International Conference on Knowledge Engineering and Semantic Web September 30, 2015, Moscow, Russia

Knowledge-based environmental research infrastructure with Semantic Web technologies

Markus Stocker markus.stocker@uef.fi @markusstocker and @envinf

▲□▶▲□▶▲□▶▲□▶ □ のQで

About me

- PhD candidate at UEF
- MSc in Informatics at UZH
- SPARQL optimization at UZH and HPLB
- Owlgres and PelletSpatial at Clark & Parsia
- PhD in Environmental Informatics at UEF

イロト 不得 とうほう イヨン

э

MSc in Environmental Science at UEF

Acknowledgments

- Collaborators
 - Mikko Kolehmainen (UEF)
 - Mauno Rönkkö (UEF)
 - Elham Baranizadeh (UEF)
 - Kari Lehtinen (UEF)
 - Jussi Nikander (LUKE)
 - Hanna Huitu (LUKE)
- Organizations
 - University of Eastern Finland (UEF)
 - Natural Resources Institute Finland (LUKE)
- Funders
 - Academy of Finland
 - Tekes

Overview

Knowledge engineering in environmental science

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- Environmental research infrastructure (ERI)
- Knowledge-based ERI
- Using Semantic Web technologies
- Applications
- ► Q&A

Knowledge engineering in environmental science

Advancing ecological research with ontologies

Joshua S. Madin^{1,2}, Shawn Bowers³, Mark P. Schildhauer¹ and Matthew B. Jones¹

¹National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA 93101, USA ²Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia ³UC Davis Genome Center, University of California, Davis, CA 95616, USA

Ontologies have assisted other disciplines (e.g. molecular biology); ecology can benefit from similar approaches

Ambiguous terminology prevents incorporating data into broader-scale studies

Short Note

An ontology for landscapes

Christopher A. Lepczyk^{a,*}, Christopher J. Lortie^b, Laurel J. Anderson^c

^a Department of Forest Ecology and Management, University of Wisconsin-Madison, Madison, WI 53706, USA

^b Biology Department, York University, 4700 Keele St., Toronto, ON, 3J 1P3 Canada

^c Department of Botany/Microbiology, Ohio Wesleyan University, Delaware, OH 43015, USA

Few concepts in ecology convey such a wide range of meanings as the term landscape

Different usage by scientists creates linguistic uncertainty and hinders automated synthesis of datasets IOS Press

Building a volcano-domain ontology

Volcán de Colima, México, case study

JRG Pulido^a, MA Aréchiga^b ^a Faculty of Telematics, University of Colima, México, jrap@ucol.mx ^b Faculty of Telematics, University of Colima, México, mandrad@ucol.mx

Semantify large volume seismic data such that software agents can carry out inference and forecasting

Use data mining (SOM) to extract taxonomy for volcanic events (eruptions, tremors, ...) represented in OWL

An ontology for describing and synthesizing ecological observation data

Joshua Madin^{a,e,*}, Shawn Bowers^b, Mark Schildhauer^a, Sergeui Krivov^c, Deana Pennington^d, Ferdinando Villa^c

*National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, California 93101, USA *Cenome Center, University of California, Davis, California 95161, USA *Cand Institute for Ecological Economics, University of Vermont, Burlington, Vermont 05405, USA *University of Neur Mexico, Albuquerque, Neur Mexico 97131, USA *Department of Biological Sciences, Mexiquerie University, Neur South Wales 2109, Australia

Details of observational data are not recorded; contextual information is implicit

Extensible Observation Ontology (OBOE) for capturing semantic information of observational datasets

An Ontological Representation of Time Series Observations on the Semantic Sensor Web

Cory A. Henson¹, Holger Neuhaus², Amit P. Sheth¹, Krishnaprasad Thirunarayan¹, and Rajkumar Buyya³

> ¹ Kno.e.sis Center, Department of Computer Science and Engineering Wright State University, Dayton, OH 45435, USA {cory, amit}@knoesis.org

> > ² CSIRO Tasmanian ICT Centre GPO Box 1538, Hobart, TAS, 7001, Australia holger.neuhaus@csiro.au

³ GRIDS Lab, Department of Computer Science and Engineering University of Melbourne, Australia raj@csse.unimelb.edu.au

OGC O&M facilitates syntax-level integration but lacks the ability of semantic-level integration

Early work toward W3C SSN ontology

Environmental Modelling & Software 24 (2009) 577-587

Modelling with knowledge: A review of emerging semantic approaches to environmental modelling

Ferdinando Villa^{a,*}, Ioannis N. Athanasiadis^b, Andrea Emilio Rizzoli^b

*Ecoinformatics Collaboratory, Gund Institute for Ecological Economics and Department of Plant Biology, University of Vermont, 617 Main Street, Burlington, VT, USA ^b statuto Dalle Molle di Studi sull'Intelligenza Artificiale, Lugano, Switzerland

The understanding of an environmental system is usually implicit to models; it resides outside model specification and implementation

This severely limits the options in reusing environmental models

Combining OWL with RCC for Spatioterminological Reasoning on Environmental Data

Rolf Grütter and Bettina Bauer-Messmer

Swiss Federal Institute WSL, An Institute of the ETH Board, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland {rolf.gruetter, bettina.bauer}@wsl.ch

Spatial relations between regions can be computed geometrically (GIS)

How to make the resulting qualitative spatial relations accessible to a logic formalism

Process queries that combine thematic and spatial aspects

Transactions in GIS, 2003, 7(3): 371-391

Research Article

The Role of Knowledge Representation in Geographic Knowledge Discovery: A Case Study

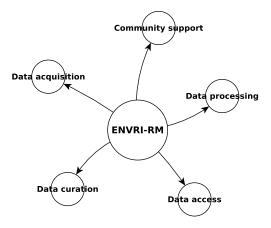
Jeremy Mennis Department of Geography University of Colorado, Boulder Donna J Peuquet Department of Geography The Pennsylvania State University

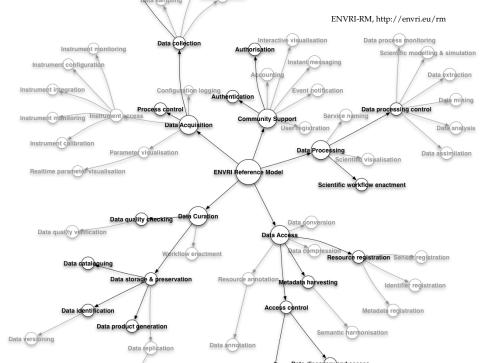
We suggest that geographic data models that support knowledge discovery must represent both observational data and derived knowledge

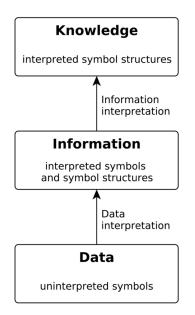
Hierarchy of storm types (expert knowledge) is formally represented (within a database context) to extract instances of storms from observational data

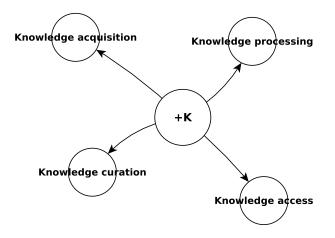
Environmental research infrastructure

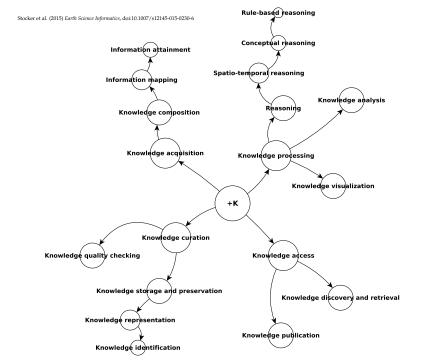
global lake ecological observatory network

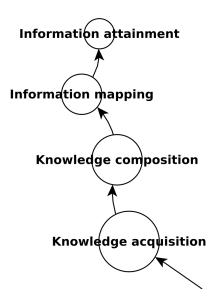




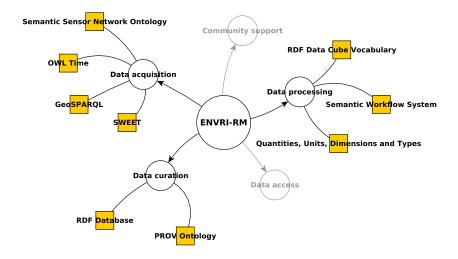

7.3316302167824074e+00	5 6.7295417637024639e+002 0.000000000000000e+000 0.000000000000e+000 0.0000000000
0.000000000000000e+000	0.00000000000000e+000 0.0000000000000e+000 0.0000000000
1.1248345678061637e+003	7.6451655783892170e+002 6.6489916883398178e+002 5.0996188060151417e+002 5.3037337771849309e+002
2.5990152166875021e+002	2.6354791501170808e+002 2.6316883341227492e+002 3.3696093295963192e+002 3.2708190669952091e+002
3.9391899945110441e+002	3.2426846166900322e+002 2.0141200942601449e+002 1.4700101128227615e+002 4.0928587811142940e+001
1.2831620686413419e+001	0.000000000000e+000
7.3316303024305555e+00	5 5.9954073981185900e+002 0.00000000000000e+000 0.00000000000000e+000 0.0000000000
0.000000000000000e+000	0.000000000000e+000 0.0000000000000e+000 0.0000000000
8.1548383245909952e+002	6.4755047038178782e+002 4.7342333956288417e+002 5.0497438804107304e+002 4.8678378833469156e+002
2.1558831592426984e+002	2.4469781600550951e+002 2.4637216889127018e+002 3.9338495014282574e+002 2.8801709503956096e+002
4.1110643983031497e+002	2.8396322218576239e+002 2.1375040618051182e+002 1.4957123471247169e+002 3.7975823102376701e+001
2.0382122539321763e+001	1.6943213617983506e+001
7.3316303880787035e+00	5 6.4135476612374202e+002 0.000000000000000e+000 0.0000000000000e+000 0.0000000000
0.0000000000000000e+000	0.0000000000000e+000 0.0000000000000e+000 0.0000000000
7.9725650443997608e+002	4.0630047999881816e+002 3.5247269226184869e+002 3.7902085695621594e+002 2.8805461752290518e+002
1.8132905435068977e+002	2.6028214884093450e+002 1.6268304363454374e+002 3.3463583010398571e+002 2.0169500653114130e+002
4.6380154662366067e+002	2.6412454349776425e+002 2.0127541006127689e+002 1.3503244293786514e+002 2.3154902150570045e+001
7.6393422067327084e+000	1.7201363075124494e+001
7.3316304687500000e+00	5 6.1036574617458143e+002 0.00000000000000e+000 0.00000000000000e+000 0.0000000000
0.000000000000000e+000	0.0000000000000e+000 0.0000000000000e+000 0.0000000000
7.2736971215268670e+002	3.9684227323502876e+002 3.4903661050199901e+002 3.4531808153726166e+002 3.0686816846877008e+002
1.5193881810750614e+002	2.4133238139702240e+002 2.4228704440975204e+002 2.8825745672488563e+002 2.0412591958392611e+002
4.0962054312850012e+002	2.8308360749792962e+002 2.2063151348349507e+002 1.2405735268505646e+002 1.0751097756079318e+001
1.1881689141194544e+001	1.3547412000218912e+001
7.3316305520833330e+00	5 6.4313854345743607e+002 0.00000000000000e+000 0.0000000000000e+000 0.0000000000
0.0000000000000000e+000	0.000000000000e+000 0.0000000000000e+000 0.0000000000
8.0539618874151654e+002	3.8626777986640963e+002 2.8741638600588004e+002 2.5488895887853258e+002 2.6289312410222209e+002
1.6973869269222212e+002	1.7064856680396792e+002 2.6528938061547774e+002 2.7436008754172127e+002 2.3416327840132379e+002
4.5037513571727550e+002	3.4357911665879971e+002 2.1968465764114876e+002 1.0707033953281511e+002 4.2106918027684735e+001
0.0000000000000000e+000	2.5075705754016887e+001
7.3316306354166672e+00	5 6.9018149795028319e+002 0.00000000000000e+000 0.0000000000000e+000 0.0000000000
0.0000000000000000e+000	0.0000000000000e+000 0.0000000000000e+000 0.0000000000
1.0122740400440272e+003	4.7588170401009631e+002 3.6163701941444793e+002 3.8492799229831303e+002 3.1633325134373962e+002
1.8305150227202395e+002	2.2529123956614126e+002 2.0836586101380522e+002 3.1634735061210313e+002 2.5690547494848136e+002
3.6567505629777969e+002	3.0461779733996269e+002 1.8490080930780519e+002 1.1544775603278390e+002 4.1043905610232025e+000
1.3740708174213207e+001	2.9403296138810457e+001

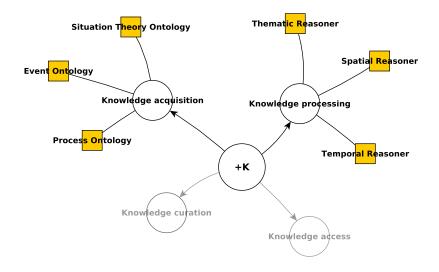


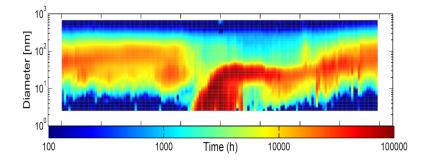


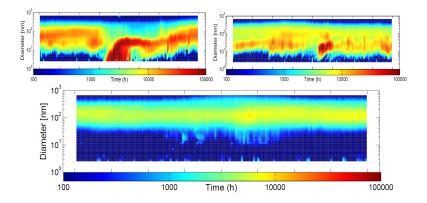


Knowledge-based ERI






Using Semantic Web technologies



Applications

Hamed et al. (2007) Atmos. Chem. Phys., 7, 355-376

Hamed et al. (2007) Atmos. Chem. Phys., 7, 355-376

Result

Day	Event class
15.06.2014	1
16.06.2014	0
17.06.2014	3

A knowledge-based ERI would ...

- Support the researcher in data analysis
 - Automated assessment of event class
 - Allow for curation (review) of its assessment
- Relate contextual information
 - Date, event class, location, plot, other event attributes
 - Create a knowledge object
- Represent knowledge object
 - According to a formal vocabulary (ontology)
 - Using suitable data formats (e.g. RDF)
- Manage and process knowledge objects
 - Persist knowledge objects (knowledge base)
 - Support access to knowledge objects
 - Reasoning to infer new knowledge (rules)

35

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Relation

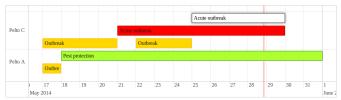
Outbreak Acute outbreak Pest protection

Start date

End date

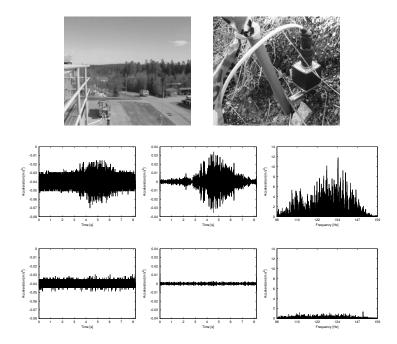
filter

Relation Acute outbreak

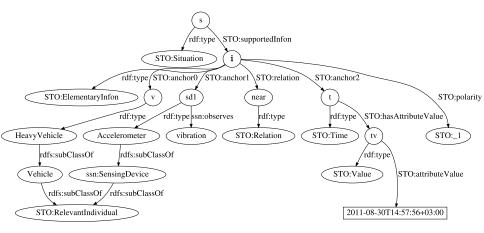

Relevant individual Drechslera tritici-repentis

Temporal location

Sun May 25 2014 00:00:00 GMT+0300 (EEST) Fri May 30 2014 00:00:00 GMT+0300 (EEST)


Spatial location Pelto C

Polarity True


Situations

- Structured parts of reality
- Formalized in situation theory (Barwise, Perry, Devlin)
- Situation *s* is said to support (\models) infons
- Infon *σ* is a tuple consisting of
- Relation *R*; Objects a_1, \ldots, a_m ; Polarity 1/0
- Objects can be physical entities in the environment, or ...

(日)

- Temporal and spatial locations, values, situations
- ▶ If polarity is 1, objects stand in the relation *R*

Take aways

- Knowledge engineering relevant to environmental science
- Environmental research infrastructures
 - Interesting and challenging data-based systems
 - Perhaps even more as knowledge-based systems
 - Opportunities for computer science communities
- Knowledge-based ERI
 - Interesting application area for Semantic Web technologies
- Is it a luxury? Who is going to fund this?

