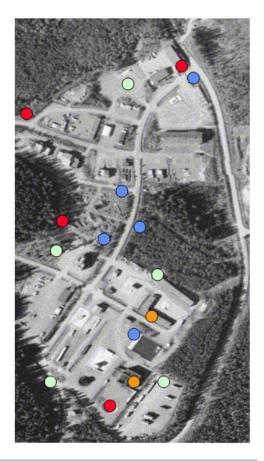

SFERC, Joensuu, August 22, 2011 Markus Stocker, Mikko Kolehmainen

Environmental Monitoring

Event Detection and Distributed Scenario Modeling

Introduction Environmental monitoring



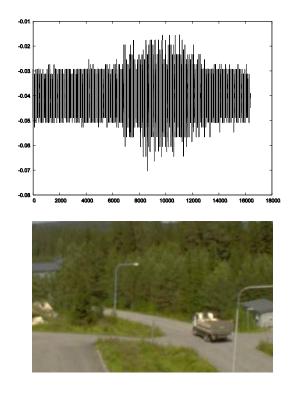
- Monitoring the environment
 - Variables of water, land, air
 - Sensor networks for data collection
- Obtain knowledge
 - Environmental awareness
 - Comprehension and understanding
 - Ontology rather than raw data
- Challenges
 - Data storage, retrieval, integration
 - Data formats, transmission protocols
 - From data to ontology

Introduction Environmental monitoring: Our testbed

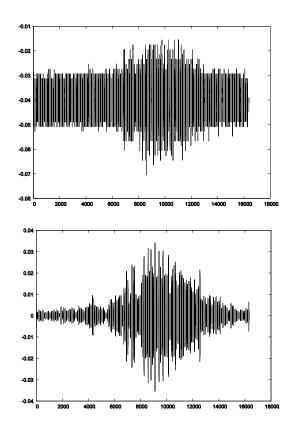
- Emergency Services (Kuopio) training area
- Development platform for systems to monitor the operational environment
- Sensor network for the detection of
 - Chemical emissions in (indoor) air and water
 - Vehicle activity and identification
- Sensor types
 - Weather, particles, gases, water
 - Vibration, cameras
- Software system
 - Data integration, storage, retrieval

Introduction Environmental monitoring: On-road vehicles

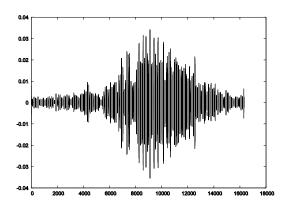
- On-road vehicle detection
 - Know there is a vehicle "now"
- On-road vehicle classification
 - Know what type of vehicle it is
- Using vibration sensor data
 - Vehicle-induced onto road
- Upon event
 - Call distributed modeling service(s)
- Scenario
 - Model vehicle reachability

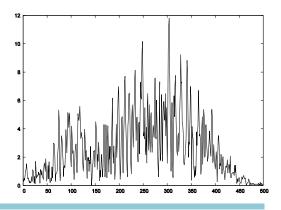


Collecting sensor data Vibration and camera sensors

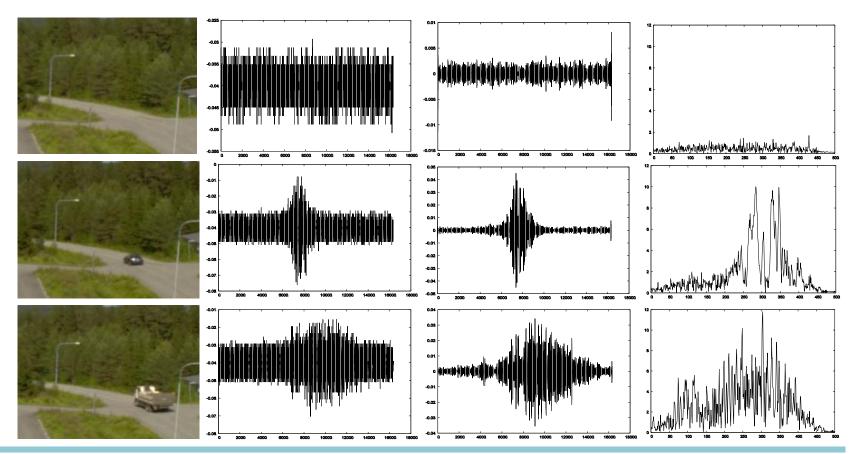

- Vibration sensor
 - Measures acceleration of monitored objects
 - The vibration induced by road vehicles
 - Sampling frequency 2000 Hz
 - Thus, 2000 measurements every second
- Camera sensor
 - Delivers a variable 1-3 frames per second
 - 640x480 pixel resolution
- "Big data", 1 month continuous monitoring
 - 5 billion measurement values
 - 1.7 Tb data

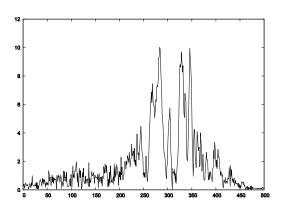
Processing vibration data Event detection

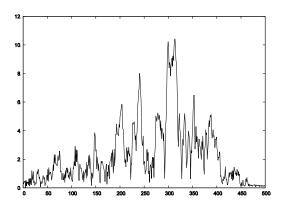

- Sensor data often contains "noise"
 - E.g. electrical current at 50 Hz
- Problematic for (reliable) event detection
 - Signal may be "hidden" in noise
- Apply filters to enhance signal (of interest)
 - Spectral energy in 80-130 Hz for vehicles
 - Discovered experimentally using stored data
 - Band-pass filter
 - Attenuate frequencies not in 80-130 Hz



Processing vibration data Event "fingerprint"


- Frequency profile as event "fingerprint"
 - Fourier transform of filtered signal
 - Extract frequency profile in 80-130 Hz
- Hypothesis
 - It is possible to classify vehicles based on the corresponding event "fingerprint"
 - To what accuracy?


Event detection A comparison with background



Event classification

- Problem
 - Two cars do not have the "same" fingerprint
- Data-driven methods
 - E.g. K-means, Neural Networks, Naïve Bayes
 - Learn how to "distinguish apple from banana"
 - Train a classifier with labeled dataset
 - Built semi-automatically
 - Automatic event detection
 - Manual label assignment using images
 - 13 vehicle classes, 1169 events
- Accuracy (preliminary results)
 - ~75% using 4 classes and Naïve Bayes

Scenario modeling

- Given detected and classified event,
 - Orchestrate calls to one (or more) distributed modeling service(s)
 - Integrate modeling results from multiple services
 - Present the result to the user
 - Services may be remote (Internet) and of third-party providers
 - Interacting services must "understand" each other

Scenario modeling Vehicle reachability

- Reachability
 - Where could the vehicle be in 60, 120, 240 seconds?
- Consider
 - Vehicle velocity, speed and driving direction (requires more sensors)
 - Local terrain
 - Road and weather conditions
- Present reachability map to user

Cooperation Nanjing and UEF

- Based on the proposal presented earlier
 - Lake and fresh water reservoirs monitoring
- Technical knowledge transfer, e.g.
 - Collecting data from different sensors, e.g. for water monitoring
 - Efficient storage and retrieval of time series and geospatial data
 - Develop data access interfaces, Data-as-a-Service
 - Towards ontology to model domain knowledge, Meaning-as-a-Service

Conclusions

- Environmental monitoring to collect and process data to monitor the quality of the environment
- Emergency Services training area as a development platform
- Vibration sensor for detection and classification of on-road vehicles
- Detection of vehicles in vibration data
- Classification of vehicles based on their frequency profile
- Use of data-driven methods to learn a classifier
- Given classified event orchestrate distributed modeling services

