O}

invent
ARQo: The Architecture for an ARQ Static Query Optimizer
Markus Stocker, Andy Seaborne
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2007-92
June 26, 2007*
semantic web, In this paper we describe the architecture of ARQo, a first approach for
SPARQL, query SPARQL static query optimization in ARQ. Specifically, we focus on static
optimization optimization of BasicGraphPattern (BGP) for in-memory models. Static query

optimization is intended as a query rewriting process where the set of triple
patterns defined for a BGP are rewritten according to a specific order.

We propose a rewriting process according to the estimated execution cost of
joined triple patterns in increasing order. Specifically, the estimated execution
cost is a function of multiple parameters such as the estimated selectivity of
joined triple patterns, the availability of indexes or pre-calculated result sets.

* Internal Accession Date Only Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.



ARQo: The Architecture for an
ARQ Static Query Optimizer

Markus Stocker and Andy Seaborne*

HP Labs Bristol
{firstname.lastname}@hp.com

Abstract. In this paper we describe the architecture of ARQo, a first
approach for SPARQL static query optimization in ARQ. Specifically, we
focus on static optimization of BasicGraphPattern (BGP) for in-memory
models. Static query optimization is intended as a query rewriting pro-
cess where the set of triple patterns defined for a BGP are rewritten
according to a specific order.

We propose a rewriting process according to the estimated execution cost
of joined triple patterns in increasing order. Specifically, the estimated
execution cost is a function of multiple parameters such as the estimated
selectivity of joined triple patterns, the availability of indexes or pre-
calculated result sets.

1 Introduction

Query optimization is an on-going research area for Relational Database Manage-
ment Systems (RDBMS). Generally, database systems which provide a declar-
ative language to describe what a query should return, require advanced opti-
mization techniques to enable query evaluation within user friendly time frames.
Modern database systems implement a number of optimization techniques on dif-
ferent abstraction levels. For instance, the evaluation of Query Execution Plans
(QEP) is a fundamental optimization and sophisticated techniques greatly affect
the query execution performance.

In this paper we present and discuss ARQo, a static query optimizer for
ARQ!. Specifically, we focus on static optimization of SPARQL [7] BasicGraph-
Patterns (BGP) for in-memory models. While SPARQL query engines such as
ARQ and Sesame? generally implement index structures for in-memory mod-
els to allow fast retrieval of triples, they still lack advanced static (i.e. query
rewriting) optimization techniques to optimize the query at the QEP level.

ARQo is a first proposal to address the problem of SPARQL static query
optimization in ARQ. The goal is to find the QEP which minimizes the execution
costs. Thereby, execution costs are a function of multiple parameters which may
be arbitrary combined depending whether or not the required information is

* Contact in case of questions
! http://jena.sourceforge.net/ARQ/
% http://www.openrdf . org/



available within the query execution context. For instance, index structures or
pre-calculated result sets are examples of such parameters.

ARQo implements an extensible architecture for QEP cost estimation. Essen-
tially, the framework enables the implementation of cost estimation techniques
and implements a generic strategy to search for the most promising QEP, the
QEP which is expected to evaluate the query fastest. Therefore, we formalize
the concept of BasicGraphPattern (BGP), QEP plan space and QEP to meet
the needs of the architecture.

Moreover, we extend the framework with cost estimation techniques which
may be used within different ARQ deployments depending on the specific set-
tings. Specifically, we intend to develop (1) a generic technique based on variable
counting which is especially convenient if specialized information about the un-
derlying ontology is unavailable. Further, we intend to implement (2) a more
sophisticated technique based on the concept of joined triple pattern selectiv-
ity introduced by Bernstein et al. [1]. We intend to implement the approaches
of Selectivity Estimation Index (SEI) and Query Pattern Index (QPI) for the
estimation of joined triple pattern selectivity which the authors describe in [1].

The remainder of this paper is structured as follows. In Section 2, we briefly
review some related work. In Section 3, we formalize the concepts required for
the ARQo architecture, especially the BGP, the QEP and the plan space. In
Section 4, we describe the proposed architecture in more details, focusing on the
selected approach to identify the most promising QEP. Finally, in Section 5, we
present and discuss the QEP cost estimation extensions we intend to provide.

2 Related Work

Static query optimization is an on-going research field especially for relational
database management systems. Years of research have enabled modern database
systems to powerful and fine tuned infrastructures which allow interactive query-
ing for most applications.

In the literature (IBM System R [8], INGRES [9] POSTGRES?) the prob-
lem of finding the best QEP is mainly solved using two different approaches,
query decomposition or exhaustive search. Query decomposition is a heuristic
greedy algorithm that proceeds in a stepwise fashion. The major drawback of
this approach is that potentially good plans are ignored by the algorithm. An ex-
haustive search of the plan space identifies every join combination, i.e. all plans
for processing two-way joins are considered. The drawback of this approach is
the required time for planning, which is bigger than for the query decomposi-
tion approach since the algorithm has to scan a potentially huge plan space.
The benefit of using an exhaustive search approach is that good plans are not
overlooked.

IBM System R [8] is probably the most prominent and the first example of a
relational database system which considers static query optimization techniques.

3 http://s2k-ftp.cs.berkeley.edu:8000/postgres/papers/UCB-MS-zfong. pdf



[T T U R R

Listing 1.1. Example BasicGraphPattern (LUBM Query 2)

?X rdf:type ub:GraduateStudent

7Y rdf:type ub:University

?Z rdf:type ub:Department

?X ub:memberOf 77

?Z ub:subOrganizationOf ?Y .

?X ub:undergraduateDegreeFrom 7Y .

The static optimizer of System R implements an exhaustive search of the plan
space where the cost of a plan is calculated based on the required disk accesses
and, thus, on the selectivity of conditions [6].

The Sesame open source RDF framework? uses some general query opti-
mization techniques based on query rewriting according to the specificity of
triple patterns. Essentially, the specificity is a function of the number and type
of variables defined for the subject, the predicate and the object of a triple pat-
tern. The query planner selects the triple patterns according to their decreasing
specificity.

Harth et al. propose in [4] an optimized index structure for RDF [2] which is
extended with statistical information about the data set in the form of occurrence
counts of access patterns. This allows efficient lookup for the result set size of an
access pattern and, thus, static query optimization according to the selectivity of
access patterns. In our approach, we provide selectivity information about joined
patterns, which is fundamental since the selectivity of two patterns may be low
when considered independently but the joined pattern may be highly selective.

3 ARQo Formalization

In this section we formalize the concepts required for ARQo and the goal of
SPARQL static query optimization of BasicGraphPattern (BGP) for in-memory
models. To clarify the idea, we provide some figures based on the BGP of Listing
1.1 (é.e. the WHERE clause of the Lehigh University Benchmark (LUBM) [3]).

Given a BGP, B, we define B to be a graph G which is described by the set
G of undirected connected graphs. The elements g € G are the components of G.
For each pair g;,9; € G, gi, g; are disconnected.

For SPARQL, an undirected connected graph g € G is an ordered pair g :=
(N, E), where N is a set, whose elements are triple patterns (i.e. the nodes of
g) and & is a set of unordered pairs of distinct triple patterns which are joined
by a common variable (i.e. the edges of g).

In Figure 1, we display the undirected connected graph g; € G for the BGP
of Listing 1.1. Since the triple patterns of the BGP are all joined together, G
contains only one element, i.e. the connected graph g;. Note, that the numbering

4 http://www.openrdf .org



Fig. 1. Undirected connected graph g1 € G

used for the nodes of g; corresponds to the numbering of the triple patterns of
the BGP in Listing 1.1. For any two nodes (i, j) € g1, there is a path between i
and j, if the triple patterns corresponding to i and j are joined together by one
or more variables.

In SPARQL, the execution order of pairwise disconnected graphs g € G is
arbitrary, since the overall result set corresponds to the Cartesian product of
the result sets for any g € G. Thus, the problem of statically optimizing B is a
sub-problem of optimizing each g € G.

Definition 1. The size of g € G is the number of nodes of g.
Definition 2. A QEP for g € G is an ordered set of the nodes of g.

Definition 3. For g € G we define the set P as the QEP space of g. The size of
P is the total number of QEPs p € P, i.e. the number of ordered permutations
of the nodes of g.

Given the size N of g € G, the size of P is N! (for an uniprocessor machine).
Thus, even for simple SPARQL queries with a few joined triple patterns, the
expanded QEP space P is huge. Therefore, we need an efficient way how to
identify the most promising QEP.

A QEP for B is described by an unordered set, Q, whose elements p € P are
QEPs. The size of Q equals the size of G. Thus, the QEP for B is described by
the QEP of each component of G.

Therefore, we state the optimization problem as the search for the most
promising QEP p within the plan space P for each undirected connected graph
g € G, building, hence, the unordered set @ of QEPs for the components of G,
where G is the graph which reflects the BGP B.

Note, that a QEP p € P can be represented as a Directed Acyclic Graph
(DAG). We define D as the set of DAGs d for a ¢ € G. For any d € D, the
unordered set £ of joined triple patterns (i.e. edges) of g € G is transformed to
a set A of directed edges (i.e. arcs).

In Figure 2, we show the DAG corresponding to the QEP which executes the
BGP of Listing 1.1 top-down. For any two nodes (i,7) € dy, there is a directed



Fig.2. DAG di € D

path between i and j, if the triple patterns corresponding to i and j are joined
together by one or more variables and i is executed first.

Hence, there is a clear relationship between the set P of QEPs and the set
D of DAGs. More precisely, we can state the following function,

f:QEP — DAG (1)

which is injective, not surjective and not bijective. Thus, a QEP can be
uniquely mapped to a DAG, but a DAG is an abstraction for one or more
QEPs. Following Equation 1, a QEP may be described as a materialization of
an undirected connected graph g € G in the form of a directed acyclic graph
deD.

4 ARQo Architecture

In this section we concisely describe the architecture of ARQo. Essentially, ARQo
is a plug-in module for ARQ with three main components: (1) the optimization
core, a (2) heuristic broker and an (3) extensible pool of heuristic techniques.

4.1 The Optimization Core

The optimization core implements the main technique used to statically optimize
SPARQL Basic Graph Patterns (BGP). As described in Section 3, we intend to
abstract a BGP as a graph G, where G is a set G of undirected connected graphs,
i.e. the components of G.

We, hence, optimize each g € G, i.e. we search for the most promising ma-
terialization of g in the form of a DAG. This task is mainly solved by the fol-
lowing steps. Given a g € G, we (1) provide g with estimated execution costs
for the nodes and edges. Thereby, costs are estimated by heuristics which are
implemented in ARQo and are extensible for user specific purposes. Then, we (2)
identify the Minimum Spanning Tree (MST) of g by means of an algorithm which



returns an ordered set 7 of joined triple patterns (i.e. edges). For instance, the
Kruskal MST algorithm [5] identifies the edges of the MST in increasing weight.

The elements ¢ € 7 are ordered according to the total cost for each element
t, i.e. the edges of g. The total cost of ¢ is calculated as a function of the costs of
the edge and the related nodes. Thus, we define the partial order relation (7', <)
with the properties of reflexivity, antisymmetry and transitivity. Moreover, we
define an order relation (N, <) for the elements ¢ € 7, where N is the set of
nodes for a specific ¢t € 7. Thus, we get a set 7 with edges ¢ which are ordered
by increasing estimated total cost, where each ¢ € 7 is a set N of the nodes of t.
The set A is a pair of nodes ordered by increasing estimated costs. Finally, we
(3) extract the nodes from 7 to a set Q by selecting the nodes according to the
two order relations (7, <) and (N, <). The set Q features a list of distinct nodes,
i.e. triple patterns and reflects the most promising QEP. Note that the elements
q € Q, i.e. the nodes of g, represent a specific QEP and, thus, define a DAG. We
may describe Q as a materialization of g in the form of the DAG specified by the
elements ¢ € Q. In fact, the order relation of Q, which is specified by (7, <) and
(N, <), allows to construct the corresponding DAG by selecting the head and
tail nodes ¢ € Q according to the order relation of Q and the join relationship
between node pairings.

Fig. 3. MST for the undirected connected graph g1 € G of Listing 1.1

In Figure 3, we show the undirected connected graph g; € G for the BGP
of Listing 1.1. For each node and edge, we provide the selectivities of the cor-
responding (joined) triple pattern(s). Further, we highlight the MST. Based on
this solution, we may build the ordered set 7 of edges with the elements,

T ={(5,6),(5,3),(5,2),(1,4),(6,4)}

Finally, the ordered set Q of distinct nodes which reflects the most promising
QEP contains the elements,

Q = {5a6,3727134}



Fig. 4. DAG of the most promising QEP

Listing 1.2. Optimized BasicGraphPattern (LUBM Query 2)

?Z ub:subOrganizationOf ?Y .

?X ub:undergraduateDegreeFrom 7Y .
?Z rdf:type ub:Department

?Y rdf:type ub:University

?X rdf:type ub:GraduateStudent

?X ub:memberOf ?Z

In Figure 4 we display the DAG which corresponds to the most promising
QEP and reflects the selected sequence of distinct nodes (i.e. triple patterns) of
the set Q, whereas in Listing 1.2 we list the reordered optimized BGP.

4.2 The Heuristic Broker

The heuristic broker is a component which selects the best heuristic cost es-
timation for joined triple pattern according to specific settings. Such settings
may be the availability of specialized statistical information about the underly-
ing ontology, cached result sets for joined triple patterns or specialized access
paths for triple pattern evaluation. The main goal of the broker is to provide the
optimization core with the best available cost estimation heuristic according to
the settings, or with the heuristic specifically selected by the user.

4.3 The Extensible Pool of Heuristic Techniques

The extensible pool of heuristic techniques implements a number of different
heuristics to estimate the execution cost of (joined) triple patterns. Such heuris-
tics are required by the optimization core to select the most promising QEP. In
fact, they provide the estimated execution costs for the nodes and edges of each
g € G. We implement the third component as a typical framework which allows
to extend specific, user-defined, techniques. In Section 5, we describe in more
details the techniques we intend to provide out-of-the-box.



5 ARQo Extensions

In this section, we briefly introduce the two main heuristics for (joined) triple
pattern cost estimation we intend to develop for ARQo.

5.1 Variable Counting

The first heuristic is a simple variable counting technique. The goal is to provide
a simple optimization technique also if specialized statistical information about
the underlying ontology is not available to ARQo. This heuristic will provide
the optimization core with a constant cost of 1.0 for edges. However, the cost
of a node will be a function of the number and type of variables defined in the
corresponding triple pattern. In fact, a higher execution cost will be assigned
to triple patterns with more variables. Moreover, a variable subject leads to a
higher execution cost as a variable predicate or object.

5.2 Selectivity Estimation

A second heuristic is an implementation of the Selectivity Estimation Index
(SEI) and the Query Pattern Index (QPI) first introduced by Bernstein et al.
and described in [1]. The SEI is used to estimate the cost execution of triple
patterns, i.e. nodes, whereas the QPI is used to estimate the cost of joins, i.e.
edges. Based on specialized statistical indexes about the underlying ontology,
the SEI and QPI are expected to result into improved SPARQL static query
optimization (as illustrated by the evaluation performed by Bernstein et al. in
11]).

Next, we concisely describe the SEI and the QPI and present an approach
how both may be combined to estimate more accurately the selectivity of joined
triple patterns defined in SPARQL queries.

SEI: The Selectivity Estimation Index. The SEI is used to estimate the selectivity
[8] of a triple pattern. Given a triple pattern 7', the formula

sel(T) = sel(S) x sel(P) x sel(O)

estimates the selectivity of 7. Thus, the selectivity of a triple pattern is
calculated as the multiplication of the selectivity for the building blocks of a
triple pattern, i.e. the subject S, the predicate P and the object O. We refer to
Bernstein et al. [1] for a detailed description of the SEI technique.

QPI: The Query Pattern Inder. The QPI provides information about the selec-
tivity of joined triple patterns, more precisely, the selectivity of two joined triple
patterns. The ontology schema is used to automatically generate the QPI.

In fact, the rdfs:domain and rdfs:range properties of rdf:Property in-
stances, allow to identify pairs of rdf:Property instances which can be joined
because of a matching class for the rdfs:domain and rdfs:range properties.



For a detailed discussion about the QPI technique we refer to Bernstein et al.’

[1].

Combining the SEI and the QQPI. The QPI is essentially a list of two joined
triple patterns with variables defined for the subject and the object®. However,
SPARQL queries do not always define variables for the subject and the object
of joined triple patterns. Thus, the QPI enables the retrieval of the selectivity
for joined patterns which are an upper bound for the selectivity of the pattern
defined in the query. For instance, consider the following SPARQL query (we
list only the WHERE clause)

?x rdf:type ub:GraduateStudent .
7x ub:undergraduateDegreeFrom 7y .

The QPT allows a lookup for the selectivity of

7?x rdf:type 7y .
7x ub:undergraduateDegreeFrom 7z .

which only approximates the real selectivity of the joined pattern defined in
the SPARQL query. In fact, the QPI selectivity of the pattern is an upper bound
for the selectivity of any possible query pattern which can be built for the two
joined patterns. Thus, we know that the selectivity of a SPARQL query pattern
is potentially lower.

We intend to use the SEI selectivity estimation to estimate the selectivity for
a given subject and object. The QPI selectivity may be reduced using the SEI
selectivity estimation by a specific formula.

5.3 Other Heuristics

Of course we may think of many other cost estimation heuristic. For instance, we
could extend ARQ with a cache for the selectivity of executed query patterns.
This incremental cache could be exploited by a corresponding heuristic which
considers the cached selectivities while estimating the cost of (joined) triple
patterns. As another example, we could extend ARQ with a cache for result sets
of query patterns and implement a heuristic which assigns lower execution costs
to triple patterns whose result sets are cached. As an example for a user specific
setting, if someone provides a simple index about the occurrences of distinct
predicates, we may implement a simple heuristic which considers this specific
index to estimate the execution cost of triple patterns.

® The QPI technique is not yet published. However, the authors have submitted both
techniques as contribution to the ISWC2007.

5 Note, that the variables are of the set (?x, ?y, ?z), i.e. the joined triple pattern
defines a common variable where the class type matches for the rdfs:domain and
rdfs:range properties



6 Future Work and Conclusions

As future work, we intend to implement the proposed ARQo architecture with
its three components based on the description provided in this paper. We will
investigate different cost estimation techniques which allow QEP evaluation also
for specialized settings which may include caching of result sets or learning sys-
tems which incrementally store selectivity information of query patterns. Finally,
we intend to extensively evaluate the performance of ARQ extended with ARQo
on different data sets and retrieval tasks.

We believe, ARQo will provide ARQ a robust static query optimization mod-
ule for basic graph patterns and in-memory models which is extensible and
adaptable to specific settings but will lead to improved performance also for
generic ARQ deployments.

References

1. Abraham Bernstein, Christoph Kiefer, and Markus Stocker. OptARQ: A SPARQL
Optimization Approach based on Triple Pattern Selectivity Estimation. Technical
Report ifi-2007.03, Department of Informatics, University of Zurich, 2007.

2. Dan Brickley and R.V. Guha. Rdf vocabulary description language 1.0: Rdf schema.
Technical report, W3C, 2004.

3. Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics, 3(2):158-182, 2005.

4. Andreas Harth and Stefan Decker. Optimized index structures for querying rdf from
the web. In 3rd Latin American Web Congress, 2005.

5. Jr. Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. In Proceedings of the American Mathematical Society, volume 7,
pages 48-50, 1956.

6. Gregory Piatetsky-Shapiro and Charles Connell. Accurate estimation of the number
of tuples satisfying a condition. In SIGMOD ’84: Proceedings of the 1984 ACM
SIGMOD international conference on Management of data, pages 256—-276, New
York, NY, USA, 1984. ACM Press.

7. Eric Prud’hommeaux and Andy Seaborne. Sparql query language for rdf. Technical
report, W3C, 2007.

8. P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system. In SIG-
MOD "79: Proceedings of the 1979 ACM SIGMOD international conference on Man-
agement of data, pages 23-34, New York, NY, USA, 1979. ACM Press.

9. Eugene Wong and Karel Youssefi. Decomposition — a strategy for query processing.
ACM Trans. Database Syst., 1(3):223-241, 1976.

10



