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Abstract. The design of ontologies for sensor data and metadata has
received considerable attention. The most prominent is arguably the Se-
mantic Sensor Network (SSN) ontology. For persistence and retrieval of
sensor observations, systems that adopt the SSN ontology most obvi-
ously build on an RDF database (triple store). However, large volumes
of collected sensor data can be challenging for RDF databases, as the
evaluation of SPARQL queries for SSN observations quickly becomes pro-
hibitively expensive. This is arguably due to the fact that triple stores are
optimized to efficiently evaluate graph pattern queries, not time series in-
terval queries. As our main contribution, we present Emrooz, a scalable
database capable of consuming SSN observations represented in RDF
and evaluating queries for SSN observations formulated in SPARQL. We
present the Emrooz implementation on Apache Cassandra and Sesame
and its performance compared to two state-of-the-art RDF databases.
The results show that Emrooz query performance outperforms the two
RDF databases by orders of magnitude with increasingly large datasets.
We motivate the need for scalable databases for SSN observations on a
case study in micrometeorology.
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1 Introduction

Emrooz means ‘today’ in Farsi and is the name of an open source database for
SSN [1] observations represented in RDF [2] capable of evaluating queries for SSN
observations formulated in SPARQL [3]. Emrooz builds on Apache Cassandra



and Sesame [4], which serve in the implementation of Emrooz data and knowl-
edge stores, respectively. The Emrooz code repository is available on GitHub.5

Over the past decade, several authors have proposed ontologies with formal-
ized vocabulary for describing sensors—their metadata such as observed proper-
ties, operating ranges, and location—and sensor observations—the data collected
from sensors such as the observation value and the time at which the observation
was made. Compton et al. [5] reviewed some of the efforts in the ‘semantic speci-
fication of sensors’. Today, the most prevalent ontology for the domain of sensing
is arguably the SSN ontology. It has been widely adopted in the literature [6–14].

Ontologies can facilitate the querying, integration and reuse of sensor data
as well as ease the management of large networks with heterogeneous sen-
sors. Whereas the volume of metadata about sensors is generally comparatively
small—and can thus be easily managed by RDF databases, specifically triple
stores—the volume of data collected from sensors is often large.

As we demonstrate in this paper, the performance of state-of-the-art RDF
databases in evaluating SSN observation queries quickly degrades with an in-
creasing number of observations. This constitutes an obvious and practical prob-
lem for the adoption of the SSN ontology. If unable to answer queries quickly, a
technology that promises semantic interoperability, reasoning, and data linked
to metadata in graph data structures arguably remains a mere theoretical curios-
ity. Database systems for SSN observations with good load and excellent query
performance are needed for the technology to become viable in practice.

Our focus is on environmental sensor networks [15] and their use in earth
and environmental science research. Primarily for this community, we aim at de-
veloping a database capable of consuming SSN observations and fast evaluation
of corresponding queries formulated in SPARQL. The proposed case study is in
micrometeorology, specifically in monitoring of surface-atmosphere energy and
trace gas fluxes using a typical LI-COR Eddy Covariance System. As we discuss
in more details in Section 3, such systems generate large volumes of data, cur-
rently stored as files. Researchers are thus unable to readily retrieve a time series
of arbitrary time interval using a declarative query language. Emrooz attempts
to address this particular concern for scientists who measure surface-atmosphere
fluxes by proposing an approach that merely commits to the SSN ontology and
is thus generic with regard to specific sensors, their data and metadata. In ad-
dition to advantages such as declarative querying and semantic interoperability
of data and metadata, the use of the SSN ontology in Emrooz frees individual
researchers from having to design models and database schemata for their sensor
data and metadata.

2 Implementation

Emrooz defines two main abstractions: the data store and the knowledge store.
The data store supports the persistence of sensor observations. Sensor obser-
vations are represented following the SSN ontology as sets of RDF statements

5 https://github.com/markusstocker/emrooz



(i.e. triples). Accordingly, a sensor observation relates to the measured value,
the time at which the observation became available, the sensor that made the
observation, and the observed property and feature. The retrieval of sensor ob-
servations is enabled by data store query handlers. A data store query handler
evaluates a set, Qso, of sensor observation queries, qso.

The knowledge store manages sensor specifications (metadata). A specifi-
cation for a sensor defines the observed property and the sampling frequency.
The observed property relates to a feature. Sensors are specified by creating
and relating relevant individuals of SSN classes, typically using an editor such
as Protégé.6 The resulting file can be loaded by the knowledge store. A knowl-
edge store can create query handlers. A knowledge store query handler owns
a data store query handler and evaluates a SPARQL SELECT query for SSN
observations, qssn.

Queries qssn are formulated by some agent, e.g. a user, and must define a
time interval [t1, t2[. The evaluation of such queries occurs in three stages. First,
qssn is translated into a sensor observation query, qso. A sensor observation query
qso ← (ṡ, ṗ, ḟ , ṫ1, ṫ2) consists of parameters for the sensor, ṡ, property, ṗ, feature,
ḟ , and time interval, [ṫ1, ṫ2[. Values for these parameters are extracted from qssn
during translation. The parameters may be bound or unbound. Second, qso is
rewritten into a set of sensor observation queries, Qso, that may be a singleton
set. This is the case when qso has defined sensor, property, and feature. If any
of these parameters is undefined, then sensor specifications managed by the
knowledge store are utilized to rewrite qso into queries qiso ∈ Qso so that (1)
each qiso matches the defined parameters in qso and (2) the defined tuple (ṡ, ṗ, ḟ)
matches a sensor specification. Third, a knowledge store query handler for qssn
and a data store query handler for Qso are composed. The knowledge store query
handler evaluates qssn on the results returned by the data store query handler
in evaluating Qso.

Emrooz builds its knowledge store implementation on the Sesame frame-
work for RDF.7 Of particular interest to Emrooz are Sesame repositories and
SPARQL query parsing and evaluation. Sensor specifications are managed by a
Sesame repository. Depending on the application, the repository may be volatile
or persistent, resident on the local machine or on a remote server. To evaluate
qssn, the knowledge store query handler implementation for Sesame utilizes a
volatile repository initialized with RDF statements returned by the composed
data store query handler.

The data store implementation builds on Apache Cassandra.8 Sensor obser-
vations are persisted to rows of a data table with schema consisting of partition
key (row key) of type ascii; clustering key (column name) of type timeuuid;
and column value of type blob. The partition key and the clustering key form a
compound primary key.

6 http://protege.stanford.edu
7 http://rdf4j.org/
8 http://cassandra.apache.org



The partition key consists of two dash-concatenated parts: a SHA-256 hex
string and a date-time string. The hex string is a digest of a message (string)
consisting of dash-concatenated identifiers (URIs) for a sensor, a property, and
a feature. The date-time string follows the pattern ‘yyyyMMddHHmm’. Given a
sensor observation and the specification for the related sensor, the date-time
string is computed from the observation result time, truncated to the year,
month, day, hour, or minute depending on the specified sampling frequency. For
instance, for sensors with sampling frequency ]1, 100] Hz the computed date-time
string is truncated to the hour. The date-time string thus limits the number of
sensor observations per partition key for any given (ṡ, ṗ, ḟ) tuple. For a sensing
device with sampling frequency 10 Hz each row holds 36000 sensor observations.

Sensor observation result times determine clustering keys. Specifically, given
a sensor observation, the corresponding result time is translated into a time
UUID, which acts as column name. Columns are ordered in time and support
fast time interval scans.

Column values are byte arrays for the binary-encoded sets of RDF statements
corresponding to sensor observations. The representation of sensor observations
as sets of RDF statements is handled by an RDF entity representer, implemented
in Emrooz. The representer translates entities (Java objects) into corresponding
sets of RDF statements. Sets of RDF statements are then converted to byte

arrays using the Sesame binary RDF writer.
In addition to the SSN ontology, Emrooz also adopts OWL-Time [16] for

the representation of temporal entities, GeoSPARQL [17] for the representation
of spatial entities, and the Quantities, Units, Dimensions and Data Types On-
tologies (QUDT) [18] for the representation of quantities and units, such as the
sampling frequency in sensor specifications.

3 Case Study

We evaluate Emrooz comparative performance with data of a typical LI-COR
Eddy Covariance System for the direct measurement of CO2, CH4, and H2O
fluxes.

Eddy covariance is a method to directly measure surface-atmosphere fluxes
of energy and trace gases. It has been employed to monitor fluxes over various
ecosystems and for diverse applications, also in climate change research where
CO2 and CH4 flux measurements by eddy covariance method support deter-
mining whether the observed ecosystem is a carbon sink or source. Large data
volumes for surface-atmosphere fluxes of energy and trace gases are managed by
platforms such as ICOS Carbon Portal. 9

The installation consists of a LI-7500A Open Path CO2/H2O Gas Analyzer,
a LI-7700 Open Path CH4 Analyzer, and a sonic anemometer. The devices op-
erate at 10 Hz sampling frequency. Collected data is typically stored on a USB
drive of a LI-7550 Analyzer Interface Unit. The components of a LI-COR Eddy

9 https://www.icos-cp.eu/



Covariance System are often installed on a tripod, which thus acts as a platform
for the devices. For this study, we consider two gas analyzers, the property of
mole fraction, and three features for the monitored gases.

The data are available in ZIP archive files. Each archive contains text files
with metadata about the site, instruments, and the data files as well as the
data for 30 min of measurement. The time period considered in our experiments
begins on January 7, 2015 and ends on May 26, 2015. The total number of
archive files is 6045. Effectively there should be 6720 archive files for the period
but the dataset is incomplete between March 3 and April 12, during which it
misses 675 archive files.

For each archive file, the data file of interest is the one containing observation
values for CO2, H2O, and CH4. Except for a header spanning the first few lines,
this data file consists of a 18 000× 40 matrix. The number of rows is equivalent
to the number of 10 Hz samples in 30 min (10 × 60 × 30 = 18 000). Of this
matrix, we concentrate on the three columns for measured CO2 [µmol mol−1],
H2O [mmol mol−1], and CH4 [µmol mol−1] plus the two columns for date and
time. Thus, we expect 54 000 sensor observations per matrix, i.e. per 30 min
of measurement. For the January-May period the expected number of sensor
observations is 326 430 000. Considering that each sensor observation maps to
a set of 15 RDF statements (triples) the expected total number of processed
triples is approximately 4.9 billion.

We evaluate the load and query performance of Emrooz on 10 subsets, for 30
minutes, 1 hour, 3 hours, 6 hours, 12 hours, 1 day, 7 days, 1 month, 3 months,
and the complete dataset (J-M). All subsets begin on January 7, except those
for 1 month (February) and 3 months (February-April). Note that the 3 months
subset is incomplete. Query performance is evaluated using a defined query
qso ← (ṡ, ṗ, ḟ , ṫ1, ṫ2), whereby ḟ is CO2 and the time interval [ṫ1, ṫ2[ is 10 min.
The expected result set size of each query is 6000. We evaluate the query per-
formance as the mean value of three runs per subset. Emrooz performance is
compared with two RDF databases: Stardog10 2.2 and Blazegraph11 1.5.1. For
all three systems, we use the integrated Sesame API to load and query sensor
observations. For both Stardog and Blazegraph we use persistent disk databases
(local triple stores). The disk databases are created first and data is loaded in
transactions of maximally approximately 2 million triples. We use Apache Cas-
sandra 2.1.3, Sesame 2.8.1, and Emrooz 0.2.0. The evaluation is performed on a
Fujitsu CELSIUS W420 with an i7-3770 3.40 GHz CPU, 4 × 8 GB DDR3 1600
MHz DIMM memory modules, and 2× 1 TB 7200 RPM SATA hard drives.

4 Results and Discussion

We first provide an overview of subset sizes in terms of number of sensor ob-
servations, corresponding triples, and distinct triples. Table 1 summarizes the
numbers. Sensor observations are represented as sets of triples, including triples

10 http://stardog.com
11 http://www.blazegraph.com/bigdata



Table 1. The number of sensor observations and corresponding (distinct) triples per
subset. J-M stands for the complete dataset spanning the period January-May. Stardog
and Blazegraph evaluations did not terminate on time for this paper; hence the missing
count (*) of distinct triples for the 3 M and J-M subsets.

Subset Observations Triples Distinct

30 m 54 000 810 000 648 007
1 h 108 000 1 620 000 1 296 007
3 h 324 000 4 860 000 3 888 007
6 h 647 997 9 719 955 7 775 971
12 h 1 295 997 19 439 955 15 551 971
1 d 2 591 994 38 879 910 31 103 935
7 d 18 140 271 272 104 065 217 683 259
1 M 72 526 464 1 087 896 960 870 317 575
3 M 194 188 107 2 912 821 605 *
J-M 328 715 445 4 930 731 675 *

asserting class membership of sensors, properties, and features. The number of
triples is always 15 times the number of observations. The set of distinct triples
is smaller because it excludes duplicate triples. We also observe that with the 6 h
subset the expected and actual number of sensor observations (and thus triples)
differ. We investigated the reason and found that the data file for January 7 at 4
a.m. misses data for 04:00:53.100. Hence the three missing sensor observations in
the 6 h subset. We suspect that this also explains differences between expected
and actual number of sensor observations in other subsets.

Figure 1 summarizes the load performance for the 10 subsets and Emrooz
compared to Stardog and Blazegraph. The figure shows that Emrooz is outper-
formed on small datasets. However, with larger datasets Emrooz outperforms
both Stardog and Blazegraph. We attribute this behavior to the apparent grad-
ually increasing cost of committing transactions in Stardog and Blazegraph.

Figure 2 summarizes the query performance for the 10 subsets and Emrooz
compared to Stardog and Blazegraph. With constant time at roughly 2.3 s, Em-
rooz outperforms both triple stores—by several orders of magnitude for large
datasets. The query performance difference between Emrooz and the two triple
stores is, however, not surprising. Given a defined query qso ← (ṡ, ṗ, ḟ , ṫ1, ṫ2),
Apache Cassandra can efficiently retrieve the relevant set of triples by directly
addressing the row key and perform a range scan on column names. The result-
ing set of triples is subsequently processed by Sesame using a (volatile) mem-
ory store. In contrast, both Stardog and Blazegraph evaluate the defined tuple
(ṡ, ṗ, ḟ) as a SPARQL basic graph pattern with expensive joins and resulting in
an intermediate result set corresponding to the complete time series eventually
filtered to the desired interval [ṫ1, ṫ2[.

The results suggest that Emrooz query performance is independent of data
store size. However, query performance is dependent on query time interval du-
ration. The effect of varying intervals ranging from 1 s to 60 min is shown in
Figure 3. The query with time interval duration 10 min executes in 2.21 s, which
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Fig. 1. Load performance for the subsets and Emrooz compared to Stardog and Blaze-
graph. Stardog and Blazegraph evaluations did not terminate on time for this paper.

is comparable to Figure 2 for variable subsets. Queries with shorter time interval
duration evaluate faster while queries with longer time interval duration evaluate
slower. Several factors are at play, in particular the time required to evaluate
qssn on larger memory stores in Sesame post-processing and the time required
to iterate over result sets of increasing size.

Compared to Stardog and Blazegraph, and comparable triple stores, Em-
rooz has some constraints. Most obviously, Emrooz cannot manage arbitrary
RDF data. Furthermore, Apache Cassandra has no means to perform standard
reasoning tasks on SSN observations. Off-the-shelf reasoning can only be per-
formed by Sesame, on the knowledge store and in post-processing query result
sets returned by Apache Cassandra. Some level of reasoning pushed down to the
Apache Cassandra data store can be implemented by Emrooz using the Sesame
knowledge store and query rewriting [19].

Emrooz is currently capable of evaluating SPARQL queries with a basic
graph pattern for SSN observations, whereby the observation result time must
be constrained by a time interval [ṫ1, ṫ2[ specified as FILTER. The related sensor,
property, and feature may be bound or unbound. SPARQL features such as
aggregates and solution modifiers such as ORDER BY can be specified over [ṫ1, ṫ2[.

Sesame post-processing adds overhead which can be avoided if applications do
not require SPARQL. SPARQL adds flexibility, e.g. it enables selecting variables,
ordering or filtering results. However, in some applications this flexibility may
not be required and does thus not justify the overhead. For instance, a data
portal may simply want to return the set of RDF statements matching the user
query qso ← (ṡ, ṗ, ḟ , ṫ1, ṫ2) and leave further processing to the user.

The data in our case study arguably fall into the category of “particularly
hard cases” for triple stores. Assuming equally sized datasets, SSN observation
query evaluation on data collected from sensor networks with more sensors,
properties, and features but sampling at lower frequency are less expensive for
triple stores. This is because the tuple (ṡ, ṗ, ḟ), as well as its elements, are more



10

100

1000

30 m 1 h 3 h 6 h 12 h 1 d 7 d 1 m 3 m J-M

T
im

e 
(lo

g 
sc

al
e)

 [s
]

Subsets

Emrooz
Blazegraph

Stardog

Fig. 2. Query performance for the subsets and Emrooz compared to Stardog and Blaze-
graph. Stardog and Blazegraph evaluations did not terminate on time for this paper.

selective. The intermediate result sets are smaller and basic graph pattern joins
less expensive. Furthermore, more diverse selectivity estimates for triple patterns
could give query optimizers more room to find better query plans.

5 Related and Future Work

A number of authors have developed RDF data management systems that build
on NoSQL stores such as Apache Cassandra. Cudré-Mauroux et al. [20] provide
a comparative evaluation for the load and query performance of several systems
that implement an RDF data management layer on top of a NoSQL system.
Of particular interest here is CumulusRDF [21], as it also builds on Apache
Cassandra and Sesame. However, these systems aim at being RDF databases and
thus implement indexes specialized for answering arbitrary SPARQL queries on
RDF. In contrast, Emrooz is designed for the management of SSN observations
represented in RDF and for the evaluation of SSN observation queries formulated
in SPARQL. Emrooz is thus designed to be a scalable time series database for
sensor observations represented in RDF according to the vocabulary defined by
the SSN ontology.

Authors who developed systems for (historical or streamed) sensor data man-
agement have recognized that persisting large volumes of sensor data in an RDF
database is hardly viable. Presenting a platform designed to connect (semantic)
sensor data with data in the ‘Linked Data Cloud’, Le-Phuoc et al. [7] resort to a
relational database management system for historical sensor data management.
Describing a data warehouse for water resource management, Abecker et al. [22]
also propose a hybrid approach in which time series sensor data is managed by
a relational database system (PostGIS) whereas information objects with more
complex relationships are managed by an RDF database. The authors note that
“a complete ‘semantification’ [...] of all data [...] seemed not feasible and promis-
ing to us, especially regarding the measurement data.”
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NoSQL systems have been utilized to manage SSN observations, specifically.
Wang et al. [23] present a Hadoop-based system designed to manage SSN ob-
servations. The authors describe how their system stores SSN observations to
HBase which, however, features an index structure that is typical for RDF state-
ments, akin to the systems surveyed by Cudré-Mauroux et al. [20]. Wang et al.
evaluate the performance of various queries. However, to our understanding the
queries are not for SSN observations but rather for single triple patterns, e.g. a
pattern with bound subject and unbound predicate and object. As such, both
the indexing approach and the query performance evaluation are different from
those presented in this paper for Emrooz.

There are several potentially interesting directions for future work. First,
we plan to extend the implementation so that it supports the management of
dataset observations represented following the RDF Data Cube (QB) Vocabulary
[24]. With this extension, Emrooz could thus manage not only raw sensor data
but also processed sensor data. For instance, CO2 flux sensor data are used to
compute Net Ecosystem Exchange (NEE). NEE data are a result of sensor data
processing and form a dataset; hence the different vocabulary. Combining the
SSN ontology and the QB vocabulary in systems has been demonstrated in the
literature, e.g. [6, 25].

Second, Emrooz can be equipped with further features. Command line tools
could simplify user interaction with Emrooz. A RESTful service could expose
(load) and query functionality for client-server interaction over HTTP. A browser-
based client could support the visualization of time series. R12 and Matlab13

libraries could enable users to query and persist data from statistical comput-
ing environments. Data managed by Emrooz could then be loaded into R data

12 http://www.r-project.org/
13 www.mathworks.com/products/matlab/



frames. Results of computations in R could be persisted in Emrooz. Finally, Em-
rooz could be enhanced with more flexibility in SPARQL query formulation, e.g.
filter for a set of properties, as well as reasoning at query time. These enhance-
ments could be supported by extending the existing query rewriting mechanism.
A detailed analysis of the SPARQL expressivity covered in Emrooz may also be
of interest.

Third, it is interesting to compare Emrooz performance with triple stores
that build on SQL and NoSQL databases, such as SDB14 and CumulusRDF [21],
respectively, as well as with non-triple stores, including SQL or OGC standards
compliant databases, such as PostgreSQL15 and 52North,16 respectively.

6 Conclusion

We have presented Emrooz, a scalable database for SSN observations repre-
sented in RDF capable of evaluating queries for SSN observations formulated in
SPARQL. We briefly discussed how Emrooz builds on Apache Cassandra and
Sesame for its implementations of a data store and a knowledge store, respec-
tively, and how the two stores interact. Emrooz is motivated by the following two
contrasting aspects. On one hand, the attractiveness of the RDF data model and
the SSN ontology for representing metadata about sensors and what is sensed,
as well as for representing data resulting in sensor measurement, is an argument
for adopting these technologies in systems. On the other hand, the most obvious
approach to SSN observations management using triple stores seems to fail on a
fundamental and important requirement, i.e. scalable fast evaluation of SSN ob-
servation queries. As we demonstrated for two state-of-the-art triple stores, SSN
observation query evaluation becomes quickly prohibitive as store size grows
to tens of millions sensor observations. To serve client applications with SSN
observations in RDF is attractive for several reasons, including data linked to
metadata and formal descriptions of vocabulary semantics. However, for practi-
cal viability the underlying SSN observations management system needs to be
designed for time series query evaluation.

Acknowledgements

This research is funded by the Academy of Finland project “FResCo: High-
quality Measurement Infrastructure for Future Resilient Control Systems” (Grant
number 264060).

References

1. Compton, M., Barnaghi, P., Bermudez, L., Garca-Castro, R., Corcho, O., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K.,

14 https://jena.apache.org/documentation/sdb/
15 http://www.postgresql.org/
16 http://52north.org/



Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page,
K., Passant, A., Sheth, A., Taylor, K.: The SSN ontology of the W3C semantic
sensor network incubator group. Web Semantics: Science, Services and Agents on
the World Wide Web 17(0) (2012) 25–32

2. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax.
Recommendation, W3C (February 2014)

3. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Recommendation, W3C
(March 2013)

4. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In Horrocks, I., Hendler, J.,
eds.: The Semantic Web – ISWC 2002. Volume 2342 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2002) 54–68

5. Compton, M., Henson, C., Lefort, L., Neuhaus, H., Sheth, A.: A Survey of the
Semantic Specification of Sensors. In Taylor, K., Ayyagari, A., Roure, D.D., eds.:
Proceedings of the 2nd International Workshop on Semantic Sensor Networks.
Volume 522., Washington DC, USA, CEUR-WS (October 2009) 17–32

6. Lefort, L., Bobruk, J., Haller, A., Taylor, K., Woolf, A.: A Linked Sensor Data Cube
for a 100 Year Homogenised Daily Temperature Dataset. In Henson, C., Taylor,
K., Corcho, O., eds.: Proceedings of the 5th International Workshop on Seman-
tic Sensor Networks. Volume 904., Boston, Massachusetts, CEUR-WS (November
2012) 1–16

7. Le-Phuoc, D., Quoc, H.N.M., Parreira, J.X., Hauswirth, M.: The Linked Sensor
Middleware—Connecting the real world and the Semantic Web. In: Proceedings of
the Semantic Web Challenge at the 10th International Semantic Web Conference,
Bonn, Germany (October 2011)

8. Müller, H., Cabral, L., Morshed, A., Shu, Y.: From RESTful to SPARQL: A
Case Study on Generating Semantic Sensor Data. In Corcho, O., Henson, C.,
Barnaghi, P., eds.: Proceedings of the 6th International Workshop on Semantic
Sensor Networks. Volume 1063., Sydney, Australia, CEUR-WS (October 2013)
51–66

9. Calbimonte, J.P., Yan, Z., Jeung, H., Corcho, O., Aberer, K.: Deriving Semantic
Sensor Metadata from Raw Measurements. In Henson, C., Taylor, K., Corcho, O.,
eds.: Proceedings of the 5th International Workshop on Semantic Sensor Networks.
Volume 904., Boston, Massachusetts, USA, CEUR-WS (November 2012) 33–48

10. Yu, J., Davis, P., Gould, S., Taylor, K.: Linked Data Approach for Automated
Failure Detection in Sewere Rising Mains Using Real-Time Sensor Data. In: Pro-
ceedings of the 11th International Conference on Hydroinformatics, New York City,
USA (2014)

11. Wu, L.: Representing and Inferring Events from Deforestation Observations. In
Gensel, J., Josselin, D., Vandenbroucke, D., eds.: Proceedings of the AGILE’2012
International Conference on Geographic Information Science, Avignon, France
(April 2012) 80/392–85/392

12. Llaves, A., Kuhn, W.: An event abstraction layer for the integration of geosensor
data. International Journal of Geographical Information Science 28(5) (2014)
1085–1106

13. Taylor, K., Leidinger, L.: Ontology-Driven Complex Event Processing in Hetero-
geneous Sensor Networks. In Antoniou, G., Grobelnik, M., Simperl, E., Parsia,
B., Plexousakis, D., Leenheer, P., Pan, J., eds.: The Semanic Web: Research and
Applications. Volume 6644 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2011) 285–299
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