
Markus Stocker Aerosol Physics Group • University of Eastern Finland • March 21, 2013

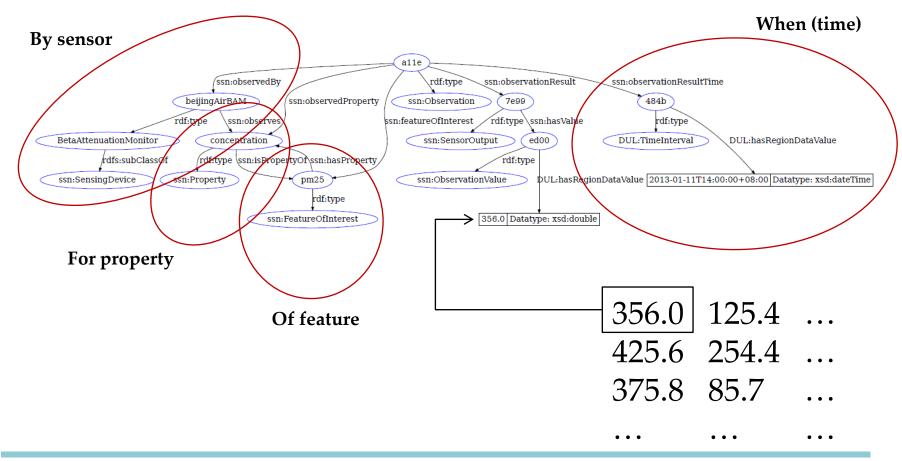
Wavellite

Continuous and automated representation of real-world knowledge acquired from sensor data

Introduction Sensor data makes *no* sense (almost)

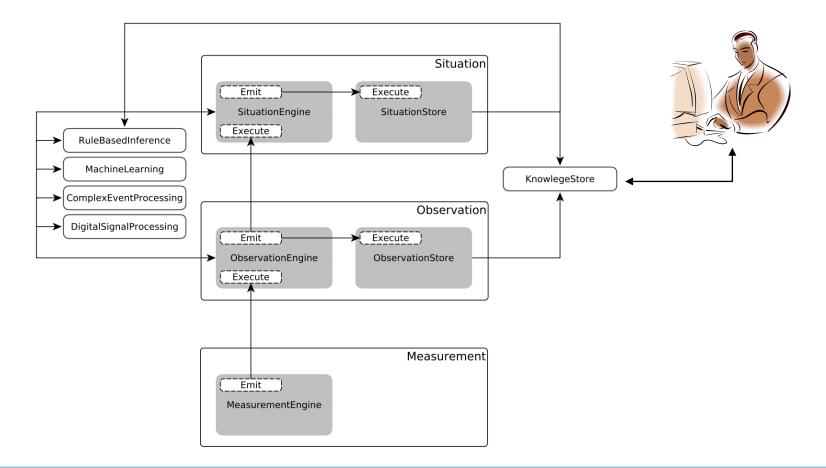
Introduction ... and

- There is lots of it, including in environmental science
- Typically automatically sampled, sometimes at "high frequency"
- More sensors; more data
- More information/knowledge?
- Probably, if we continue developing and improving
 - Management: processing, storage, and retrieval of sensor data
 - Acquisition: information and knowledge from sensor data
 - Integration, reuse, and sharing of data, information, and knowledge



Introduction Wavellite

- Manage sensor data and its metadata
 - Sensor data *and* the <u>when-by-for-of</u> (self-describing sensor data)
 - In other words, sensor data and information on
 - <u>when</u> is the sampling time
 - the sensor <u>by</u> which sampling occurs
 - the property <u>for</u> which measurement is performed
 - and the feature <u>of</u> which the property is measured
 - For instance, data sampled <u>now</u> by <u>this beta attenuation monitor</u> for the <u>concentration</u> of <u>outdoor PM_{2.5}</u>
- Represent knowledge for real-world phenomena observed by sensors
 - Events, episodes, scenes, changes: more generally situations
 - For instance, episodes of <u>unhealthy exposure</u> to $PM_{2.5}$
- Interact with represented observations and situations



Introduction Self-describing sensor data

Materials and methods Architecture

Materials and methods Implementation (back end, server side)

- Continuous and automated
 - Sensor data acquisition and processing
 - Real-time knowledge acquisition and representation
- Computational intelligence for knowledge acquisition
 - ML, CEP, DSP
- Ontology for knowledge representation
 - Generic vocabulary
 - Used for all observations and situations
 - Shared by all software system components

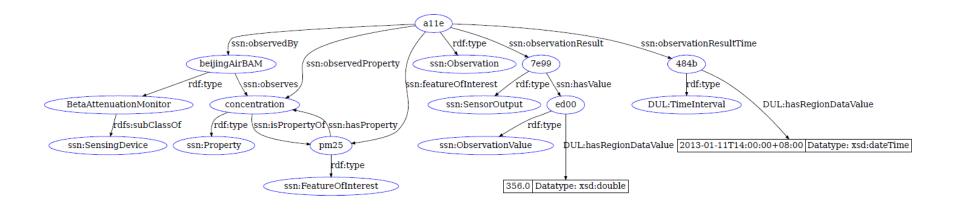
Materials and methods Implementation (back end, server side)

- Framework may be deployed on a single computer
 - Or on a cluster, for distributed processing (scalability)
- Domain-specific extensions
 - The framework implements generic functionality
 - Extend it to accommodate domain-specific requirements
 - Measurement engine implementation to acquire data from sensors
 - Situation engine implementation for knowledge acquisition tasks
- Use of
 - Semantic web technologies (RDF, OWL, SPARQL, knowledge store)
 - Storm as distributed real-time computation system
- Written in Java

Materials and methods Implementation (front end, client side)

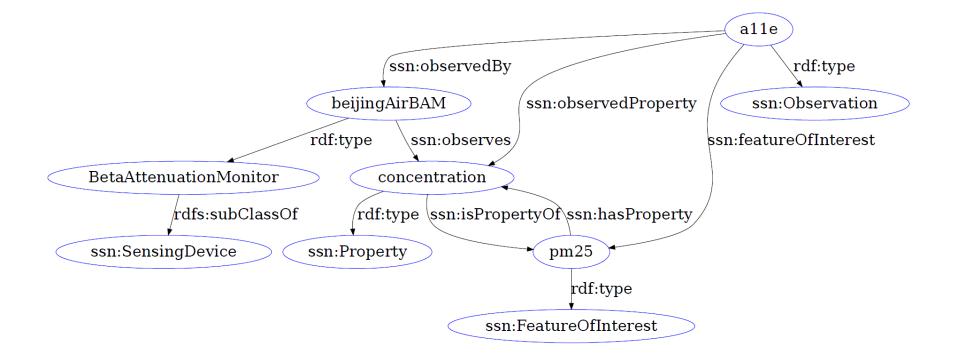
- Web enabled graphical user interface
 - Interaction between users and represented knowledge
 - Retrieve observations
 - Made by a sensor for a property of a feature within a time interval
 - Show results in tabular form, time-series plot, heat map, ...
 - Show summary statistics (e.g. mean, sd, max, min, ...)
 - Export data to various formats (e.g. Matlab, WEKA, ...)
 - Browse situations along spatio-temporal dimensions
 - For instance on a map or timeline
- REST
 - Interaction between software and represented knowledge
 - HTTP requests and accept of various MIME media types

Example BeijingAir

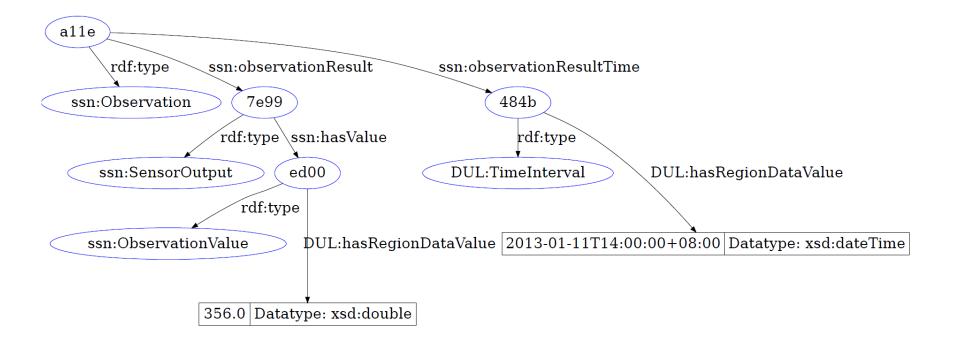

- Sensor data acquired from @bejingair Twitter stream
- U.S. Embassy to Beijing runs a BAM for PM_{2.5} monitoring
- One status update every hour, e.g.

BeijingAir @BeijingAir 04-02-2013 19:00; PM2.5; 108.0; 176; Unhealthy (at 24-hour exposure at this level) Expand	1h
BeijingAir @BeijingAir 04-02-2013 18:00; PM2.5; 123.0; 184; Unhealthy (at 24-hour exposure at this level) Expand	2h
BeijingAir @BeijingAir 04-02-2013 17:00; PM2.5; 130.0; 188; Unhealthy (at 24-hour exposure at this level) Expand	Зh

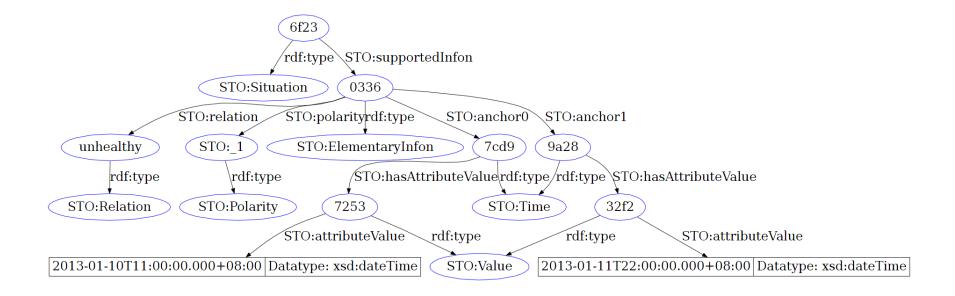
- Statuses -> Measurement -> Observations -> Situations
- Situations of unhealthy exposure (> $65.5 \mu g/m^3$; 24-hour)



Example BeijingAir (Observation)



Example BeijingAir (Observation metadata)



Example BeijingAir (Observation data)

Example BeijingAir (Situation)

Demo BeijingAir in Wavellite

- Use Wavellite Web
 - visualize observations made by the BAM operated by the U.S.
 Embassy to Beijing
- Some basic functionality such as plotting of query results
- No situations of new particle formation, yet
- Available at
 - http://kuo-234195.uef.fi:8080/wavellite-web/
 - Under development and early stage
 - Expect bugs and limited features
 - Give feedback, including feature requests!

Next steps New particle formation

- Get more powerful computer hardware!
- Import "all" Puijo DMPS, weather, and gas data
 - Possibly also other locations
- Develop knowledge acquisition task for NPF
 - Deploy it at situation layer
- Execute Wavellite over observation data
 - And let the framework represent knowledge for NPF
 - Situations, specifically events/episodes, of NPF with information for NPF class, as well as temporal and spatial locations
- Visualize results, e.g. by means of a timeline for NPF events

Next steps And more ...

- Continue developing Wavellite features, e.g.
 - Export functionality, heat maps, summary statistics
- Write papers and publish results
- Wavellite is in process towards open source publication at UEF
 - It should, thus, become available for free

References

- [1] Compton, M., Henson, C., Neuhaus, H., Lefort, L., Sheth, A., 2009. A Survey of the Semantic Specication of Sensors, in: 2nd International Workshop on Semantic Sensor Networks, at 8th International Semantic Web Conference.
- [2] Barnaghi, P., Ganz, F., Henson, C., Sheth, A., 2012. Computing Perception from Sensor Data. Technical Report. knoesis.org.
- [3] De Maio, C., Fenza, G., Furno, D., Loia, V., 2012. Swarm-based semantic fuzzy reasoning for situation awareness computing, in: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on, pp. 1--7.
- [4] Doulaverakis, C., Konstantinou, N., Knape, T., Kompatsiaris, I., Soldatos, J., 2011. An Approach to Intelligent Information Fusion in Sensor Saturated Urban Environments, in: Intelligence and Security Informatics Conference (EISIC), 2011 European, pp. 108--115.
- [5] Fenza, G., Furno, D., Loia, V., Veniero, M., 2010. Agent-based Cognitive approach to Airport Security Situation Awareness, in: Proceedings of the 2010 International Conference on Complex, Intelligent and Software Intensive Systems, IEEE Computer Society. pp. 1057--1062.
- [6] Conroy, K., May, G., Roantree, M., Warrington, G., Cullen, S.J., Mc-Goldrick, A., 2011a. Knowledge acquisition from sensor data in an equine environment, in: Proceedings of the 13th international conference on data warehousing and knowledge discovery, Springer-Verlag, Berlin, Heidelberg. pp. 432--444.
- [7] Gaglio, S., Gatani, L., Lo Re, G., Ortolani, M., 2007. Understanding the Environment Through Wireless Sensor Networks, in: Proceedings of the 10th Congress of the Italian Association for Articial Intelligence on AI*IA 2007: Articial Intelligence and Human-Oriented Computing, Springer-Verlag, Berlin, Heidelberg. pp. 72--83.
- [8] Liu, J., Zhao, F., 2005. Towards semantic services for sensor-rich information systems, in: Broadband Networks, 2005. BroadNets 2005. 2nd International Conference on, pp. 967--974.
- [9] Whitehouse, K., Zhao, F., Liu, J., 2006. Semantic Streams: A Framework for Composable Semantic Interpretation of Sensor Data, in: Römer, K., Karl, H., Mattern, F. (Eds.), Wireless Sensor Networks. Springer Berlin / Heidelberg. volume 3868 of LNCS, pp. 5--20.
- [10] Wanner, L., Vrochidis, S., Tonelli, S., Mossgraber, J., Bosch, H., Karppinen, A., Myllynen, M., Rospocher, M., Bouayad-Agha, N., Bügel, U., Casamayor, G., Ertl, T., Kompatsiaris, I., Koskentalo, T., Mille, S., Moumtzidou, A., Pianta, E., Saggion, H., Serani, L., Tarvainen, V., 2011. Building an Environmental Information System for Personalized Content Delivery, in: Hrebicek, J., Schimak, G., Denzer, R. (Eds.), Environmental Software Systems. Frameworks of eEnvironment. Springer Boston. volume 359 of IFIP Advances in Information and Communication Technology, pp. 169--176.
- [11] Wei, W., Barnaghi, P., 2009. Semantic Annotation and Reasoning for Sensor Data. Smart Sensing and Context, 66--76.

http://purl.oclc.org/NET/ssnx/ssn http://vistology.com/ont/2008/STO/STO.owl http://www.visitingdc.com/paris/eiffel-tower-paris-france.asp http://storm-project.net/

Materials and methods Situation Theory

- A situation, *s*, supports (one or more) infon(s) σ
 - Formally, $s \models \sigma$
- An infon is a tuple $\langle R, a_i, \dots, a_m, 0/1 \rangle$ where
 - *R* is a relation
 - a_i , ..., a_m are objects appropriate to the relation *R*
 - And 0/1 is the polarity, whereby 1 means that a_i, \ldots, a_m "stand in" R
- Example
 - A situation of "class 1 new particle formation located at Puijo today"
 - *− s* ⊨ *<<npf, class1, puijo, 2013-03-21, 1>>*
- Developed by Barwise and Perry, extended by Devlin
- Relates to Situational Awareness by Endsley

Materials and methods Ontology

- An ontology formally represents knowledge as a set of concepts within a domain, and the relationships between pairs of concepts [Wikipedia: Ontology (information science)]
- A document that describes concepts and relationships of a domain; such documents are "written" by means of a (ontology) language
- An ontology is external to, and shared among, software systems
- Software systems commit to one (or more) ontology by adopting the defined terminology and semantics
- Key technology in knowledge representation and reasoning
- Developed within artificial intelligence research
- Used in many domains, e.g. bioinformatics (see Gene Ontology)

Materials and methods Semantic Sensor Network (SSN) ontology

- Vocabulary for the representation of knowledge for sensors, properties, features, observations, ...
- Adopted at the Wavellite observation layer
- Domain-specific sensors and measured properties of features are accommodated by extending from SSN ontology
- Examples
 - DifferentialMobilityParticleSizer *subClassOf* ssn:SensingDevice
 - PolydisperseAerosol *subClassOf* ssn:FeatureOfInterest
 - ParticleConcentration *subClassOf* ssn:Property
 - puijoDMPS *isA* DifferentialMobilityParticleSize
 - puijoAerosol *isA* PolydisperseAerosol
 - particleConcentrationWithDiameter800nm isA ParticleConcentration

Materials and methods Situation Theory Ontology

- Vocabulary for the representation of knowledge for situations
- Borrows from Situation Theory
- Adopted at the Wavellite situation layer
- Domain-specific situations and relations are accommodated by extending from STO
- Example
 - NewParticleFormationEvent *subClassOf* sto:Situation
 - npf *isA* sto:Relation

