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Abstract. This research explores three SPARQL-based techniques to
solve Semantic Web tasks that often require similarity measures, such as
semantic data integration, ontology mapping, and Semantic Web service
matchmaking. Our aim is to see how far it is possible to integrate cus-
tomized similarity functions (CSF) into SPARQL to achieve good results
for these tasks. Our first approach exploits virtual triples calling property
functions to establish virtual relations among resources under compari-
son; the second approach uses extension functions to filter out resources
that do not meet the requested similarity criteria; finally, our third tech-
nique applies new solution modifiers to post-process a SPARQL solution
sequence. The semantics of the three approaches are formally elaborated
and discussed. We close the paper with a demonstration of the usefulness
of our iSPARQL framework in the context of a data integration and an
ontology mapping experiment.

1 Introduction

Semantic Web tasks such as semantic data integration [18], ontology mapping
[9], Semantic Web service matchmaking [14], and similarity-based retrieval [13]
depend on some notion of similarity. Therefore, researchers still try to find sound
customized similarity functions (CSF) to achieve good results for these tasks.
Finding good similarity functions is, however, data-, context-, and sometimes
even user-dependent, and needs to be reconsidered every time new data or a
new task is inspected. Nonetheless, good CSFs are crucial for the success of the
above-mentioned Semantic Web tasks.

In the past, we made the following two observations: First, it is often not
enough to use a single similarity measure to achieve good results. In this case, a
(possibly weighted) combination of atomic measures needs to be engineered (or
even learned), which turns out to be best for the specific task and data [12]. In
this paper, we, therefore, formally define the concept of a similarity strategy which
can utilize a multitude of individual similarity measures and aggregation schemes
to compare Semantic Web resources.

Second, in recent years, the RDF query language SPARQL has gained increas-
ing popularity. It offers well-known constructs from database technology, defines
standardized results formats, and is a protocol for distributed querying as well.
The current W3C candidate recommendation of SPARQL [22] does, however, not
support CSFs to analyze the data during query processing. This paper focuses



on how to overcome this limitation by introducing iSPARQL – an extension of
SPARQL that supports CSFs in order to query RDF graphs for similarities. The
“i” stands for imprecise indicating that two or more resources are compared by
using similarity measures. The proposed iSPARQL framework should be easy to
use, easily extendable with new user-defined, task-specific similarity functions, as
well as have a high degree of flexibility in terms of customization to the actual
Semantic Web task.

In the following sections, we propose three approaches for integrating CSFs
into SPARQL. Our first approach uses virtual triples calling property functions
in the subject-predicate-object-style. These triples are not matched against the
underlying ontology graph, but instead, employ CSFs to establish virtual rela-
tions (of similarity) between the resources under comparison. In that context, we
will define the concept of similarity joins between RDF graph patterns which
apply similarity measures to combine data. The second approach is based on pure
SPARQL extension functions to filter out resources which are not sufficiently
similar to each other. Our third method introduces new solution modifiers to
the current SPARQL grammar to post-process and transform the solution of the
graph pattern matching part into a new one by means of similarity measures. We
evaluate our prototype iSPARQL system using two sets of experiments: (1) a data
integration experiment and (2) an ontology mapping experiment.

Our contribution is, hence, twofold: first, we present and compare three novel
approaches for integrating similarity querying and SPARQL resulting in a propo-
sition for iSPARQL; second, we show the importance of this proposition using two
real-world Semantic Web tasks.

The paper is structured as follows: next, we briefly introduce the most im-
portant related work, before we explain the details of our formal setup and the
similarity measures used in the paper (Section 3). Section 4 explains our three
approaches to add the notion of similarity into SPARQL, which are evaluated in
Section 5. We close the paper with a brief discussion, limitations, some insights
into future work, and our conclusions.

2 Related Work

Similarity. The concept of similarity is a heavily researched subject in Computer
Science, Psychology, Artificial Intelligence, and Linguistics literature. Typically,
those studies focus on the similarity between vectors [1], strings [7], trees [24], or
objects [26]. In our case, we are interested in the similarity between (complex)
Semantic Web resources of ontologies (i.e., classes and individuals). Apart from
this, several other studies reason generally about the theory of similarity (dis-
similarity) [2, 20]. Most notably, Orozco and Belanche [20] define the concept of
similarity aggregation operators – the counterpart to our similarity aggregation
schemes – and its properties on a formal level.
SPARQL. Cyganiak [8] describes how to transform (a subset of) SPARQL into
relational algebra, which is, as argued by the author, the language of choice when
analyzing queries in terms of query planning and optimization. A translation
into SQL is explained and the semantics of the relational algebra operators is
defined. This idea is further refined by Pérez et al. [21] who conduct an extensive
analysis of the semantics and complexity of SPARQL, focusing on the algebraic
operators JOIN, UNION, OPTIONAL, and FILTER. The semantics and complexity of
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these operators are studied in great detail and insights into query optimization
possibilities are presented. The foundations of SPARQL extension and property
functions are, however, not addressed in their paper.

Siberski et al. [25] propose SPARQL extensions to allow the user to query RDF
graphs with user-defined preference criteria. To achieve this goal, a new solution
modifier is added to the official SPARQL grammar [22]. The main difference to
our approach is the way the results are ranked: iSPARQL uses a multitude of
similarity strategies (focusing on different dimensions of resources) to determine
an overall degree of similarity between resources. To that end, it employs aggrega-
tion schemes to give more or less preference to one of the dimensions considered.
Finally, the ranking is produced by ordering the results according to the overall
similarity score. Thus, while preference criteria require an explicit formulation of
one’s preferences, which is oftentimes very difficult before seing the result set, iS-
PARQL allows their implicit determination via similarity measures – the approach
preferred in Information Retrieval (IR).

In earlier work [4], we already introduced iRDQL– our extension of RDQL
(SPARQL predecessor) with similarity joins. A limitation of iRDQL is that it
allows the user to define only one similarity measure per query.
Similarity Joins (Data Integration). Our approach is partly inspired by stud-
ies from database research. Thus, we succinctly summarize the relevant publica-
tions. To perform data integration, Cohen [6] presents WHIRL and the notion
of similarity joins by which data is joined on similarity rather than on equality.
In WHIRL, the TF-IDF weighting scheme from IR [1] is applied together with
the cosine similarity measure to determine the affinity of simple text in relations.
Similar approaches are proposed by Gravano et al. [11] employing text joins to
correlate information from different web sources.

In addition, a series of studies focuses on Semantic Web data integration: Noy
[18] summarizes the necessity and requirements of ontology integration on the
Semantic Web, pointing out the need for (semi-) automatic similarity detection
between ontologies. This research resulted in the PROMPT Suite [19] to compare
and align ontologies (among others). Furthermore, in two recent studies, Lam et
al. [15] and Meštrović and Ćubrillo [17] propose their very specific approaches
to Semantic Web data integration using the Flora-2 system and an RDF-enabled
Oracle 10g database respectively.
Ontology Mapping. Euzenat et al. [10] propose an ontology alignment API and
a Java tool call OLA that implements a universal measure for comparing resources
in ontologies. Contributing to the same task, Ehrig et al. [9] present a layered
approach to ontology mapping that focuses on different (modeling) aspects of
ontologies. In their work, they define similarity amalgamation functions that are
revived and studied in this paper, and denoted by similarity aggregation schemes.

3 Foundations: SPARQL and Similarity Measures

Before investigating different ways for adding the notion of similarity into SPARQL,
we must lay out the foundations for this endeavor. Specifically, we need to discuss
SPARQL and notions of similarity measures.
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3.1 SPARQL and Similarity

In the heart of SPARQL, an RDF graph matching algorithm exhaustively tries
to find mappings between query variables and graph nodes. According to [22], a
solution mapping µ(?v 7→ t) is defined as a mapping of a query variable ?v ∈ V
to an RDF term t, where V is the infinite set of query variables and t a member
of the set union of IRIs, RDF literals, and blank nodes. A multiset (or bag) of
possible solution mappings is denoted by Ω. We define a similarity measure to be
used in our iSPARQL approach (see Section 4) as follows:

Definition 1. A similarity measure sm is a function sm : µ1 × µ2 7→ R that
associates the similarity of two input solution mappings µ1 and µ2 to a similarity
score sc ∈ R in the range [0, 1].

In this context, a similarity score of 0 stands for complete inequality and 1 for
equality of the input solution mappings µ1 and µ2.

Definition 2. Solution mappings µ1(?v1 7→ t1) and µ2(?v2 7→ t2) are similar if
the values t1 and t2 bound to their query variables are similar.

In an iSPARQL query it should be possible to apply many different similarity
measures, which would result in a set SC of individual similarity scores. When
the similarity between (complex) Semantic Web resources should be calculated,
it is desirable to combine different measures (e.g., by using weights to give more
or less importance to an individual similarity computation). For that purpose, we
introduce our concept of a similarity aggregation scheme:

Definition 3. A similarity aggregation scheme as is a function as : SC 7→ R
that defines how previously calculated similarity scores sci ∈ SC, where i ∈ N, are
combined. The result is again a similarity score sco ∈ R.

An aggregation scheme may combine the similarities using any type of mathe-
matical function. It is left to the user who executes an iSPARQL query to consider
the semantics of such functions. We can now define the concept of an iSPARQL
similarity strategy:

Definition 4. A similarity strategy st is a function st : SM × AS 7→ R that
takes a set of similarity measures SM and aggregations schemes AS and returns
a single similarity value sc expressing the combined, overall similarity between
Semantic Web resources.

Of course, an iSPARQL query can employ any number of different similarity
strategies, which then, altogether, define an overall strategy to compare resources
(refer to the extended query in Appendix A).

3.2 Similarity Measures

In all our experiments, we found it, a priori, hard to say which measure (or strat-
egy) was best to be used in a query. Furthermore, the choice of the best performing
similarity measure is often context- and data-dependent [3]. We, therefore, imple-
mented a set of similarity measures that performed well in different application
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domains in a generic Java library called SimPack.1 For the sake of complete-
ness, we succinctly review the similarity measures we use in this paper: Leven-
shtein string similarity (isparql:lev), Jaccard similarity (isparql:jac), and TF-IDF
(isparql:tfidf ). Generally speaking, all measures of SimPack can be used in our
iSPARQL framework.

The Levenshtein string similarity determines the relatedness of two strings
in terms of the number of insert, remove, and replacement operations to trans-
form one string str1 into another string str2 [16]. This edit distance is defined as
xform(str1, str2). As a normalization factor, the worst case transformation cost
xformwc(str1, str2) is calculated replacing all parts of str1 with parts of str2,
then deleting the remaining parts of str1, and inserting additional parts of str2.
The final similarity between str1 and str2 is calculated by simlev(str1, str2) =
1− xform(str1,str2)

xformwc(str1,str2)
turning the normalized edit distance into a similarity score.

Co-occurrence measures are widely used for calculating similarity scores in
text mining and IR [23]. The Jaccard measure calculates the similarity of two sets
A and B as the ratio of the number of shared elements to the number of unified
elements. For Jaccard, this is expressed by simjac(A,B) = |A ∩ B|

|A ∪ B| .
The TF-IDF measure aims at computing the degree of overlap of text docu-

ments as the cosine of the angle between the weighted vectors representing the
documents [1]. TF-IDF gives each term ti in a document d a weight which can
be computed as wti,d = tfti,d × idfti = tfti × log( N

dti
), where tfti,d is the num-

ber of occurrences of ti in d, N the total number of text documents, and dti

the number of documents where ti appears. A high TF-IDF weight is reached by
a high term frequency and a low inverse document frequency. Hence, common
terms in the document collection are penalized. The similarity between two text
documents is the cosine of the angle between their document vectors vd1 and vd2 :
simtfidf (vd1 ,vd2) = vd1

·vd2

||vd1
||2·||vd2

||2 , where ||v||2 is the L2-vector norm.

4 Our Approach: Imprecise SPARQL

In this section, we present three approaches to the task of extending SPARQL with
similarity operators: (1) the virtual triple approach: calling customized similarity
functions (CSFs) that take some inputs and return an output to the query engine;
(2) the extension function approach: using existing SPARQL filtering functional-
ities in combination with CSFs; and (3), the solution modifier approach: adding
new solution modifiers to the official W3C SPARQL grammar to perform simi-
larity computations.

The example query used in this section intends to find similar publications in
two different datasets. It compares publication titles and book titles (i.e., journal
names) utilizing two similarity measures (isparql:jac and isparql:lev) and the score-
aggregation scheme. This scheme sums up weighted similarity scores as follows:∑n

i=1 wisci, where i ∈ N and
∑n

i=1 wi = 1. The datasets are denoted by opus and
swrc (see Section 5). The queries in the remainder of the paper use the prefixes
shown in Listing 4.1.

1 http://www.ifi.uzh.ch/ddis/simpack.html
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PREFIX isparql: <java:isparql.>
PREFIX swrc: <http :// swrc.ontoware.org/ontology#>
PREFIX opus: <http :// lsdis.cs.uga.edu/projects/semdis/opus#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX owl: <http :// www.w3.org /2002/07/ owl#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >

Listing 4.1. Query prefixes used in this paper.

4.1 Virtual Triple Approach

Our first proposed approach to solve the problem of adding similarity operators
to SPARQL makes use of so called magic properties.2 The concept behind this is
simple: whenever the predicate of a triple pattern is prefixed with a special name,
a call to a customized, external similarity function (CSF) is made and arguments
are passed to the function (by the object of the triple pattern). Finally, a value
is computed and returned to the subject variable of the triple pattern. We call
this approach the virtual triple approach as such triple patterns are not matched
against the underlying ontology graph, but against the only virtually existing
similarity between the resources referred to in the triple. We define a virtual
triple vt as a triple employing a particular kind of property function as follows:

Definition 5. A virtual triple pattern vt is a triple of the form [?v apf:funct
ArgList] where funct is a property function and ArgList a list of solution map-
ping arguments µ(?x1 7→ t1), µ(?x2 7→ t2), . . . , µ(?xn 7→ tn) of funct.

A virtual triple establishes a relation between two Semantic Web resources,
which is neither modeled in nor inferred using the typical RDFS or OWL seman-
tics. The relation is entirely determined by the property function-defined logic
and exists only during query execution (unless materialized in advance, see end of
section). Virtual triples can conceptually be thought of as virtual relations such as
[?pub1 isSimilarTo ?pub2] that would associate the two publication resources
with a similarity score. Here, the predicate isSimilarTo does not have to exist
in the RDF dataset D; it is, at this point, still considered as imaginary.

Syntax and Grammar. The query in Listing 4.2 shows the example query us-
ing virtual triples. The extended SPARQL grammar is shown in Table 4.1. To
implement our virtual triple approach, we added a SimilarityBlockPattern sym-
bol to the official SPARQL grammar rule of GraphPatternNotTriples [22]. The
structure of SimilarityBlockPattern resembles the one of OptionalGraphPattern
but has complete different semantics: instead of matching patterns in the RDF
graph, the triples in an SimilarityBlockPattern act as virtual triple patterns, which
are interpreted by the query processor. A SimilarityBlockPattern expands to rule
[22.1] that adds the new keyword IMPRECISE to the grammar, which is followed
by a number of virtual triples and optional FILTER-statements.

Semantics. The evaluation of the first four triple patterns (lines 3–6) results in
four individual sets of solution mappings Ω1, . . . , Ω4 that are successively tried to
be joined. This operation is performed by extending the sets of mappings with
compatible mappings from other sets (until all sets are processes and no more

2 http://jena.sourceforge.net/ARQ/extension.html#propertyFunctions
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1 SELECT ?publication1 ?publication2 ?similarity
2 WHERE
3 { ?publication1 rdfs:label ?title1 .
4 ?publication1 opus:book_title ?booktitle1 .
5 ?publication2 swrc:title ?title2 .
6 ?publication2 swrc:booktitle ?booktitle2 .
7
8 IMPRECISE {
9 ?sim1 isparql:jac (? title1 ?title2) .
10 FILTER (?sim1 >= 0.5) .
11 ?sim2 isparql:lev (? booktitle1 ?booktitle2) .
12 FILTER (?sim2 >= 0.5) .
13 ?similarity isparql:score (?sim1 ?sim2 0.6 0.4) .
14 FILTER (? similarity >= 0.5) }
15 } ORDER BY DESC(? similarity)

Listing 4.2. iSPARQL example query for the virtual triple approach.

[22] GraphPatternNotTriples ::= OptionalGraphPattern | GroupOrUnionGraphPattern |
GraphGraphPattern | SimilarityBlockPattern

[22.1] SimilarityBlockPattern ::= ’IMPRECISE’ ’{’ ( ( VAR1 FunctionCall )+ Filter? )+ ’}’
Table 4.1. Extended SPARQL grammar for the virtual triple approach.

compatible mappings are found). The semantics of this join operation of basic
graph pattern matching is described in details by Pérez et al. in [21].

The semantics of a SimilarityBlockPattern is basically that of a similarity
join and an (optional) filter operation: (1) it computes the query solutions for
the similarity scores; (2) it eliminates those solutions which do not meet the
filter constraints; and (3), it joins the remaining similarity scores to the solution
mappings found by normal graph pattern matching.

We define the sets of virtual solution mappings µv as ΩV T and the sets of
solution mappings found by normal graph matching as ΩGPM . Furthermore, on
the basis of the definition of basic graph patterns in [22], we define virtual graph
patterns V P as sets of virtual triple patterns vt. Based on this definitions, we
define the similarity join between basic and virtual graph patterns as follows:

Definition 6. A similarity join between basic and virtual graph pattern expres-
sions P and V P extends the sets ΩGPM returned from normal graph pattern
matching with the sets of virtual solution mappings ΩV T determined from virtual
triple pattern matching.

ΩGPM 1s ΩV T = {µ1 ∪ µ2 | µ1 ∈ ΩGPM , µ2 ∈ ΩV T AND µ2 ² R−}

Definition 6 accounts for build-in conditions R−, which virtual solution mappings
optionally must satisfy (denoted by µ2 ² R−). In our case, possible conditions are
constructed by using constants, virtual solution mappings, and the operators <,
6, >, >, and =. If no conditions are defined, µ2 ² R− always evaluates to true. In
accordance to Pérez et al. [21], we can now define the semantics of virtual graph
pattern expressions using an evaluation function [[ · ]] over a dataset D.

[[vt]] = {µv(?v 7→ sc) | sc = apf:funct ( µ(?x1 7→ t1), . . . , µ(?xn 7→ tn) )}

[[(P SIMJOIN V P )]]D = [[P ]]D 1s [[V P ]] (1)
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1 CONSTRUCT
2 { ?publication1 simont:isSimilarTo ?publication2 . # similarity ontology
3 ?publication1 simont:sc ?sim
4 }
5 WHERE
6 { ?publication1 rdfs:label ?title1 .
7 ?publication2 swrc:title ?title2 .
8 ?sim isparql:lev (? title1 ?title2) .
9 FILTER ( ?sim >= 0.5 )
10 }

Listing 4.3. CONSTRUCT-query to materialize similarity computations.

The first part of Equation 1 takes a virtual triple pattern expression and returns
a set containing a single virtual solution mapping µv. In other words, a new solu-
tion mapping is generated that is not found by ordinary graph pattern matching
and that assigns a similarity score to a query variable. Note that for a similar-
ity measure, we limited funct to two input arguments, whereas more than two
arguments can be passed to an aggregation scheme.

Pros and Cons. The following list summarizes the pros and cons of this approach.

+ Multiple similarity measures can be employed to compose sophisticated user-
and data-specific similarity strategies.

+ Similarity scores are assigned to variables, thus, can be reused in the query
for aggregation and ranking or can be returned for further processing.

+ Aggregation schemes can be applied to calculate overall similarity scores.
− The SPARQL-grammar needs to be extended to account for the IMPRECISE-

statements. This requires an adaptation of the query engines.
− Queries using property functions depend on a query engine extension (cur-

rently only implemented in Jena ARQ3), hence, have limited interoperability.

Note that while we regard the need for extending SPARQL-engines with the iS-
PARQL grammar and property functions as the major downside of this approach,
we think the benefits – mainly the possibility to establish virtual relations and to
reuse similarity scores in the query for aggregation and ranking – are sufficient to
justify such extensions.

Also, virtual triples can be materialized by using, for example, the SPARQL
CONSTRUCT-query form in combination with a similarity ontology as sketched in
Listing 4.3. This query constructs new triples as defined in the graph template
of the query’s construct-clause. It would require a similarity ontology (simont)
that would specify all the classes and predicates necessary to model similarity
calculations. Afterwards, the generated graph can be queried for the similarity
scores with a common SELECT-query.

4.2 Extension Function Approach

We present a second approach that does not require to extend the SPARQL
grammar. It is solely based on pre-defined SPARQL filter functions to carry out
the desired similarity computations as part of the filtering process. Listing 4.4
shows the version of the example query that uses only extension functions to
calculate and weight individual similarity scores.
3 http://jena.sourceforge.net/ARQ/
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1 SELECT ?publication1 ?publication2
2 WHERE
3 { ?publication1 rdfs:label ?title1 .
4 ?publication2 swrc:title ?title2 .
5 ?publication1 opus:book_title ?booktitle1 .
6 ?publication2 swrc:booktitle ?booktitle2 .
7
8 FILTER ( isparql:jac(?title1 , ?title2) => 0.5
9 && isparql:lev(? booktitle1 , ?booktitle2) >= 0.5
10 && ( 0.6 * isparql:jac(?title1 , ?title2)
11 + 0.4 * isparql:lev(? booktitle1 , ?booktitle2) >= 0.5 ) )
12 }

Listing 4.4. iSPARQL example query for the extension function approach.

Semantics. The semantics is that of a SPARQL FILTER-expression with its filter
condition R as defined in [21] but extended to account for extension functions.
Thus, the set of operators to build the filter condition R has to be extended
with the similarity measures and the symbols <, 6, >, and >. We denote such a
condition with similarity measures as R+.

[[(P FILTER R+)]]D = {µ ∈ [[P ]]D | µ ² R+} (2)

Pros and Cons. Assuming that there is a reference to the implementing class of
the similarity measure, this approach can be used immediately with the current
SPARQL specification. The similarity scores can, however, not be reused in the
query. The list below summarizes the pros and cons of this approach.

+ No language extensions are necessary; all required features are already imple-
mented in SPARQL.

+ Queries are interoperable with other SPARQL engines (assuming the engine
can interpret the similarity measure specification referenced).

− Individual similarity scores cannot be assigned to variables. They, hence, can-
not be reused in the query for aggregation and ranking.

− Aggregation schemes are more complex to compose as they have to be specified
within filter expressions.

− The performance is likely to be suboptimal as similarity scores have to be
calculated repeatedly (as long as no caching mechanisms are used).

4.3 Solution Modifier Approach

We mention a third approach more for completeness than to elaborate it in de-
tail. The approach adds a new (complex) solution modifier to the official W3C
SPARQL grammar [22]. Solution modifiers (aka sequence solution modifiers) (1)
take the sequence of solutions (set of solution mappings) which is returned after
the SPARQL graph pattern matching is finished, (2) modify it according to their
semantics, and (3) return a new sequence of solutions to the user – essentially, they
perform a post-processing step. This was the approach we suggested in iRDQL
[4], except that iRDQL allows the user to define only one similarity measure per
query. The query in Listing 4.5 shows our example using only solution modifiers
to define similarity strategies.

We could not identify any benefits of this approach compared to the virtual
triple or extension function approach mentioned previously. From a query design
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1 SELECT ?publication1 ?publication2
2 WHERE
3 { ?publication1 rdfs:label ?title1 .
4 ?publication1 opus:book_title ?booktitle1 .
5 ?publication2 swrc:title ?title2 .
6 ?publication2 swrc:booktitle ?booktitle2
7 }
8 IMPRECISE ( ?title1 ?title2 ) SIMMEASURE ( isparql:jac ) THOLD 0.5
9 IMPRECISE ( ?booktitle1 ?booktitle2 ) SIMMEASURE ( isparql:lev ) THOLD 0.5
10 AGGREGATOR ( isparql:score (0.6 0.4) ) THOLD 0.5

Listing 4.5. iSPARQL example query for the solution modifier approach.

point of view, data constraints should be specified in the WHERE-clause. Further-
more, solution modifiers can neither introduce new nor assign to existing query
variables. Hence, there are no means to return the similarity scores to the user.
Lastly, solution modifiers are not intended to access the ontology but only the
result variables – an intention the similarity comparison between resources would
break. Therefore, we decided to not further investigate this approach in this paper.

Summary In this section, we proposed three approaches for extending SPARQL
with similarity joins. Given our elaborations about the pros and cons of all three
approaches, we claim that the virtual triple approach is superior to the others as
it (1) permits to return computed similarity scores (which neither of the other
approaches does) and (2) allows the user to elegantly specify aggregations/com-
binations of such scores for customized similarity functions (which the extension
function approach does not). Its major drawback is the use of virtual triples that
some might deem as conceptually problematic. We disagree: in some sense, the
specification of a similarity function is akin to the specification of an additional in-
ferencing rule. Hence, virtual triples can simply be regarded as part of the inferred
knowledge base.

5 Experiments: Illustrating the Power of iSPARQL

To show the power of the resulting iSPARQL framework, we performed two sets
of experiments: (1) a data integration experiment – combining information from
different RDF datasets, and (2) an ontology mapping experiment – aligning dif-
ferent ontologies along their class descriptions. In earlier works [12, 13], we al-
ready showed the power of iSPARQL for Semantic Web service matchmaking and
similarity-based retrieval in large knowledge bases.

For both experiments, we used the SwetoDblp4 and viewAIFB OWL5 datasets
(with the prefixes opus and swrc). The former focuses on bibliography information
of Computer Science publications and is based on DBLP,6 whereas the latter is a
collection of OWL annotations for persons, publications, and projects from SEAL
(AIFB SEmantic portAL). For our ontology mapping experiments, we considered
only the ontology schema files opus and swrc of SwetoDblp and viewAIFB OWL
respectively. Both files are available online at the respective project’s websites.

4 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
5 http://www.aifb.uni-karlsruhe.de/viewAIFB_OWL.owl
6 http://dblp.uni-trier.de/
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opus:pub swrc:pub opus:title opus:bt opus:date swrc:pp sim
MikaISA04 id170instance Ontology-based Con-

tent Management in a
Virtual Organization

Handbook on
Ontologies

2003-09-15 455-476 0.99

OberleS04 id206instance The Knowledge Portal
“OntoWeb”

Handbook on
Ontologies

2004-03-30 499-517 0.94

OberleVSM04 id207instance An Extensible Ontol-
ogy Software Environ-
ment

Handbook on
Ontologies

2004-03-30 311-333 0.93

SureSS04 id169instance On-To-Knowledge
Methodology (OTKM)

Handbook on
Ontologies

2004-03-30 117-132 0.86

Table 5.1. Results of the data integration experiments.

5.1 Experiment 1: Semantic Web Data Integration

With the first set of experiments, we wanted to evaluate the applicability of our
iSPARQL framework to the task of Semantic Web data integration. This task is
highly relevant to distributed communities that want to integrate their heteroge-
neous knowledge bases (KB) to add, for example, cross-references, or to perform
more sophisticated queries across different KBs to gain additional information.
The problem arises when different parties have a different understanding of the
same ontology for the same domain. This is a very typical situation in the Se-
mantic Web, databases, and the Web in general: people working in the same or
related field, model their domain ontologies (database schemas) similarly but,
nevertheless, introduce syntactic, structural, and semantic differences.

In this section, we present our iSPARQL-based approach to Semantic Web
data integration. To that end, we ran a slightly extended version of the query
shown in Listing 4.2 on the two datasets SwetoDblp and viewAIFB OWL. Note
that this query is very similar to the one presented by Lam et al. [15] on Page 6 that
aims at integrating publication information from different drug datasets. Whereas
they have to rely solely on Oracle’s SQL regexp like-function,7 iSPARQL can
take advantage of a whole library of different similarity measures (i.e., SimPack).

The query’s final result set includes information from both datasets: title,
proceedings name (bt), and a publication’s last modification date from SwetoDblp,
and the number of pages from viewAIFB OWL, together with the similarity of
the publications. The topmost results of the query based on similarity are shown
in Table 5.1. All of the shown results provide the correct match between the two
datasets. While this is not a statistical statement, we have shown the (statistical
significant) usefulness of iSPARQL for the conceptually similar matchmaking and
retrieval tasks elsewhere [5, 12, 13].

5.2 Experiment 2: Ontology Mapping

With our second set of experiments, we evaluated the applicability of our iS-
PARQL system to the task of ontology mapping. In other words, the task is to
find classes in different ontologies, which model the same real world concepts.

To give a very simple example, we have chosen the query shown in Listing 5.1
that should find similar OWL classes in different ontologies. The query retrieves
all resources which are of type owl:Class, filters out any anonymous nodes (com-
plex classes), calculates the similarity of the class names using the Levenshtein

7 Enabling regular expressions in queries.

11



1 SELECT ?OWLClass1 ?OWLClass2 ?similarity
2 FROM NAMED <http :// lsdis.cs.uga.edu/projects/semdis/opus#>
3 FROM NAMED <http :// swrc.ontoware.org/ontology#>
4 WHERE
5 { GRAPH opus:
6 { ?OWLClass1 rdf:type owl:Class .
7 FILTER ( !isBlank(? OWLClass1) )
8 }
9 GRAPH swrc:
10 { ?OWLClass2 rdf:type owl:Class .
11 FILTER ( !isBlank(? OWLClass2) )
12 }
13 ?similarity isparql:lev ( ?OWLClass1 ?OWLClass2 ) .
14 FILTER ( ?similarity > 0.65 )
15 }
16 ORDER BY DESC(? similarity)

Listing 5.1. iSPARQL example query for the ontology mapping task.

OWLClass1 OWLClass2 similarity
opus:Proceedings swrc:Proceedings 1.0
opus:University swrc:University 1.0
opus:Masters Thesis swrc:MasterThesis 0.857
opus:Proceedings swrc:InProceedings 0.846
opus:Book swrc:InBook 0.667
Table 5.2. Results of the ontology mapping experiments.

similarity measure (see Section 3.2), and finally removes all solutions which are
not sufficiently similar to each other.

The 5 topmost answers to the query are listed in Table 5.2 that shows classes
of both ontologies together with their similarity scores. Note that we are aware of
the extreme simplicity of this example. We think that it shows well, however, the
potential of the iSPARQL framework. Imagine to use different similarity measures
focusing on different modeling aspects of ontologies such as data, structure, and
context [9], it is possible to compose much more complex similarity strategies than
the one used in this experiment.

6 Limitations, Future Work, and Conclusions

In this paper, we have shown the syntactical and semantical foundations for a sim-
ilarity join extension of SPARQL. A comparison of three such approaches, namely
the virtual triple, the extension function, and the solution modifier approach has
shown that the virtual triple approach is superior and provides SPARQL users
with most flexibility in terms of defining customized similarity functions (CSF).

The major limitation of this approach lies in the need for extending existing
SPARQL engines. As discussed above, we believe that the benefits warrants such
an extension. Another limitation of the use of any similarity functions in SPARQL
lies in the possibly enormous number of expensive (cross) joins involved during
query execution. This problem can be addressed by (1) pre-computing similarity
joins using a CONSTRUCT-statement as shown in Listing 4.3 or storing them in an
index (as shown in [5]); or by (2) re-ordering the triples such that similarity joins
will be executed only on subsets of the overall ontology as constrained by the
query, which we also explored in [5].
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Having implemented an iSPARQL query engine as an extension to Jena ARQ,
we intend to further investigate the potential for iSPARQL query optimization be-
yond the first steps shown in [5]. Furthermore, we hope to embark on a systematic
exploration of the suitability of similarity measures for different standard Seman-
tic Web applications. Lastly, we intend to explore the possibility of extending
description logic reasoners with customized similarity functions.

Whatever our further explorations will reveal, we firmly believe that the use
of similarity functions is foundational for a large number of Semantic Web tasks
and that this paper’s discussion of the syntax and semantics of iSPARQL can
provide a foundation for their use.
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A Extended iSPARQL Example Query

1 SELECT ?publication1 ?publication2 ?similarity
2 WHERE
3 { ?publication1 rdfs:label ?title1 .
4 ?publication2 swrc:title ?title2 .
5 ?publication1 opus:book_title ?booktitle1 .
6 ?publication2 swrc:booktitle ?booktitle2 .
7
8 IMPRECISE {
9 ?sim1 isparql:jac (? title1 ?title2) .

10 ?sim2 isparql:lev (? booktitle1 ?booktitle2) .
11 ?sim3 isparql:score (?sim1 ?sim2 0.9 0.1) .
12 FILTER (?sim3 > 0.2) }
13
14 ?publication1 opus:hasAuthor ?author1 .
15 ?publication2 swrc:author ?author2 .
16
17 ?author1 foaf:lastname ?lastname1 .
18 ?author2 foaf:lastname ?lastname2 .
19 ?author1 foaf:firstname ?firstname1 .
20 ?author2 foaf:firstname ?firstname2 .
21
22 IMPRECISE {
23 ?sim4 isparql:lev (? lastname1 ?lastname2) .
24 FILTER (?sim4 >= 0.5) .
25 ?sim5 isparql:lev (? firstname1 ?firstname2) .
26 FILTER (?sim5 >= 0.5) .
27 ?sim6 isparql:score (?sim4 ?sim5 0.7 0.3) }
28
29 ?publication1 opus:abstract ?abstract1 .
30 ?publication2 swrc:abstract ?abstract2 .
31
32 IMPRECISE {
33 ?sim7 isparql:tfidf (? abstract1 ?abstract2) .
34 FILTER (?sim7 >= 0.7) .
35 ?similarity isparql:average (?sim3 ?sim6 ?sim7) }
36 }

Listing A.1. Extended iSPARQL example query for the virtual triple approach.
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