the
signal of a physical property in the environment of the sensor into sensor data (Bonnet
et al. [2001]) and sensor measurement is the recurring application of such transformation
for a certain duration and location. The dimensions of measured physical property, dura-
tion, location, and purpose of measurement delineate an area of interest, i.e. a domain.
In computer science, knowledge of a domain, meaning the concepts of some area of
interest and relations that hold among them, can be formally represented by means of
ontology, defined as an explicit specification of a conceptualization (Gruber [1993]).

Managing, processing, and making sense of sensor data is an ongoing challenge (Tollef-
son [2011]; Balazinska et al. [2007]) despite recent advancement in low-cost, low-power,
small-size, wireless technology as well as communication protocols, algorithms, and pro-
gramming models (Akyildiz et al. [2002]; Bharathidasan et al. [2002]); in sensor data
management and processing (Carney et al. [2002]; Bonnet et al. [2001]); and in semantic
description of sensors, sensor networks, and sensor data (Sheth et al. [2008]; Compton
et al. [2009]).
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(a) Raw sensor measurement
data corresponding to the window
w2

141 (S2 at 10:02:21) consisting
of 16 384 values (8.192 s). Am-
plitude variation corresponds to
vehicle-induced vibration.
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(b) Window f2
141 resulting from the

application of a bandpass filter be-
tween 80-130Hz to w2

141. The
signal is enhanced compared to
w2

141.
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(c) Profile of frequencies p2141 re-
sulting from the application of FFT
to f2

141.

Figure 1: Data processing from raw sensor measurement data to the profile of frequen-
cies for 8.192 s of measurement by S2 starting at 10:02:21.

Sheth et al. [2008] present the Semantic Sensor Web in which sensor data is annotated
with spatial, temporal, and thematic semantic metadata deemed to be “essential for dis-
covering and analyzing sensor data”. Compton et al. [2009] review eleven sensor ontolo-
gies for the range and expressive power of their concepts, which are used to describe, for
instance, the deployment, configuration, components, data, observations, location, accu-
racy, or sampling frequency of sensors. Terminologies to describe the characteristics
of sensors and sensor networks aimed at improving the integration and communication
among sensors and networks (Sheth et al. [2008]) have, hence, received considerable
attention.

Classifying entities observed by sensors has a long tradition and extensive literature. To
name a few relevant studies, using vibration sensors to monitor pavement acceleration
and magnetometer sensors to detect vehicles, Bajwa et al. [2011] propose a method to
estimate axle count and spacing for trucks. Jackowski and Wantoch-Rekowski [2005] dis-
cuss the problem of using neural networks for military vehicle classification using ground
vibration. Nooralahiyan et al. [1997] use a directional microphone and a time-delay neural
network to classify road vehicles based on their acoustic signature.

Given an ontology for an environmental domain, the aim of this paper is to demonstrate
and discuss the acquisition of knowledge about entities observed by sensors when ma-
chine learning is used to classify measurement data, and the formal representation of
such knowledge in ontology. As such our work relates to the architecture discussed by
Liu and Zhao [2005] of a system that can be queried for high-level events without re-
quiring handling of raw signals. It also relates to Stocker et al. [2011] where the authors
discuss a method to learn, from measurement data, an atom of a rule in the schema of
an environmental ontology.

2 MATERIALS AND METHODS

Road-pavement vibration was measured using three CEF C3M01 accelerometer vibra-
tion sensors developed for condition monitoring and machinery maintenance by Control
Express Finland (CEF) Oy.1 (CEF C3M01 sensors are now manufactured by Webrosen-
sor Oy as WBS CM301.2) The sensors – thereafter referred to as S1, S2, and S3 – were

1http://www.cef.fi/
2http://www.wbs.fi/
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Listing 1: Axioms used to express domain knowledge

Vehic le v Fea tu reOf In te res t
L igh tVeh i c l e v Vehic le
HeavyVehicle v Vehic le
L igh tVeh i c l e u HeavyVehicle v ⊥
Dr iv ingS ide v Proper ty
DrivingSpeed v Proper ty

SensingDevice (S1)
SensingDevice (S2)
SensingDevice (S3)

installed at the right side of a road.3 We visually monitored the road by means of a AXIS
211W Wireless Network Camera with an Outdoor Antenna Kit AXIS 211W (Axis Com-
munications [2011]). We acquired vibration data from the three CEF C3M01 sensors and
image data from the AXIS camera for a total of six hours on August 30, 2011 between
10 AM and 4 PM. We acquired 42 962 432 measurement values from S1, 42 937 345 from
S2, and 42 988 810 from S3. We acquired 25 076 image files from the AXIS camera.

Sensor data was semi-automatically processed to detect and appropriately label the sig-
nal corresponding to the vibration induced by vehicles in measurement data. We first
processed the AXIS camera files to visually identify vehicle occurrences. Each identi-
fied vehicle occurrence was described with metadata for the vehicle type (e.g. personal
car), time of the vehicle crossing the approximate location of S2, and driving side (left or
right). We found a total of 185 vehicle occurrences (i.e. approximately a vehicle every two
minutes on average). Such metadata was used to link occurrences identified in camera
data with those (automatically) detected in vibration data. For each vibration sensor si

whereby i = 1, 2, 3 for S1, S2, and S3, respectively, we processed the time series for 6
hours of measurement by means of a window wi

j of length 16 384, i.e. 8.192 s of measure-
ment values (or 0 in case of missing values) whereby j = 0, . . . , 21 599 is the total number
of seconds. Figure 1(a) is a plot of w2

141, i.e. the values corresponding to 8.192 s of mea-
surement by S2 starting at 10:02:21. To each wi

j we applied a bandpass filter to suppress
frequencies outside 80 Hz and 130 Hz,4 leading to a filtered window f ij . Figure 1(b) is a
plot of f2141 resulting from the application of the bandpass filter to w2

141. For each f ij we,
thereafter, extracted the profile, pij , of frequencies between 80 Hz and 130 Hz computed
using Fast Fourier Transform (FFT). Figure 1(c) is a plot of p2141, the profile of frequencies
resulting from the application of FFT to f2141. Finally, we computed the sum, Σpij , for the
values of pij . The Σpij , whereby j = 0, . . . , 21 599, form an evenly spaced time series with
interval length 1 s and (positive only) peaks of amplitude and width reflecting the mag-
nitude and duration, respectively, of road-pavement vibration as measured by sensor si

between 10 AM and 4 PM on August 30, 2011. The first derivative of such a time series
was calculated to detect the starting (positive rate of change) and ending (negative rate
of change) time of a possible vehicle occurrence. We empirically determined that 50 and
−50 for the positive and negative rate of change, respectively, were appropriate threshold
values to detect the starting and ending of vibration possibly induced by vehicles. Note
that at this point we could not exclude detecting vibration-like signal that is explained by
something other than a vehicle. Hence, we had to link j determined as the time index at
which there may be a vehicle within the following 8.192 s with the 185 vehicle occurrences

3Right side with respect to camera perspective
4Experimentally, we found that the spectral energy related to road-pavement vibration induced by vehicles
strongly lies between 80Hz and 130Hz.
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identified in camera data. This manual step was executed conservatively, meaning that
we linked occurrences only when we were fairly certain to link correctly and we discarded
links to vibration data f ij that contained amplitude change due to a vehicle occurrence as
well as due to one or more other (typically unexplained) reasons.

By linking we, thus, constructed labelled pij data which were used to generate training
datasets for supervised learning. Such datasets only included training samples occur-
ring between 10:00 AM and 2:50 PM. We evaluated the machine learning classification
performance for two tasks: (1) vehicle detection and (2) vehicle classification.5 The aim
in vehicle detection was to classify pij according to whether or not a vehicle occurred in
the corresponding window wi

j (training classes vehicle and no-vehicle). For this
purpose, we additionally extracted 134 pij to serve as training samples without vehicle
occurrence (j the index at which wi

j did not contain a vehicle occurrence). The aim in
vehicle classification was to classify pij according to light and heavy vehicles (training
classes light and heavy). We used WEKA (Hall et al. [2009], version 3.6.5) to train a
Multilayer Perceptron (MLP) neural network classifier.

Given our domain of road vehicle classification by measurement of vibration we ex-
tended the Semantic Sensor Network (SSN) Ontology6 (W3C Semantic Sensor Network
Incubator Group [2009]) to accommodate the class Vehicle as domain-specific SSN
feature-of-interest; the classes LightVehicle and HeavyVehicle, both subclasses
of Vehicle; the disjointness of LightVehicle and HeavyVehicle, meaning that a
vehicle can be either light or heavy, but not both; the two domain-specific SSN properties
(ontology classes) DrivingSide and DrivingSpeed; and the three sensors individu-
als of SensingDevice. Listing 1 provides an overview of the axioms used to express
domain knowledge. We (programmatically) populated the ontology with individuals, ω, in-
stances of SSN Observation, i.e. Observation(ω), with SSN relation observedBy
to an individual, i, of SensingDevice; SSN relation observationResultTime for
the observation time, j; and SSN relation featureOfInterest with an individual, ψ,
instance of Vehicle, i.e. Vehicle(ψ). Here we considered observations occurring
between 2:50 PM and 3:00 PM on August 30, 2011 made by any of the sensors si. We
used Protégé7 (version 4.1) and Jena8 (Carroll et al. [2003], version 2.7.0) to (program-
matically) manage the ontology, and the Web Ontology Language (OWL) (W3C OWL
Working Group [2009]) and Resource Description Framework (RDF) (Manola and Miller
[2004]) technologies.

To demonstrate rule-based inference we defined two rules p → q of interest to our
domain. The first rule stated that the vehicles related to two observations with result
time difference below 8 s are same, i.e. the same physical entity. This rule was mo-
tivated by the distance of approximately 45 m between consecutive sensors and the
average low-volume traffic of our domain. For each observation pair with relations
to same vehicles, the second rule inferred the velocity of the vehicle. Velocity de-
termined the vehicle’s driving side and speed. We used the SSN Property classes
DrivingSide and DrivingSpeed to express this knowledge in our ontology. Machine
learning inference is demonstrated by feature-of-interest classification of individuals, ψ,
instances of Vehicle. Here we aimed at specializing the class a vehicle ψ is an in-
stance of to either LightVehicle or HeavyVehicle, by using data pij for the individ-
ual Observation(ω) related to ψ. This classification was performed using the machine
learning methods and training datasets described above. Hence, for each observation ω
occurring between 2:50 PM and 3:00 PM made by any of the sensors si we classified pij
5Note that the vehicle detection task is different from the detection of (possible) vehicle occurrences in vibration
data, discussed above.
6http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
7http://protege.stanford.edu
8http://incubator.apache.org/jena/
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ssn:Observation

rdf:type
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ssn:observedBy

foi1

ssn:featureOfInterest
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ssn:SensingDevice
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dul:Region

rdf:type

2011-08-30 14:50:39

dul:hasRegionDataValue

Figure 2: RDF graph describing the observation (o1) made by S2 at 14:50:39 on August
30, 2011 for a personal car classified as light vehicle.

Table 1: Vehicle occurrences with information on right (R) or left (L) driving side, between
2:50 PM and 3:00 PM as identified in camera data and observed by the three sensors.
In the ontology, the SSN property observationResultTime is used to represent time,
and the classes light vehicle (LV) or heavy vehicle (HV) are used as most specific vehicle
type (T) for the SSN FeatureOfInterest associated to an observation. Misclassifica-
tion is highlighted.

Occurrence S1 S2 S3
Label Class Side HH:mm ss T ss T ss T
personal-car LV R 14:50 36 LV 39 LV 43 HV
van LV R 14:53 20 LV 24 LV 27 HV
truck HV L 14:57 56 HV 52 HV 49 HV
fire-truck HV R 14:58 39 HV 43 LV 46 HV

related to ω using a trained MLP classifier. The result of the classification was, thereafter,
formalized in our ontology as either LightVehicle(ψ) or HeavyVehicle(ψ), being
ψ the vehicle related to ω. We implemented the described rule-based and machine learn-
ing inferences as processes performed on the populated ontology, i.e. for observations
occurring between 2:50 PM and 3:00 PM.

3 RESULTS

We identified 165 vehicles in camera images between 10:00 AM and 2:50 PM, of which
87 (53 %) were detected by S1, 134 (81 %) by S2, and 133 (81 %) by S3. A total of 10
distinct vehicle types were identified. For the vehicle detection task we grouped the
10 vehicles types into one training class (vehicle). For the vehicle classification task
we grouped the 10 vehicle types into two training classes, according to vehicle weight
(light and heavy). Classification performance (correctly classified instances) for the
vehicle detection task resulted to be 92 % for S1, 95 % for S2, and 96 % for S3 (94 %
on average). Classification performance for the vehicle classification task resulted to be
82 % for S1, 75 % for S2, and 83 % for S3 (80 % on average). Hence, we argue that it is
possible to classify vehicles using vibration measurement data and that the presented
methods are suitable to automatically map measurement data to ontological concepts.
In so doing we acquire knowledge about vehicles observed by sensors by means of
a learned generalization based on training individuals and we formalize such acquired
knowledge in ontology. Figure 2 is a visual representation of the RDF graph describing
the observation made by the sensing device S2 at result time with data value 2011-08-30
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o1

foi1

ssn:featureOfInterest

LightVehicle

rdf:type

p1

ssn:hasProperty

p2

ssn:hasProperty

DrivingSide

rdf:type

pv1

ssn:hasValue

DrivingSpeed

rdf:type

pv2

ssn:hasValue

right

dul:hasRegionDataValue

dul:SpaceRegion

rdf:type 40.50
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Figure 3: RDF sub-graph for the feature-of-interest (foi1) related to the observation (o1)
made by S2 at 14:50:39 expanded to include the properties of vehicle driving side and
driving speed.

14:50:39 for a light vehicle – driving on the right road-side at speed 40.5 km h−1 (Figure
3).

Table 1 summarizes the key elements of the 12 observations corresponding to the
4 vehicles observed by the 3 sensors between 2:50 PM and 3:00 PM. In partic-
ular, we show the time (date is August 30, 2011) related to the observation by
the SSN property observationResultTime and the most specific vehicle type
for the SSN FeatureOfInterest related to an observation by the SSN property
featureOfInterest. Time is given in hours and minutes (HH:mm) for an occurrence
and in seconds (ss) for an observation. The rule-based reasoning process correctly
inferred (not shown) that, for instance, the vehicle related to the observation by S2 at
14:53:24 is sameAs the vehicle related to the observation by S3 at 14:53:27 as well as
sameAs the vehicle related to the observation by S1 at 14:53:20. Further, Figure 3 shows
the inferred knowledge for vehicle driving speed and driving side. As we can see in Table
1 machine learning correctly mapped road-pavement vibration measurement data to the
specific ontological vehicle class 9 times out of 12 (75 %).

We argue that to translate sensor data about entities observed in a sensor network (Fig-
ure 1(c)) to symbolic knowledge (Figure 2) has a number of implications. First, we ab-
stract from measurement data. As we have shown, our small sensor network consisting
of three sensors acquired approximately 130 million values in six hours of measurement.
Such data is of little interest if not for the knowledge conveyed by them. We understand
the formalization of such knowledge in ontology as a way to make sense of sensor data.
Second, we represent knowledge acquired from sensor networks in ontology. In so do-
ing we allow for an integrated representation of knowledge about what is observed by a
sensor network and for rule-based inference of domain knowledge, e.g. vehicle velocity.
Hence, ontology facilitates the integration of knowledge acquired in sensor networks and
the automatic discovery of new domain knowledge.
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4 CONCLUSIONS

For the domain of road vehicle classification by measurement of vibration we have shown,
using machine learning to classify measurement data, how knowledge about entities
observed in a sensor network can be extracted from sensor data and can be formally
represented by means of an ontology language.

Our results showed an acceptable machine learning classification performance for de-
tecting and classifying observed vehicles using sensor data acquired by measurement
of vibration. Hence, we used machine learning to translate sensor data about physical
entities into symbolic knowledge about the entities, i.e. vehicles, and we formally rep-
resented such knowledge in a domain ontology. Rule-based inference was, thereafter,
used to infer new knowledge about the observed entities, e.g. vehicle velocity. We have
discussed a number of benefits resulting from representing knowledge acquired from
sensor networks in ontology, in particular abstraction from measurement data, integrated
representation of knowledge about what is observed, and rule-based inference.

In future work it is our aim to extend the presented methodology to work with a hetero-
geneous sensor network that includes sensors and data of diverse type, for instance the
presented vibration sensors and acoustic sensors, and to explore domains other than
vehicle classification, in particular also domains in which acquired knowledge in sensor
data is not for observed entities, such as here for vehicles, but, e.g., for flux rates, such
as for net carbon exchange between ecosystems and the atmosphere, as measured by
eddy covariance (Baldocchi et al. [1988]).

ACKNOWLEDGMENTS

We wish to thank Paula Silvonen, research scientist at VTT Technical Research Cen-
ter of Finland, for her valuable contribution to related work. The infrastructure to ac-
cess and collect vibration and camera data, as well as the data, are part of research
funded by Tekes, the Finnish Funding Agency for Technology and Innovation (funding
decision number 40075/09). We thank the Measurement, Monitoring and Environmental
Efficiency Assessment (MMEA) research program of the Cluster for Energy and Environ-
ment (CLEEN), Finland, for supporting the publication. This work was conducted using
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