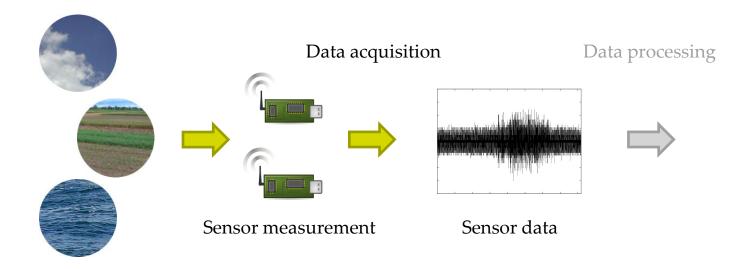
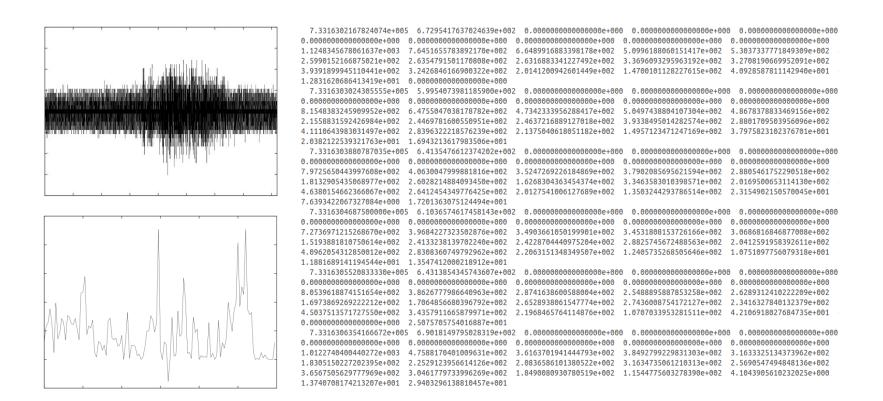
Markus Stocker Åbo Akademi • Turku • 04.04.2013

Wavellite: A software framework for the representation of knowledge about real-world phenomena observable by a sensor network



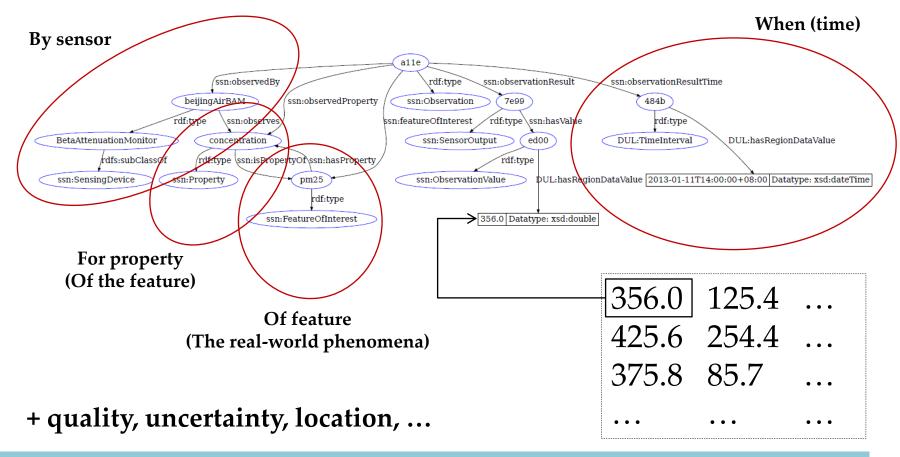
About (me)

- PhD student at UEF in environmental technology (informatics)
 - Also collaborating with Åbo Akademi
- MSc student at UEF in environmental science
- Background in informatics (MSc UZH, 2007)
- Interned with HPL Bristol (UK) and Clark & Parsia (USA) on various projects related to the semantic web
- In Kuopio since summer 2009
- Music, sports, cooking, photography, reading


Introduction Environmental monitoring (using sensors)

Real-world phenomena and their properties (e.g. the temperature of indoor air)

Introduction Sensor data makes *no* sense (almost)



Introduction ... and

- There is lots of it, including in environmental science
- Typically automatically sampled, sometimes at "high frequency"
- National Ecological Observatory Network (NEON, USA)
 - Bioclimate, biodiversity, biogeochemistry, ecohydrology, infectious disease, land use change
 - ~60 observatory sites in 20 eco-climatic domains over 30 years
 - 539 "basic calibrated data products"^[1]
 - "Billions of data points collected by thousands of sensors and hundreds of people"^[2]
- Measuring vehicle-induced vibration on a road section
 - 3 vibration sensors at 2 kHz; 15 billion measurements a month

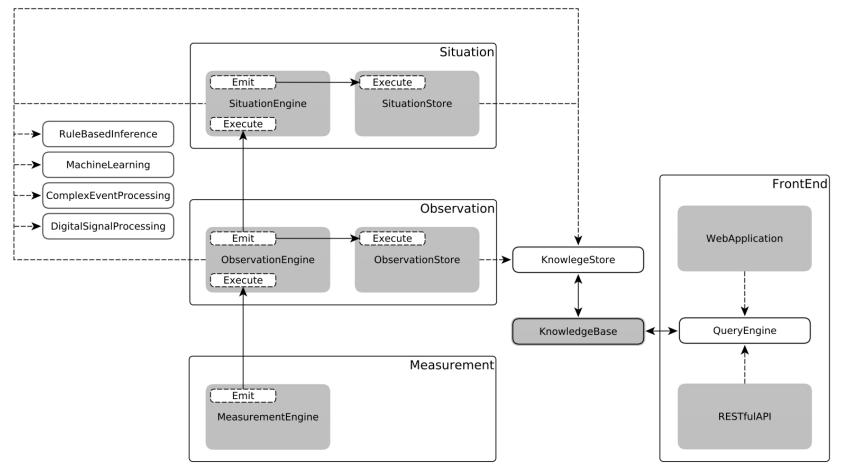
Introduction Self-describing sensor data

Introduction The problem

- More sensors \rightarrow more data
 - Very likely
- More data → more information/knowledge?
 - Desirable but (more) challenging
 - If we continue developing and improving
 - Processing, storage, and retrieval of sensor data
 - Acquisition of information and knowledge from sensor data
 - Integration, reuse, and sharing of data, information, and knowledge
- Currently,
 - Large gap between sensor data and abstract information/knowledge
 - Generic systems to visualize (spatiotemporal) sensor data
 - Ad hoc systems to make more sense of sensor data

Wavellite Overview

- Software framework for
 - Continuous, real-time, and distributed
 - Representation of knowledge (for real-world phenomena)
 - Acquired from sensor data
- Software interface to represented knowledge for
 - Users via Web application
 - Software via RESTful API



Wavellite Overview

- Manage sensor data and its metadata
 - Sensor data *and* the <u>when-by-for-of</u> (self-describing sensor data)
 - In other words, sensor data and information on
 - <u>when</u> is the sampling time
 - the sensor <u>by</u> which sampling occurs
 - the property <u>for</u> which measurement is performed
 - and the feature <u>of</u> which the property is measured
 - For instance, data sampled <u>now</u> by <u>this beta attenuation monitor</u> for the <u>concentration</u> of <u>outdoor PM_{2.5}</u>
- Represent knowledge for real-world phenomena observed by sensors
 - Events, episodes, scenes, changes: more generally situations
 - For instance, events of unhealthy exposure to $PM_{2.5}$

Wavellite Architecture

Wavellite Implementation

- Wavellite builds on Storm for distributed processing
- Storm is a distributed real-time computation system^[3]
- Storm topology
 - Consists of nodes and streams
 - Nodes can implement "arbitrarily" complex logic
 - Can be deployed on single machine or cluster
- By building on Storm, Wavellite
 - Components (engines and stores) are Storm nodes
 - Measurement, observation, situation streams are Storm streams
- Knowledge base is a third-party software (Stardog RDF database)
- Front end is implemented in Spring Framework

Wavellite Measurement layer

- Measurement engine
 - Software wrapper for (one or more) sensors
 - More generally, a source of data (e.g. sensing device, databases, files, ...)
 - Very heterogeneous
 - Responsible for the retrieval of sensor data
 - Parsing may be necessary
 - Generates measurement(s) forwarded via stream(s)
 - Support relevant communication protocol(s) and data format(s)
 - Domain specific

Wavellite Observation layer

- Observation engine
 - Subscribes to measurement stream(s)
 - Semantic enrichment of measurement data
 - Add the when-by-for-of to sensor data
 - Turn measurements into observations
 - Forward observations via stream(s)
 - Uses domain terminology defined in the knowledge base
 - Describe your sensors, features, properties, locations (types)
 - Domain terminology extends from the SSN ontology
 - Generic/reusable terminology for sensor networks and data
- Observation store
 - Subscribes to Observation stream(s)
 - Takes care to store observations to knowledge base

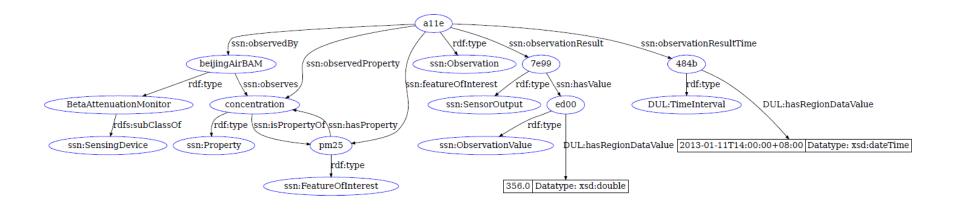
Wavellite Situation layer

- Situation engine
 - Subscribes to Observation stream(s)
 - Represents situations acquired from observations
 - May use DSP, ML, CEP, ... for acquisition
 - Uses domain terminology defined in the knowledge base
 - Describe your situation types, relevant objects in situations, ...
 - Domain terminology extends from the STO
 - Generic/reusable terminology for situations
 - Based on Situation Theory^[4]
- Situation store
 - Subscribes to Situations stream(s)
 - Takes care to store situations to knowledge base

Wavellite Modules

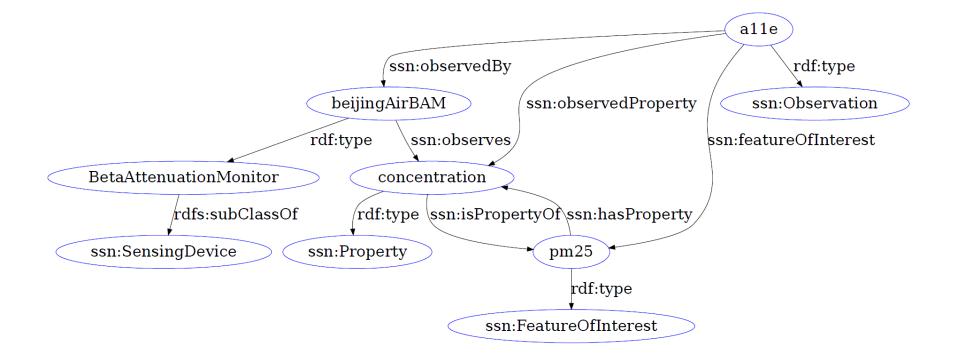
- Provide services to Wavellite components, for instance
 - FFT of signal observed over time
 - Pattern classification
 - Storage to knowledge base
 - Query from knowledge base
- Implement logic to acquire knowledge
 - Learning or reasoning
 - Typically domain specific
 - Implementation in Java (possibly also JVM script languages)
- Typically software libraries

Example BeijingAir

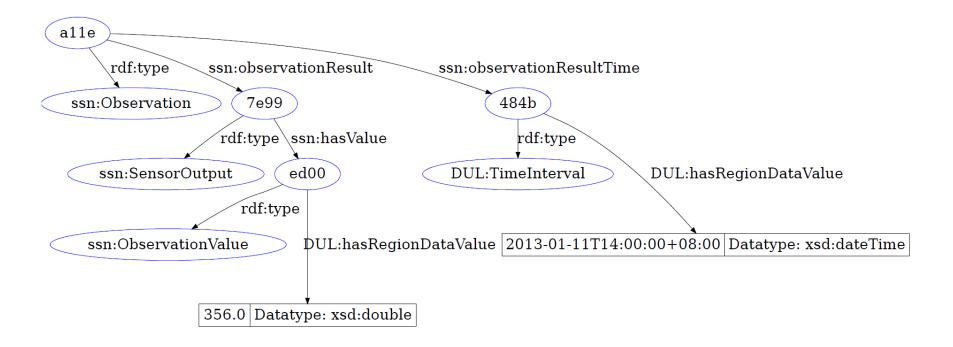

- Sensor data acquired from @bejingair Twitter stream
- U.S. Embassy in Beijing runs a BAM for PM2.5 monitoring
- One status update every hour, e.g.

B	BeijingAir @BeijingAir 04-02-2013 19:00; PM2.5; 108.0; 176; Unhealthy (at 24-hour exposure at this level) Expand	1h
	BeijingAir @BeijingAir 04-02-2013 18:00; PM2.5; 123.0; 184; Unhealthy (at 24-hour exposure at this level) Expand	2h
	BeijingAir @BeijingAir 04-02-2013 17:00; PM2.5; 130.0; 188; Unhealthy (at 24-hour exposure at this level) Expand	3h

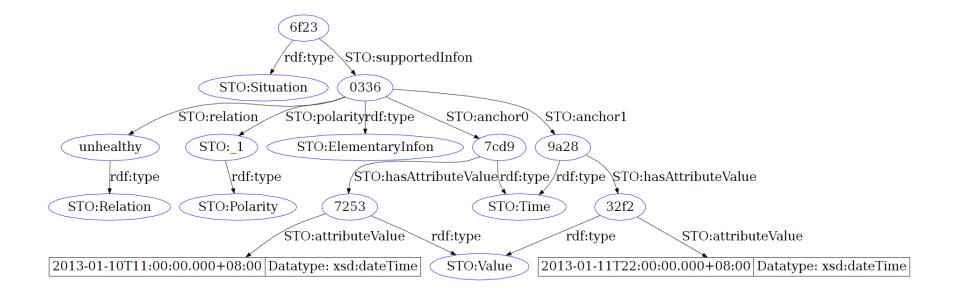
- Statuses -> Measurement -> Observations -> Situations
- Situations of unhealthy exposure (> 65.5 μ g/m³; 24-hour)



Example BeijingAir (Observation)



Example BeijingAir (Observation metadata)



Example BeijingAir (Observation data)

Example BeijingAir (Situation)

Wavellite Demo

- Use Web application to visualize
 - Observations by the BAM operated by the U.S. Embassy to Beijing
 - Visualize situations of (unhealthy) exposure
- Show RESTful API

Future work

- Continue developing Wavellite functionality
 - Core, Web application, RESTful API
 - For instance
 - Summary statistics view for queried observations
 - Support for KB-driven knowledge acquisition tasks
- Apply Wavellite to new domains
 - Environmental science
 - Smart grids
 - Monitoring of industrial machinery
- Write a PhD thesis

Related work

- Terminologies to describe sensor networks and sensor data^[5]
- Utilize SSN ontology^[6] or STO^[7,8,9]
 - But not both in a hybrid manner
- Extract from sensor data physiological properties of athletes^[10]
 - Representation using XML, not expressive ontology language
- Generic architecture to extract information form sensor network^[11]
 - Three-layered architecture
 - Bridging sub symbolic layer (measurement) with symbolic layer
 - Via conceptual layer that implements a metric space (similarity)
- System that can be queried for high-level events^[12,13]
 - Does not require handling of sensor data
- Ontology-based environmental information systems^[14,15]

Conclusions

- More and more sensors; more and more sensor data
- Are we keeping up with knowledge acquisition?
- Concerns
 - Large gap between sensor data and abstract knowledge
 - Complex knowledge acquisition tasks
 - Automated representation of acquired knowledge
- Wavellite aims at tackling some of these concerns
- Generic framework extensible with domain specific
 - Software that implements sensor data and knowledge acquisition
 - Modelling of sensors, observations, situations

References

- [1] http://www.neoninc.org/science/data
- [2] http://www.neoninc.org/news/big-data-part-ii
- [3] <u>http://storm-project.net/</u>
- [4] Devlin, K. (1991): Logic and information. Cambridge University Press
- [5] Compton, M., Henson, C., Neuhaus, H., Lefort, L., Sheth, A., 2009. A Survey of the Semantic Specification of Sensors, in: 2nd International Workshop on Semantic Sensor Networks, at 8th International Semantic Web Conference.
- [6] Barnaghi, P., Ganz, F., Henson, C., Sheth, A., 2012. Computing Perception from Sensor Data. Technical Report. knoesis.org.
- [7] De Maio, C., Fenza, G., Furno, D., Loia, V., 2012. Swarm-based semantic fuzzy reasoning for situation awareness computing, in: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on, pp. 1--7.
- [8] Doulaverakis, C., Konstantinou, N., Knape, T., Kompatsiaris, I., Soldatos, J., 2011. An Approach to Intelligent Information Fusion in Sensor Saturated Urban Environments, in: Intelligence and Security Informatics Conference (EISIC), 2011 European, pp. 108--115.
- [9] Fenza, G., Furno, D., Loia, V., Veniero, M., 2010. Agent-based Cognitive approach to Airport Security Situation Awareness, in: Proceedings of the 2010 International Conference on Complex, Intelligent and Software Intensive Systems, IEEE Computer Society. pp. 1057--1062.
- [10] Conroy, K., May, G., Roantree, M., Warrington, G., Cullen, S.J., Mc-Goldrick, A., 2011a. Knowledge acquisition from sensor data in an equine environment, in: Proceedings of the 13th international conference on data warehousing and knowledge discovery, Springer-Verlag, Berlin, Heidelberg. pp. 432--444.
- [11] Gaglio, S., Gatani, L., Lo Re, G., Ortolani, M., 2007. Understanding the Environment Through Wireless Sensor Networks, in: Proceedings of the 10th Congress of the Italian Association for Articial Intelligence on AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, Springer-Verlag, Berlin, Heidelberg. pp. 72–83.
- [12] Liu, J., Zhao, F., 2005. Towards semantic services for sensor-rich information systems, in: Broadband Networks, 2005. BroadNets 2005. 2nd International Conference on, pp. 967--974.
- [13] Whitehouse, K., Zhao, F., Liu, J., 2006. Semantic Streams: A Framework for Composable Semantic Interpretation of Sensor Data, in: Römer, K., Karl, H., Mattern, F. (Eds.), Wireless Sensor Networks. Springer Berlin / Heidelberg. volume 3868 of LNCS, pp. 5--20.
- [14] Wanner, L., Vrochidis, S., Tonelli, S., Mossgraber, J., Bosch, H., Karppinen, A., Myllynen, M., Rospocher, M., Bouayad-Agha, N., Bügel, U., Casamayor, G., Ertl, T., Kompatsiaris, I., Koskentalo, T., Mille, S., Moumtzidou, A., Pianta, E., Saggion, H., Serani, L., Tarvainen, V., 2011. Building an Environmental Information System for Personalized Content Delivery, in: Hrebícek, J., Schimak, G., Denzer, R. (Eds.), Environmental Software Systems. Frameworks of eEnvironment. Springer Boston. volume 359 of IFIP Advances in Information and Communication Technology, pp. 169--176.
- [15] Wei, W., Barnaghi, P., 2009. Semantic Annotation and Reasoning for Sensor Data. Smart Sensing and Context, 66--76.

Appendix Situation Theory

- A situation, *s*, supports (one or more) infon(s) σ
 - Formally, $s \models \sigma$
- An infon is a tuple $\langle R, a_i, \dots, a_m, 0/1 \rangle$ where
 - *R* is a relation
 - a_{i} ... a_m are objects appropriate to the relation *R*
 - And 0/1 is the polarity, whereby 1 means that a_i, \ldots, a_m "stand in" R
- Example
 - Situation of "unhealthy exposure to PM_{2.5} in Kuopio over two days"
 - − $s \models <<$ unhealthy-exposure, $PM_{2.5}$, Kuopio, 2013-04-15, 2013-04-16, 1>>
- Developed by Barwise and Perry, extended by Devlin
- Relates to Situational Awareness by Endsley

Appendix Ontology

- An ontology formally represents knowledge as a set of concepts within a domain, and the relationships between pairs of concepts [Wikipedia: Ontology (information science)]
- A document that describes concepts and relationships of a domain; such documents are "written" by means of a (ontology) language
- An ontology is external to, and shared among, software systems
- Software systems commit to one (or more) ontology by adopting the defined terminology and semantics
- Key technology in knowledge representation and reasoning
- Developed within artificial intelligence research
- Used in many domains, e.g. bioinformatics (see Gene Ontology)

Appendix Semantic Sensor Network (SSN) ontology

- Vocabulary for the representation of knowledge for sensors, properties, features, observations, ...
- Adopted at the Wavellite observation layer
- Domain-specific sensors and measured properties of features are accommodated by extending from SSN ontology
- Examples
 - BetaAttenuationMonitor *subClassOf* ssn:SensingDevice
 - beijingAirBAM isA BetaAttenuationMonitor
 - pm25 *isA* ssn:FeatureOfInterest
 - concentration *isA* ssn:Property

Appendix Situation Theory Ontology (STO)

- Vocabulary for the representation of knowledge for situations
- Borrows from Situation Theory
- Adopted at the Wavellite situation layer
- Domain-specific situations and relations are accommodated by extending from STO
- Example
 - AirPollutionEvents *subClassOf* sto:Situation
 - unhealthy-exposure *isA* sto:Relation

