
The Fundamentals of
iSPARQL

Markus Stocker
of Ettiswil LU, Switzerland

Student-ID: 99-905-788
markus.stocker@gmail.com

Diploma Thesis November 29, 2006

University of Zurich
Department of Informatics

Advisor: Christoph Kiefer

Prof. Abraham Bernstein, PhD
Department of Informatics
University of Zurich
http://www.ifi.unizh.ch/ddis

Acknowledgements

The author is grateful to Dr. Andy Seaborne and Dr. Christopher James Dollin from HP Labs
Bristol (UK), PD Dr. Mosi Mresse, Dipl. Inf. Bastian Quilitz, and Dr. Boris Motik for numerous
discussions and support during the last months. Many thanks also to the communities around
mailing lists, forums and IRC channels for helpful and quick answers.

The comprehension and English grammar of this thesis was improved in quality thanks to an
accurate proofreading by Magdalena Gwozdz and Jakub Kalla. Without their help, reading the
thesis would be far from a pleasant task.

Special thanks to my advisor Christoph Kiefer and Prof. Abraham Bernstein, Ph.D., for giving
me the opportunity to write this thesis and for supporting me at each stage with groundbreaking
discussions. I very much appreciated the good team work and friendly ambiance, as well as the
willingness to always find some time to review the work. Additionally, the always challenging
discussions constantly motivated me to go further into the topics.

I would like to thank all my friends for tearing me away once in a while from the pixel screen
which was tracking me all the time, and for conversations which help the brain to rest from daily
issues related to the thesis. Thanks also to the fellow students I got to know during the studies
for numerous funny events which sweetened the sometimes dry university classes.

Last but not least, thanks to my parents for supporting me over my entire life. It is also their
merit, that I could terminate my studies writing this thesis.

Abstract

The growing amount of semantically annotated data and published ontologies opens an inter-
esting and challenging application for similarity measures. In face of limited knowledge about
the distributed data on the Semantic Web, similarity measures allow a retrieval which is expected
to improve the performance compared to exact querying. This thesis presents iSPARQL, an ex-
tension to SPARQL which allows querying for similar resources in both RDF/RDFS and OWL
ontologies, and supports the development of strategies to compute the similarity of ontological
resources.

Huge data volume forced the development of query optimization techniques for relational
database systems. However, query engines for ontological data based on graph models, mostly
execute user queries without considering any optimization. Especially for large ontologies, opti-
mization techniques are required to ensure that query results can be delivered within reasonable
time. OptARQ is a first prototype for iSPARQL query optimization based on the concept of triple
pattern selectivity estimation. The evaluation we conduct demonstrates how triple pattern re-
ordering according to their selectivity affects the query execution performance.

Zusammenfassung

Die wachsende Menge semantisch annotierter Daten und verfügbaren Ontologien schaffen eine
Basis für interessante und herausfordende Anwendungen für Ähnlichkeitsmasse. Bei fehlendem
Wissen über die auf dem Semantic Web verteilten Informationen, ermöglichen Ähnlichkeitsmasse
eine Suche, die erwartungsgemäss leistungsstärker sein dürfte, als die für exakte Suchsysteme.
Diese Diplomarbeit stellt iSPARQL vor, eine SPARQL Erweiterung, die es ermöglicht, nach
ähnlichen Ressourcen sowohl in RDF/RDFS als auch in OWL Ontologien zu suchen. Weiter
unterstützt iSPARQL die Entwicklung von Strategien, um die Ähnlichkeit zwischen Ressourcen
in Ontologien zu berechnen.

Grosse Datenmengen führten bei relationalen Datenbanksystemen schon seit längerem zur
Entwicklung verschiedener Optimierungstechniken. Systeme für Datenmodelle, die auf Graphen
basieren, führen die Anfrage hingegen meist ohne Optimierungen durch. Speziell für grosse
Ontologien sind Optimierungstechniken entscheidend, um die Resultate in nützlicher Zeit zu
ermitteln. OptARQ ist ein erster Prototyp für iSPARQL Optimierung, der die Selektivität von
Triple Patterns berücksichtigt. Die durchgeführte Evaluation zeigt, wie eine Ordnung der Triple
Patterns gemäss deren Selektivität die Geschwindigkeit der Anfragen massiv verbesseren kann.

Table of Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Related Work . 2
1.3 Structure . 3

2 Similarity 5
2.1 Similarity as Function of Features . 5
2.2 Similarity Measures . 6
2.3 Similarity Strategies . 7

3 The Imprecise Extension 9
3.1 Characteristics . 9
3.2 Software Components . 9

3.2.1 Jena and ARQ . 10
3.2.2 SimPack . 10

3.3 Architectural Design . 10
3.4 Imprecise Query Language . 11

3.4.1 Grammar . 11
3.5 Framework Usage . 13
3.6 Framework Implementation . 16

3.6.1 Measures . 16
3.6.2 Strategies . 16

3.7 Extending the Framework . 17

4 Query Optimization 19
4.1 Optimization Framework . 19
4.2 Selectivity . 20
4.3 Selectivity Estimation . 20
4.4 Selectivity Cost Function . 20

4.4.1 Subject Cost Estimation . 21
4.4.2 Predicate Cost Estimation . 21
4.4.3 Object Cost Estimation . 21

4.5 Examples . 22
4.6 Statistical Model . 22
4.7 SPARQL Optimization . 25

4.7.1 Remove Dispensable Pattern . 25
4.7.2 Reorder Imprecise . 27

x TABLE OF CONTENTS

4.7.3 Rewrite Filter Variables . 27
4.7.4 Move Up Filter . 28
4.7.5 Reorder by Selectivity . 29

4.8 Imprecise SPARQL Optimization . 29
4.8.1 Reorder Imprecise . 29
4.8.2 Similarity Index . 29
4.8.3 Avoid Execution of Complex Measures . 30
4.8.4 Aggregation Optimization . 30

4.9 Some Final Thoughts: Pattern Dependency . 30
4.9.1 S/P/O Dependency . 31
4.9.2 Triple Pattern Dependency . 32

5 Evaluation 33
5.1 Quantitative Query Performance Evaluation . 33

5.1.1 Query Engines . 33
5.1.2 Dataset . 34
5.1.3 Retrieval Tasks . 35
5.1.4 Optimizations . 36
5.1.5 Results . 38
5.1.6 Similarity Index . 49
5.1.7 Final Example: Putting It All Together . 51

5.2 Qualitative Query Retrieval Evaluation . 53
5.2.1 Datasets . 53
5.2.2 Evaluations . 54

6 Conclusions 59
6.1 Limitations . 59
6.2 Future Work . 60

A Appendix A 63

B Appendix B 65

Bibliography 69

TABLE OF CONTENTS xi

List of Figures

3.1 RDF/RDFS Model of iSPARQL . 12

4.1 Example of Histogram Classes . 24
4.2 RDF/RDFS Model of Statistics Ontology . 26

5.1 Retrieval Task A: Absolute Values . 39
5.2 Retrieval Task A: OptARQ Absolute Values . 39
5.3 Retrieval Task A: Sesame SeRQL Absolute Values 39
5.4 Retrieval Task A: Absolute Values (logarithmic scale) 40
5.5 Retrieval Task A: OptARQ Normalized Values . 40
5.6 Retrieval Task A: Sesame SeRQL OptARQ Normalized Values 41
5.7 Retrieval Task A: Model Load Time . 41
5.8 Retrieval Task A: Model Memory Consumption . 42
5.9 Retrieval Task A: Optimized . 43
5.10 Retrieval Task A: Improvements . 44
5.11 Retrieval Task B: Absolute Values . 44
5.12 Retrieval Task B: OptARQ and Sesame SeRQL Absolute Values 45
5.13 Retrieval Task B: Absolute Values (logarithmic scale) 45
5.14 Retrieval Task B: Normalized by OptARQ (logarithmic scale) 46
5.15 Retrieval Task B: Optimized . 46
5.16 Retrieval Task B: Improvements . 47
5.17 Retrieval Task B: Model Load Time . 47
5.18 Retrieval Task B: Model Memory Consumption . 47
5.19 Experiment A and B . 49
5.20 Experiment A and B: Trend Function . 49
5.21 Similarity Index Off . 50
5.22 Similarity Index On . 51
5.23 Final Example: Performance Rule-by-Rule including Similarity Index 52
5.24 Precision, Recall, F-Measure: TFIDF Strategy A . 54
5.25 Precision, Recall, F-Measure: Levenshtein of Levenshtein Strategy B 55
5.26 Precision, Recall, F-Measure: Average for Strategy A 55
5.27 Precision, Recall, F-Measure: Average for Strategy B 56
5.28 Gold Standard vs. Levenshtein Strategy . 56
5.29 Gold Standard vs. Tree Edit Distance Strategy . 57
5.30 Gold Standard vs. Levenshtein of Levenshtein Strategy 57

List of Tables

4.1 Triple Pattern Cost Estimation . 22

5.1 SwetoDblp Samples: Sample Size, Number of Triples, Number of Resources and
Result Set Size for both Retrieval Tasks A and B . 35

5.2 Retrieval Task A: Absolute Values . 41
5.3 Retrieval Task A: Model Load Time . 42
5.4 Retrieval Task A: Model Memory Consumption . 42
5.5 Retrieval Task A: Optimized . 43
5.6 Retrieval Task B: Absolute Values . 45

xii TABLE OF CONTENTS

5.7 Retrieval Task B: Optimized . 46
5.8 Absolute Values for Rule-by-Rule Evaluation including Similarity Index 53
5.9 Strategy Deviation Ranking . 58

List of Listings

3.1 iSPARQL PREFIX . 13
3.2 iSPARQL Example 1 . 14
3.3 iSPARQL Example 2 . 14
3.4 iSPARQL Example 3 . 15
3.5 iSPARQL Example 4 . 16
3.6 iSPARQL Example 5 . 17
4.1 Statistical Ontology Model: Average Number of Predicates and Number of Triples 23
4.2 Statistics: Predicate Resource . 24
4.3 Statistics: Histogram Representation . 25
4.4 Example: Rewrite Filter Variables . 27
4.5 Optimized Example: Rewrite Filter Variables . 28
4.6 Optimized Example: Move Up Filter . 28
5.1 SwetoDblp Retrieval Task A . 35
5.2 SwetoDblp Retrieval Task B . 36
5.3 SwetoDblp Retrieval Task A (optimized query) . 36
5.4 SwetoDblp Retrieval Task A (Sesame SeRQL) . 37
5.5 SwetoDblp Retrieval Task B (optimized query) . 38
5.6 SwetoDblp Experiment A . 48
5.7 SwetoDblp Experiment B . 48
5.8 Similarity Index Retrieval Task . 50
A.1 iSPARQL Extended Grammar . 63
B.1 Final Example: Query . 65
B.2 Final Example: Optimized Query . 66

1
Introduction

As the acronym iSPARQL indicates, this thesis is about an extension to SPARQL Protocol And
RDF Query Language, SPARQL [Prud’hommeaux and Seaborne, 2006].

The denotation of iSPARQL is: imprecise SPARQL. Thus, we present an extension to SPARQL
which provides the ability to query for similar resources in ontologies. Ontologies as a ‘formal
and explicit specification of a shared conceptualization’ [Gruber, 1993] represent a fundamental
layer of the Semantic Web, which is described by Fensel as an ‘extended Web of machine-readable
information’ [Fensel, 2004], originally referred by Tim Berners-Lee as the future of the current
World Wide Web1.

Primarily a topic in philosophy, ontologies were first introduced in computer science by artifi-
cial intelligence research communities to facilitate knowledge sharing and reuse [Fensel, 2004].
Recently the popularity of ontologies has grown because of their adoption in multiple fields
such as enterprise information integration, electronic commerce, and knowledge management
[Fensel, 2004].

The architecture of the Semantic Web2 adopt ontologies in two different layers: ontologies are
first introduced on the RDF and RDF-Schema layer, the fundamental layer on which the Seman-
tic Web is based. RDF-Schema (RDFS) allows the definition of mainly hierarchic ontologies by
means of class and property inheritance with domain and range restrictions. The ontology vo-
cabulary layer (OWL) provides a language which supports the development of more expressive
ontologies allowing the definition of disjointness and boolean combinations of classes, cardinality
restrictions, special characteristics of properties, and range restrictions that apply to some classes
only [Antoniou and van Harmelen, 2004]. Our iSPARQL framework allows querying for similar
resources by means of general or specific similarity strategies in both RDF/RDFS and ontology
vocabulary ontologies.

The second discussed subject area are (i)SPARQL optimization techniques. In relational data-
base systems query optimization is a highly discussed topic since the advent of IBM System R
[Chamberlin et al., 1981]. This thesis investigates the importance of query optimization, focusing
on a widely used SPARQL query engine (ARQ). We present a prototype optimization framework,
used to evaluate the performance improvement (OptARQ).

1http://www.xml.com/pub/a/2000/12/xml2000/timbl.html
2http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

2 Chapter 1. Introduction

1.1 Motivation

Similarity plays an important role in human mind. It allows people to make educated guesses in
the face of limited knowledge [Medin et al., 1993]. If we do not know something because we miss
the experience of it, we try to make a guess based on similarity. To give a simple example, think
about an unfamiliar type of tree. Although we may never have seen the tree before and perhaps
we may never have experienced the tree family neither, by means of similarity it is possible to
guess that the object we are looking at must be a kind of tree.

Similarity is a type of comparison [Medin et al., 1993]. Similar things tend to be grouped to-
gether. Thus, we use similarity to categorize things. When we walk through a forest, we may
compare features of trees to guess that trees might belong to the same family, even if we don’t
know the family name. Just because of common or different features, as the tree size or the leaves
color and structure, we are able to figure out similarities (or dissimilarities) and use them to cate-
gorize.

Similarity enables an ‘interpretative flexibility’ which is required in a truly distributed Se-
mantic Web where ontologies are integrated from multiple sources. Exact querying requires that
information is globally modeled and equal things are also described equally. Similarity querying
allows a retrieval which is expected to improve the performance compared to exact querying.
Thus, similarity plays an important role in information retrieval, but also for data integration and
data mining.

1.2 Related Work

Imprecise RDQL, iRDQL3, is an extension to traditional RDF Data Query Language (RDQL) that
enables querying for similar resources [Bernstein and Kiefer, 2006]. iRDQL was developed by
Dynamic and Distributed Information Systems Group, University of Zurich, Switzerland and is
a predecessor of iSPARQL. Although the approach used by iRDQL and iSPARQL is different, the
aim of a new ranking by similarity is the same. As a predecessor of iSPARQL, iRDQL inspired
many concepts and is a headstone on which the approach implemented for iSPARQL is based on.
The main difference is the way how similarity strategies are configured. While iRDQL introduces
new keywords, such as SIMMEASURE, IMPRECISE, and OPTIONS, for iSPARQL we introduce
virtual triples as imprecise statements to configure similarity strategies. Thus, the approach used
for iRDQL breaks the standard RDQL language grammar, while iSPARQL does not affect the
SPARQL grammar.

The Semantic Similarity Retrieval Model4 (SSRM) [Hliaoutakis et al., 2006] developed at the
Technical University of Crete (TUC), Greece, is an information retrieval method based on seman-
tic similarity which allows querying for documents containing conceptually similar terms. SSRM
suggests query expansion by adding semantically similar terms to those already in the query.
The similarity between document terms is calculated using the lexical database for the English
language WordNet5 and MeSH6 (Medical Subject Headings), an ontology of medical and biolog-
ical terms.

In their paper, Siberski et al. [Siberski et al., 2006] present a SPARQL extension that allows
the user to query ontologies with preferences. They introduce new keywords to SPARQL, such
as PREFERRING, to allow expressing ranking relevance by adding soft constraints to the query

3http://www.ifi.unizh.ch/ddis/?id=333
4http://www.intelligence.tuc.gr/similarity/
5http://wordnet.princeton.edu
6http://www.nlm.nih.gov/mesh/

1.3 Structure 3

according to the user preference. The extension covers two features. First, it returns the solu-
tions that are not dominated by any other solutions. Further, preferably only the solutions that
satisfy all the constraints are returned (otherwise, constraints are relaxed). Our approach allows
querying for objects which shows the highest similarity to a reference object, using a multitude of
similarity strategies (focusing on different object features). iSPARQL employs weighting schemes
to enable features preference.

Hurtado et al. [Hurtardo et al., 2006] present an approach to make queries more flexible by
logical relaxation of their conditions. The approach focuses (but is not limited) to RDFS ontolo-
gies. The authors argue, that the OPTIONAL clause introduced by SeRQL and SPARQL relaxes
query conditions only to a limited extent. They introduce a RELAX clause as a generalization of
the OPTIONAL clause. Mainly, the RDFS hierarchy is exploited to rewrite conditions with a more
general concept. Thus, the approach saves the user effort of inspecting the ontology, since the sys-
tem automatically returns more relaxed answers for the same original query. Furthermore, they
introduce a notion of ranking which orders relaxed versions of a query from less to more general.

Perz et al. [Perez et al., 2006] conduct an extensive analysis of the semantics and complexity of
SPARQL, focusing, as argued by the authors, on the two most complicated operators in SPARQL,
UNION and OPTIONAL. This work may be a starting point for discussions about iSPARQL op-
timizations especially for future optimization rules, since we do currently not consider query
optimization for queries including SPARQL OPTIONAL or UNION keywords.

Sirin [Sirin et al., 2006] presents optimization techniques for OWL-DL ontologies focusing on
knowledge bases containing large number of individuals. Aduna Software7, developer and main-
tainer of Sesame open source RDF framework8, introduced some general query optimization tech-
niques based on query rewriting rules for Sesame RDF Query Language (SeRQL).

KAON29, an infrastructure for managing OWL-DL ontologies, introduces algorithms which
allow optimization of DL reasoning by applying deductive database techniques. According to
[Motik and Sattler, 2006] such algorithms yield to significant performance improvement com-
pared to other available DL reasoners.

1.3 Structure

We introduced and motivated the importance of similarity in computer science. In the following
chapters, we focus on our framework to query for similar resources in ontologies. Furthermore,
we discuss some general query optimization rules and we present our iSPARQL framework. Fi-
nally, we conduct an extensive evaluation and we present our findings.

The chapters are organized as follows. Chapter 2, introduces the concept of similarity theory
which mainly influenced the development of iSPARQL, stressing on the difference of similarity
measures and strategies. Chapter 3, describes in more details our imprecise framework developed
as extension to SPARQL. In Chapter 4, we present our (i)SPARQL optimization techniques mainly
based on query rewriting rules which are implemented as an ARQ optimization module, called
OptARQ. In Chapter 5, we conduct an extensive quantitative and qualitative evaluation of both
query and retrieval performance for iSPARQL queries and we present our findings. We conclude
our discussion in Chapter 6 with some final thoughts.

7http://www.aduna-software.com/
8http://www.openrdf.org/
9http://kaon2.semanticweb.org/

2
Similarity

The concept of similarity is ubiquitous in psychological theories of perception, learning and judg-
ment. While geometric models dominated the theoretical analysis of similarity relations, Tver-
sky, ‘one of the most influential similarity theorists’ [Medin et al., 1993], argued in his Features of
Similarity [Tversky, 1977], that models which define similarity as a metric distance function are
appropriate only for certain stimuli (e.g., colors). Tversky suggested that the similarity between
stimuli may be better described as a comparison of features, rather than as a computation of
metric distance between points.

This chapter outlines the similarity theory defined by Tversky and how it influences our
framework to query for similar resources. We discuss the difference between a similarity strategy
and a similarity measure, which is fundamental in our framework. Furthermore, we present the
most relevant similarity measures used in our framework.

2.1 Similarity as Function of Features

Tversky argued in [Tversky, 1977], that the similarity s(a, b) of two objects a and b, can be ex-
pressed as a function of their common and distinctive features. According to this, the similarity
function takes three arguments [Tversky and Gati, 1978]:

• A ∩ B, the features shared by objects a and b

• A − B, the features of a that are not shared by b

• B − A, the features of b that are not shared by a

Thus, the similarity between two objects behaves accordingly to the number of shared fea-
tures. Two objects show the highest similarity if A ∩ B = A ∪ B, where A ∪ B is the features
union of both objects a and b. As we will describe later on in this chapter, our framework sup-
ports the development of strategies to quantify the similarity between resources in ontologies.
Basically, strategies are functions which map a set of features to a similarity value. They consider
the similarity (or dissimilarity) of features and allow feature weighting.

6 Chapter 2. Similarity

2.2 Similarity Measures

Our iSPARQL framework uses similarity measures as atomic functions to calculate the similar-
ity of a specific feature shared by two objects. We strictly distinguish measures from strategies
(Section 2.3). While measures are used to capture the similarity of a specific feature, strategies
depict the overall similarity of objects and implement a specific logic required to map features to
a similarity value.

A taxonomy for similarity measures with a detailed description about their properties can
be found in [Bernstein et al., 2005]. In the following, we briefly discuss the similarity measures
which are relevant for this thesis.

Both Levenshtein and Levenshtein Level2 (also called Levenshtein of Levenshtein) similarity
measures use the Levenshtein string edit distance to characterize the similarity of strings. The edit
distance measures the relatedness in terms of the number of insert, remove, and replacement op-
erations to turn one string into another [Levenshtein, 1966]. The Levenshtein similarity between
two strings str1 and str2 is calculated by

simlev(str1, str2) = 1 −
xform(str1, str2)

xformwc(str1, str2)

where xform(str1, str2) defines the edit distance which is normalized by the worst case trans-
formation cost xformwc(str1, str2). We get a similarity value by subtracting the normalized edit
distance from 1.

Resnik [Resnik, 1995] and Lin [Lin, 1998] compute the similarity of objects in a taxonomy in
terms of information-theoretic entropy. The entropy of an object corresponds to the negative
logarithm of the probability of encountering that object (or those which are subsumed by it).
More specific objects in a taxonomy show a lower probability to be encountered and consequently
a higher entropy. Both measures can be used to calculate the semantic similarity of concepts in
ontologies. According to Resnik, the similarity is computer as

simresnik(o1, o2) = maxo3∈S(o1,o2)[−log2p(o3)]

where S(o1, o2) is the set of common ancestors of o1 and o2 (i.e., concepts that subsume both
objects) and p(o3) is the probability of encountering a concept of type o3 (i.e., subsumed by both
o1 and o2). Lin defined the similarity of two concepts as

simlin(o1, o2) =
2 ∗ log2p(MRCA(o1, o2))

log2p(o1) + log2p(o2)

where p(MRCA(o1, o2)) is the probability of the most recent common ancestor of two concepts
o1 and o2 [Bernstein et al., 2005], i.e., the probability of the most specific class that subsumes both
o1 and o2.

The Dice [Ganesan et al., 2003] and the Jaccard [Cohen et al., 2003] similarity measure deter-
mine the relatedness of objects in terms of common and distinctive attributes. Strings are consid-
ered as bags of tokens and the similarity is computed as a function of the common (|o1 ∩ o2|) and
distinctive (|o1| resp. |o2|) attributes. The Dice coefficient is defined as

simdice(o1, o2) =
2 ∗ |o1 ∩ o2|

|o1| + |o2|

whereas Jaccard is defined as

2.3 Similarity Strategies 7

simjaccard(o1, o2) =
|o1 ∩ o2|

|o1| + |o2| − |o1 ∩ o2|

The Cosine string similarity [Baeza-Yates and Ribeiro-Neto, 1999] maps strings to binary vec-
tors. The similarity is computed as the cosine of the angle between the vectors. For two vectors
v1 and v2, the measure is defined as

simcosine(v1, v2) =
v1 • v2

‖v1‖2 × ‖v2‖2

where ‖v‖2 =
√

∑n

i=1 |vi|
2, i.e., the L2-norm.

The TFIDF measure [Baeza-Yates and Ribeiro-Neto, 1999] computes the similarity of strings
(generally speaking documents) as the cosine of the angle between the vectors which represent
the documents. The measure associates a weight wti,d to each term ti in a document d, which is
computed as

wti,d = tfti,d × idfti
= tfti,d ∗ log(

N

dti

)

where tfti,d is the term frequency of ti in document d, N the total number of documents in
the corpus, and dti

the number of documents where the term ti appears. The higher the term
frequency and lower the inverse document frequency, the higher is the resulting term weight.

Shortest path and tree edit distance similarity measures consider the ontological graph struc-
ture while computing the similarity of objects. Both can be used to calculate the semantic similar-
ity of concepts in ontologies. The shortest path measure is defined as

simedge(o1, o2) =
2 ∗ MAX − len(o1, o2)

2 ∗ MAX

where MAX is the length of the longest path from the root of the ontology to any of its leaf
concepts and len(o1, o2) is the length of the shortest path from o1 to o2. Basically, this is a edge
counting distance measure which is converted to a similarity measure.

As for Levenshtein, the tree edit distance is a function of the operations required to turn the
tree T1 into the tree T2 by applying insertion, substitution, and deletion of nodes [Valiente, 2002].
We turn the normalized least-cost transformation of T1 to T2 into a similarity value by subtraction
from 1. Thus, the similarity based on tree edit distance is defined as

simtree(o1, o2) = 1 −
TreeDist(T1, T2)

|T1| + |T2|

where |T | is the sum of nodes for T .

2.3 Similarity Strategies

Our framework to query for similar resources in ontologies, iSPARQL, allows the implementa-
tion and reuse of similarity strategies. Basically, it is a container for strategies where a strategy
implements the required logic to capture the similarity of things. In ontologies, things may be
either URI-references or literals and we generally call them objects. In our framework, we assign

8 Chapter 2. Similarity

ontological objects to strategies. A strategy may exploit not only the corresponding object fea-
tures, but extract more related features from the underlying ontology in order to get an optimal
similarity approximation.

The fundamental questions are (1) how the similarity of objects is best approximated and (2)
against whom or what should the approximation be compared, i.e., a reference similarity value
is required. A reasonable reference may be human similarity judgment. As in the experiment
performed by Miller and Charles [Miller and Charles, 1991], ultimately similarity algorithms are
compared to human similarity judgment. Thus, it is a matter of finding the similarity strategy
which minimizes the deviation from human judgment.

Given two ontological objects, we can think of very different ways how to determine the simi-
larity between them. For example, we may calculate an overall similarity based on a comparison
of either all features shared by the objects or just a subset. Furthermore, the similarity of an ob-
ject feature can be typically calculated by a number of different measures and each approximates
the similarity differently. Normally, there is a measure that approximates better human similarity
judgment for the observed feature than others. Moreover, strategies (i.e., the function which maps
object features to a similarity) are highly affected by the pursued similarity goal. As a simple ex-
ample, consider the task of evaluating the similarity of some curriculum vitae. A strategy which
captures the similarity on experience and skills may consider different features than a strategy
which targets at capturing the similarity in education.

Object features are of different types. We distinguish two classes: intrinsic and extrinsic. In-
trinsic features are characteristics that describe an individual object. Object attributes (i.e., predi-
cates) are examples for intrinsic features (e.g., the age of a person). Extrinsic features are charac-
teristics that an object exhibits in reference to other objects. For example, the subtype hierarchy
observed for a specific class should be considered as extrinsic feature.

Whether a similarity measure is meaningful for a specific feature depends on the class to which
the feature belongs. While the similarity of intrinsic features is usually better captured by some
character sequence measure, for extrinsic features, edge counting or information content methods
are usually more suitable to approximate human similarity judgment.

Consequently, we are able to measure the similarity of ‘things’ in a number of different ways,
each of them resulting in different and specific strategies. In order to determine the goodness of a
strategy, we should evaluate it against a reference value, i.e., human similarity judgment.

3
The Imprecise Extension

Inspired by A. Tversky (Chapter 2), we implement an imprecise extension to SPARQL as a frame-
work for similarity strategies which allows a novel ranking of resources based on similarity.

In the following sections we describe our approach and proposed framework to query for
similar resources in ontologies in more details.

3.1 Characteristics

Our approach fulfills two fundamental characteristics. First, iSPARQL queries are fully compati-
ble SPARQL queries. As we will see later in this chapter, imprecise statements are embedded in
SPARQL queries and are SPARQL compatible. The approach does not require additional query
language constructs and allows defining similarity strategies in SPARQL syntax. Secondly, the
imprecise framework can be integrated as extension to the query engine used for the implemen-
tation (ARQ).

The combination of both characteristics yields an optimal and seamless integration of our
imprecise framework into the query engine. No customization is required for the query engine in
order to enable the imprecise framework.

3.2 Software Components

The imprecise framework requires a number of software components. As a SPARQL extension,
it requires a SPARQL query engine. Thus, we build the imprecise extension on top of a SPARQL
query engine, in order to reuse all the functionality required to execute SPARQL queries. This
includes dataset loading, query parsing and syntax checking, query execution planning, query
execution and result set consumption.

The imprecise framework fits into the result set consumption stage, where matching resources
are compared against their similarity, and it returns a similarity value, which reflects the corre-
sponding strategy. The similarity value may further be reused in (i)SPARQL, e.g., for a similarity
ranking.

10 Chapter 3. The Imprecise Extension

3.2.1 Jena and ARQ

Jena1 is an open source Java framework for building Semantic Web applications developed within
the HP Labs Semantic Web Programme2. It includes a RDF3 and OWL4 API, reading and writing
RDF in RDF/XML5, N36 and N-Triples7 and in-memory or persistent dataset storage as well. Jena
includes a SPARQL query engine called ARQ8 - a SPARQL Processor for Jena. ARQ supports
multiple query languages like SPARQL, RDQL and ARQ (the engine’s own language - a superset
of SPARQL) and multiple query engines.

3.2.2 SimPack

SimPack9 is a generic Java library of similarity measures for the use in ontologies and other ap-
plication domains activated by the Dynamic and Distributed Information Systems Group10 of the
University of Zurich, Switzerland.

Because of the generic design character used in SimPack, the library is optimally integrated
into the imprecise framework. SimPack allows a comfortable usage of similarity measures within
the framework. Thus, our imprecise framework delegates the similarity computation to SimPack
and acts as a layer between the ARQ query engine and the SimPack library, where it adds the
concept of a similarity strategy which allows features mapping of complex ontological resources
to basic similarity measures in order to characterize the similarity between ontology resources.

3.3 Architectural Design

As we described above, the imprecise framework is invoked by ARQ during the result set con-
sumption stage of query processing. The framework exploits a special feature of ARQ which
allows to wrap Java classes behind predicates of triple pattern statements in SPARQL queries.

Similarity strategies are defined in SPARQL queries as a block of imprecise statements. During
result set consumption ARQ processes each statement defined in query and assigns the strategy
attributes to the imprecise framework. Once the strategy attributes are set, the corresponding
similarity strategy is executed by the framework, which returns a single similarity value as result
of this process.

The interface of similarity strategies is kept very small. Every imprecise strategy is obliged to
implement a similarity logic that returns an adequate similarity value which is finally bound to a
SPARQL variable. Because of the binding, we are able to reference similarity values in SPARQL
queries or in other similarity strategies. For example, ARQ may use the similarity value to rank
the resulting tuples, or a subsequent similarity strategy may reuse a similarity value as a thresh-
old, or aggregate multiple similarity values.

The imprecise framework supports a number of attributes which may be used to configure
similarity strategies. Setting a strategy threshold may be an example for such an attribute. Fur-
thermore, it includes a number of similarity measures which can be used in similarity strategies.

1http://jena.sourceforge.net
2http://www.hpl.hp.com/semweb/
3http://www.w3.org/RDF/
4http://www.w3.org/2004/OWL/
5http://www.w3.org/TR/rdf-syntax-grammar/
6http://www.w3.org/DesignIssues/Notation3
7http://www.w3.org/2001/sw/RDFCore/ntriples/
8http://jena.sourceforge.net/ARQ/
9http://www.ifi.unizh.ch/ddis/research/semweb/simpack/

10http://www.ifi.unizh.ch/ddis/

3.4 Imprecise Query Language 11

Framework measures are the interface to SimPack and invoke the corresponding SimPack mea-
sures from the library. Thus, the framework provides measures as wrappers around SimPack
similarity measures.

Figure 3.1 illustrates the RDFS for an iSPARQL similarity strategy. Moreover, we include an
individual which specifies a set of imprecise statements to show the usage of the schema for a
typical strategy.

3.4 Imprecise Query Language

The imprecise query language, iSPARQL, extends traditional SPARQL by introducing specific
imprecise statements (i.e., virtual triples). SPARQL is a declarative language to query RDF graphs.
It allows querying by triple patterns and supports the definition of conjunctive, disjunctive as
well as optional patterns [Manola and Miller, 2004]. Standard features known from SQL, e.g.,
order and limit are supported too. In this section we take a closer look to the specific imprecise
statements. We will start by defining the extended iSPARQL grammar.

3.4.1 Grammar

The extended imprecise query language grammar is based on traditional SPARQL grammar
[Prud’hommeaux and Seaborne, 2006]. As we stated previously in this chapter, iSPARQL does
not introduce new language constructs.

Instead, we tie up to the expression of FilteredBasicGraphPattern defined in tradi-
tional SPARQL grammar, by adding our ImpreciseBlockOfTriples symbol. Although the
structure of an ImpreciseBlockOfTriples is very similar to the one of a BlockOfTriple,
the behavior of imprecise statements is completely different compared to usual triple patterns,
though they may look alike. In fact, instead of matching a pattern in some graph model, impre-
cise statements are not matched against a graph. The goal of imprecise statements, is to create
a bridge between ARQ and the imprecise framework, in order that the strategy attributes speci-
fied in some iSPARQL query are assigned to the imprecise framework which executes similarity
strategies. To reflect this behavioral difference of SPARQL triple patterns and iSPARQL imprecise
statements, we found it necessary to extend the SPARQL grammar. The grammar extension is
displayed in Appendix A.

An ImpreciseBlockOfTriples is a similarity strategy query definition, which is a se-
quence of imprecise statements. Our imprecise framework implements two different classes of
strategies. The first class includes strategies that calculate a similarity value out of ontology re-
sources. The second class, however, covers strategies that calculate a similarity out of multiple
similarity scores. We call them aggregation strategies because they aggregate similarity scores to
an overall similarity value.

An ImpreciseBlockOfTriples requires a NameStatement. In addition, depending on
whether or not the ImpreciseBlockOfTriples is a aggregation strategy, a ScoresStatement
or ArgumentsStatement is required too. Moreover, a SimilarityStatement is required to
bind the strategy similarity value to a SPARQL variable.

A NameStatement is used to specify the similarity strategy designated to calculate the simi-
larity value. Further, the statement initializes a new strategy inside of the imprecise framework.
This statement is mandatory for every strategy, regardless to whether or not it is an aggregation
strategy.

An ArgumentsStatement assigns two ontological objects to the framework. They will be
used while executing the similarity strategy as the objects on which the similarity is calculated.

12 Chapter 3. The Imprecise Extension

rdfs:Resource

rdfs:subClassOf

rdfs:Class

rdfs:subClassOf

rdf:Property

isparql:Strategy isparq:name xsd:stringrdfs:range

isparql:arguments rdf:Listrdfs:range

isparql:scores rdf:Listrdfs:range

isparql:aggregator

isparql:threshold xsd:doublerdfs:range

isparql:weights

isparql:ignorecase

rdf:Listrdfs:range

xsd:booleanrdfs:range

xsd:stringrdfs:range

http://www.ifi.unizh.ch/isparql/strategy/LevenstheinStrCmp#ID1

isparql:name

LevenshteinStrCmp isparql:theshold

Individuals

Application specific schema

RDF/RDFS layer

0.5

isparql:similarity xsd:doublerdfs:range

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

isparql:arguments

(„Donald“ „Chamberlin“)

isparql:ignorecase

false

isparql:similartiy

0.1

instanceOf

Figure 3.1: RDF-Schema for iSPARQL Imprecise Statements with an Individual.

3.5 Framework Usage 13

The statement takes a list of variables, URI-references or literals as parameters. Please note that
variables must be bound by ARQ in a previous stage. This statement is mandatory for every
strategy except for aggregation strategies.

A ScoresStatement takes a list of one or more similarity variables or values as parameters.
Variables must be previously bound in query by some other similarity strategies. This statement
is used for aggregation strategies only.

A WeightsStatement is used in combination with a ScoresStatement. Thus, it is in-
herent to aggregation strategies but not mandatory. The goal is to provide a weighting method
for similarity scores. This allows specifying strategy relevance directly in iSPARQL queries by
weighting their similarity values.

An AggregatorStatement allows setting an aggregation method which is used to aggre-
gate multiple similarity values. An aggregation method is required for an aggregation strategy.
Also, strategies where ontology resources are compared by a complex logic usually aggregate
multiple similarity scores. The statement is not mandatory and can be used in both strategy
classes.

A ThresholdStatement allows setting a strategy threshold. This statement is not manda-
tory and may be used in both strategy classes. If a threshold is set, the similarity value calculated
by the strategy has to satisfy the threshold in order to be considered a result. If the threshold is
not satisfied, the pattern match is not considered further and the binding is dropped.

An IgnorecaseStatement is used in combination with strategies, where the case of charac-
ter sequences may matter. Thus, it depends on the selected strategy, whether or not this statement
is useful.

Finally, a SimilarityStatement executes the similarity strategy according to its configura-
tion and implementation. The statement executes the similarity logic implemented by the strat-
egy specified in NameStatement and requires a SPARQL variable as parameter. The variable is
used to bind the resulting similarity value. The SimilarityStatement is mandatory in both
similarity strategy classes.

3.5 Framework Usage

This section sets the focus on framework usage which is demonstrated by short commented ex-
amples. In order to enable imprecise querying in SPARQL queries, we need to add an additional
PREFIX to the query. This special PREFIX imports the Java namespace of iSPARQL strategy at-
tributes. Thus, we first add the PREFIX listed in 3.1 to any iSPARQL query.

Listing 3.1: iSPARQL PREFIX

PREFIX i s p a r q l : <j ava : ch . unizh . i f i . i s p a r q l . query . property .>

The PREFIX enables the defining of iSPARQL statements and may be named arbitrarily. We
use ‘isparql’ as a convention in order to better differentiate SPARQL from iSPARQL statements.

The first iSPARQL query example (Listing 3.2) shows a retrieval of resource predicates based
on a RDF dataset of individuals. The query returns the similarity value between the first name
and last name of each person. The similarity is calculated by means of the LevenshteinStrCmp
strategy which allows calculating the similarity of two strings using Levenshtein. The query
shows a minimal configuration for a valid iSPARQL query. As explained previously in this chap-
ter, we need to specify a strategy, set the similarity arguments, and provide a variable to which
the similarity value is bound.

14 Chapter 3. The Imprecise Extension

Listing 3.2: iSPARQL Example 1

PREFIX person : <http :// person/>

PREFIX i s p a r q l : <j ava : ch . unizh . i f i . i s p a r q l . query . property .>

SELECT ? f i r s tname ? lastname ? s i m i l a r i t y
WHERE {

? person person : f i r s tname ? f i rs tname .
? person person : lastname ? lastname .

? s t r a t e g y i s p a r q l : name ” L e v e n s h t e i n S t r C m p ” .
? s t r a t e g y i s p a r q l : arguments (? f i r s tname ? lastname) .
? s t r a t e g y i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y

}

Listing 3.3: iSPARQL Example 2

PREFIX person : <http :// person/>

PREFIX i s p a r q l : <j ava : ch . unizh . i f i . i s p a r q l . query . property .>

SELECT ? f i r s tname ? s i m i l a r i t y
WHERE {

? person1 person : f i r s tname ” M a r k u s ” .
? person2 person : f i r s tname ? f i rs tname .

? s t r a t e g y i s p a r q l : name ” L e v e n s h t e i n R e s C m p ” .
? s t r a t e g y i s p a r q l : arguments (? person1 ? person2) .
? s t r a t e g y i s p a r q l : threshold 0 . 7 .
? s t r a t e g y i s p a r q l : aggregator ” m e d i a n ” .
? s t r a t e g y i s p a r q l : ignorecase t rue .
? s t r a t e g y i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y

}

In Listing 3.3 we define a sensitive more complex strategy compared to our first example (List-
ing 3.2). This second example adds three more imprecise statements: a threshold, a specific ag-
gregation method, and an ‘ignore case’ for string similarity comparison. Furthermore, we specify
another similarity strategy.

The strategy used in this second example is more complex compared to the first one, but it
is again a general purpose similarity strategy. Thus, it is not specific to any ontology. Instead of
simply calculating the Levenshtein similarity of strings, the strategy iterates over each resource
predicate and accumulates similarity scores to an overall similarity. Resource objects are com-
pared by Levenshtein. Objects with a URI-reference are recursively resolved. Please note that the
resulting similarity strongly depends on the selected aggregation method.

Our next example (Listing 3.4), employs both strategy classes included in iSPARQL. This is the
first example of an aggregation strategy, called ScoreAggregator. An aggregation strategy is
slightly different from other similarity strategies because there is no similarity measure involved.
Nevertheless, it is still a strategy since a similarity strategy is a function that generates a similarity
value. As we explained earlier in this chapter, the goal of an aggregation strategy is to aggregate
similarity scores previously calculated by other strategies.

3.5 Framework Usage 15

Listing 3.4: iSPARQL Example 3

PREFIX person : <http :// person/>

PREFIX i s p a r q l : <j ava : ch . unizh . i f i . i s p a r q l . query . property .>

SELECT ? person1 ? person2 ? aggregated
WHERE {

? person1 person : f i r s tname ? f i rs tname1 .
? person1 person : lastname ? lastname1 .
? person2 person : f i r s tname ? f i rs tname2 .
? person2 person : lastname ? lastname2 .

? s t r a t e g y 1 i s p a r q l : name ” L e v e n s h t e i n S t r C m p ” .
? s t r a t e g y 1 i s p a r q l : arguments (? f i rs tname1 ? f i rs tname2) .
? s t r a t e g y 1 i s p a r q l : s i m i l a r i t y ? sim1 .

? s t r a t e g y 2 i s p a r q l : name ” L e v e n s h t e i n S t r C m p ” .
? s t r a t e g y 2 i s p a r q l : arguments (? lastname1 ? lastname2) .
? s t r a t e g y 2 i s p a r q l : s i m i l a r i t y ? sim2 .

? s t r a t e g y 3 i s p a r q l : name ” S c o r e A g g r e g a t o r ” .
? s t r a t e g y 3 i s p a r q l : s c o r e s (? sim1 ? sim2) .
? s t r a t e g y 3 i s p a r q l : weights (0 . 8 0 . 2) .
? s t r a t e g y 3 i s p a r q l : aggregator ” sum ” .
? s t r a t e g y 3 i s p a r q l : s i m i l a r i t y ? aggregated

}

ORDER BY DESC(? aggregated)

The example query in Listing 3.5 shows the employment of a specific strategy. The similarity
strategies used in previous examples were all general, i.e., ontology independent. The strategy in-
volved in this example is intended to better characterize the similarity of resources in MIT Process
Handbook Ontology [Malone et al., 2003].

The MIT Process Handbook is a knowledge base including over 5000 business activities. Each
activity is described using two dimensions: the parts-uses and the specializations-generalizations.
This characteristic allows defining a wide range of strategies.

The strategy used in our query (Listing 3.5) considers the sub processes of two resources.
Although it may look very similar to the one used in our previous example (Listing 3.3), this
strategy is specific to the MIT Process Handbook ontology. This is because we explicitly compare
only the sub processes of business activities (i.e., parts). Thus, we consider only a sub set of
the predicates defined for a MIT Process Handbook resource, whereas in our previous example
(Listing 3.3) every predicate was considered.

The query defined in Listing 3.6 shows the usage of another specific strategy. Once again,
the underlying ontology is MIT Process Handbook. The similarity strategy is specific because
it analyzes only a sub set of the resource predicates, namely the sub processes. The involved
similarity measure for this example makes the major difference to the strategy used in Listing 3.5.
In fact, instead of Levenshtein, the strategy considers the sub process trees generated by resources
and the similarity is calculated as the edit distance of trees.

16 Chapter 3. The Imprecise Extension

Listing 3.5: iSPARQL Example 4

PREFIX ph : <http ://www. i f i . unizh . ch/ddis/ph/2006/08/ProcessHandbook . owl#>
PREFIX i s p a r q l : <j ava : ch . unizh . i f i . i s p a r q l . property .>

SELECT ?name ? s i m i l a r i t y

WHERE {
? process1 ph : name ” S e l l s o f t w a r e ”@en .
? process2 ph : name ?name .

? s t r a t e g y i s p a r q l : name ” MITPHResCmp ” .
? s t r a t e g y i s p a r q l : arguments (? process1 ? process2) .
? s t r a t e g y i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y

}

ORDER BY DESC(? s i m i l a r i t y)

LIMIT 20

3.6 Framework Implementation

This section uncovers some of the most important framework implementation details. The design
meets a typical framework architecture. Typically a framework architecture allows the organiza-
tion and implementation of new software projects. Indeed, our imprecise framework is designed
to allow the development of new components, especially similarity strategies.

3.6.1 Measures

The imprecise framework is an infrastructure which organizes and implements multiple similar-
ity measures. The measure classes in our framework are not intended to implement any logic to
calculate the similarity. Instead, our similarity measures are wrappers [Gamma et al., 1995] for
measures implemented in the SimPack library.

Similarity measures are organized in a specific Java package11 and are invoked in similarity
strategies to calculate the similarity of resources. For complex similarity logics a strategy usually
deals with two URI-references that correspond to some ontology resource. URI-references are not
intended to be compared for similarity. In fact, similarity strategies and measure wrappers need
to format the information about resources into data which is subsequently used for similarity
computation by SimPack.

3.6.2 Strategies

Similarity strategies extend the framework abstract strategy and implement the strategy interface.
The strategy interface consists of a single method which returns a double value and does not
require any parameters. Thus, the interface required for a similarity strategy is very small.

11ch.unizh.ifi.isparql.query.measure

3.7 Extending the Framework 17

Listing 3.6: iSPARQL Example 5

PREFIX ph : <http ://www. i f i . unizh . ch/ddis/ph/2006/08/ProcessHandbook . owl#>
PREFIX i s p a r q l : <j ava : ch . unizh . i f i . i s p a r q l . query . property .>

SELECT ? s i m i l a r i t y

WHERE {
? process1 ph : name ” S e l l s o f t w a r e ”@en .
? process2 ph : name ” S e l l ”@en .

? s t r a t e g y i s p a r q l : name ” M I T P H T r e e E d i t D i s t a n c e R e s C m p ” .
? s t r a t e g y i s p a r q l : arguments (? process1 ? process2) .
? s t r a t e g y i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y

}

The imprecise framework provides every strategy all the required context information about
the iSPARQL query, the imprecise attributes, and the underlying graph. Thus, each strategy is
able to use context information which allows building complex similarity strategies.

Strategy extensions are organized in a specific Java package12 and are invoked by a strat-
egy factory [Gamma et al., 1995]. Similarity strategies are identified by a unique URI-reference
[Berners-Lee et al., 1998]. This URI-reference is bound to the corresponding SPARQL variable
while processing the first imprecise statement (i.e., the NameStatement). Each time ARQ en-
counters an imprecise statement during query processing, the URI-reference bound to the im-
precise statement subject is extracted and used as a key to identify the corresponding strategy
object inside the imprecise framework. This procedure ensures that imprecise attributes defined
in iSPARQL queries are assigned to the corresponding strategy represented in the framework.

3.7 Extending the Framework

The imprecise framework is intended for the implementation of strategies, measures, attributes
and aggregation methods. Since we believe that specific similarity strategies result in better ap-
proximation of human similarity judgment, extending the framework is expected to be a perma-
nent activity.

Achieving good similarity approximations is anything but a trivial task. A reference similarity
judgment, i.e., gold standard and a deep study of the underlying ontology are required. We need
to investigate the structure of resources, identify relevant predicates, consider possible subsump-
tion structures. Ultimately, research and experience may lead to a good similarity strategy. Once a
strategy is defined, we deliberate how to implement it. The framework provides multiple features
that can be reused and allows extending the not yet implemented features required to run a strat-
egy. Wrappers for SimPack measures, imprecise attributes, similarity strategies, or aggregation
methods are examples of packages where the framework may be extended while implementing
new strategies.

As we explained earlier in this chapter, every similarity strategy extends the framework ab-
stract strategy and is organized in a specific Java package. A new strategy needs to implement the
similarity method that returns a double value. Aside from this interface, we are free to implement

12ch.unizh.ifi.isparql.query.strategy

18 Chapter 3. The Imprecise Extension

any complex logic required to characterize the similarity of resources. The imprecise framework
provides all required information about the imprecise attributes set in query and the underly-
ing graph. Thus, we may access this data and gather more information concerning the resources
which are usually referenced by a URI-reference.

Sometimes it is required to add a new imprecise attribute perhaps because of a newly added
strategy. Imprecise attributes are Java classes that extend ARQ classes13. While measure wrap-
pers depend on SimPack interface, imprecise attribute classes depend on ARQ interfaces. In fact,
imprecise attributes with a single literal or a variable specified as object (e.g., imprecise thresh-
old statement) extend the ARQ PFuncSimple class, whereas imprecise attributes with a list of
literals or variables specified as object (e.g., imprecise arguments statement) extend the ARQ
PropertyFunctionBase class. Extending those ARQ classes enables access to ARQ bindings,
the subject, predicate, and object of imprecise attributes, and the ARQ query execution context.

13com.hp.hpl.jena.query.pfunction

4
Query Optimization

Since the advent of System R [Selinger et al., 1979], query optimization has always been a research
topic. The techniques introduced by D. Chamberlin and his IBM research group in San José, Cal-
ifornia, in 1979 are still used in commercial database systems [Oommen and Rueda, 2001]. The
concept of selectivity factor described in [Selinger et al., 1979] is still a crucial one. Clearly, selec-
tivity estimation methods evolved from simply formulas to more complex statistical techniques,
but the foundations are yet applicable.

This chapter outlines our proposed iSPARQL optimization framework. We delineate the op-
timization techniques applicable to both SPARQL and iSPARQL queries. Moreover, we describe
the fundamental concept of triple pattern selectivity estimation on which our query optimization
approach is based. Finally, we discuss the optimization prototype implementation and we present
the cost function together with the statistical model which is required for selectivity estimation.

4.1 Optimization Framework

The proposed optimization framework for (i)SPARQL queries mainly focuses on static optimiza-
tion techniques. By static optimization we mean general rules which may be applied in order
to get an optimal query execution plan. Thus, static optimization is a query rewriting process
usually executed after query parsing and syntax checking.

Our optimization framework which is implemented for ARQ, consists of a number of query
rewriting rules. Some of them are trivial since they simply remove dispensable triple patterns or
rewrite FILTER expressions by executing them as early as possible in a query. However, as we
will describe later on in this chapter, one slightly more complex rule builds on our statistical triple
pattern selectivity estimation approach.

The fundamental aim of the proposed optimization framework is to reduce intermediate result
sets of triple patterns and imprecise strategies. Basically, each rule is intended to fulfill this goal.
Our statistical approach allows a selectivity estimation of triple patterns, whereas a triple pattern
execution cost function enables a pattern ranking by (expected) intermediate result set sizes.

Furthermore, we consider the employment of similarity indexes in order to allow a cached
lookup for similarity values during query execution instead of computing them. Because of the
potentially very large number of resource pairings and similarity comparisons in ontologies this
technique my be useful only for small ontologies and highly complex strategies.

Finally, we discuss some best practices that may be considered while developing similarity
strategies. For instance, we may avoid to execute some expensive similarity measure by evaluat-
ing the result of a faster measure or by testing resource URI-references for equality.

20 Chapter 4. Query Optimization

4.2 Selectivity

Selectivity is the most crucial concept on which our optimization model is based. Piatetsky de-
fined the selectivity in [Piatetsky-Shapiro et al., 1984] as follows.

Definition 1 Selectivity of a condition E, denoted SEL(E), is the fraction of tuples satisfying this condi-
tion.

For example, SEL(number = 6) is about 0.16 for a typical dice. This definition can be adapted
with some small modification to ontological data models. We may modify the definition for iS-
PARQL queries, to

Definition 2 Selectivity of a triple pattern T, denoted SEL(T), is the fraction of triples satisfying the
pattern.

Selectivity is fundamental because it quantifies the size of intermediate result sets, which
themselves are highly relevant in (i)SPARQL, especially when triple patterns are joined. The
smaller intermediate result sets are the faster joins are processed. Thus, the key solution is to min-
imize the triple pattern intermediate result set size which means to execute first triple patterns
with small selectivity.

The optimization we focus on is based on query rewriting rules. We found some general rules
that can by applied and introduced a histogram based statistical model in order to estimate the
selectivity of a triple pattern. Thus, the second fundamental topic is how to estimate the selectivity
in an efficient way during query execution.

4.3 Selectivity Estimation

Selectivity can be calculated by an exact formula or an estimation which is based on statistics
about the resources contained in the underlying ontology. In our research, we first started to
think about an index which enables extracting exact selectivity for each triple pattern. Because
an exact triple pattern selectivity computation basically requires the pattern to be executed we
moved from considering exact models to statistical models which allowed us to get an estimation
of the selectivity.

Later on in the evaluation (Chapter 5), the estimation approach based on statistics showed to
be precise enough to optimize our retrieval tasks. We believe, the estimations are precise enough
to allow a correct ranking of triple pattern based on the selectivity. One of the most important
benefit of using a statistical representation of the ontology resources to get a selectivity estimation
is the size of the resulting statistical model. The overhead size of data required for our selectivity
cost model is marginal and can be heightened or scaled down, resulting in more or less precise
information about the selectivity.

4.4 Selectivity Cost Function

We define a cost function that reflects the selectivity estimation and is used to rank triple patterns
in increasing order of selectivity, i.e., increasing order of expected execution cost. The cost func-
tion returns a value between 0 and 1, thus, it is basically a normalization to [0,1] of the estimated
selectivity.

We model the overall cost for a triple pattern as follows

4.4 Selectivity Cost Function 21

c(t) = c(s) ∗ c(p) ∗ c(o)

where c(t) is the overall cost for a triple pattern t and s, p, o are respectively the subject, predi-
cate and object of t. Thus, the expected execution cost for t, c(t), corresponds to the multiplication
of the expected cost for the subject c(s), predicate c(p), and object c(o).

4.4.1 Subject Cost Estimation

The subject of a triple pattern can be either a variable or a URI-reference. In the case of a variable,
we assign the cost 1.0 since we miss information to make a more precise cost estimation. In
the case of a URI-reference, it matches a resource in the model. Thus, the exact number of triples
returned by a pattern where the subject is specified by a URI-reference corresponds to the number
of predicates defined for the referenced resource. This information would require an index for
each resource. Instead, our statistical model estimates the cost of a pattern where the subject is
specified with a URI-reference by

c(s) =
1

|R|

where |R| is the total number of resources in our ontology. This results in a constant for the
selectivity of subjects in the queried ontology.

4.4.2 Predicate Cost Estimation

The predicate of a triple pattern can be either a variable or a URI-reference. In the case of a
variable, we again assign the cost 1.0 as for the subject since we miss information to make a more
precise estimation. In the case of a URI-reference, it matches each triple which features the URI as
predicate. We estimate the cost for predicate p by

c(p) =
|Tp|

|T |

where |Tp| corresponds to the (exact) number of triples matching predicate p and |T | is the total
number of triples. This is the fraction of triples which matches predicate p. Thus, the predicate
cost estimation given a URI-reference is exact.

4.4.3 Object Cost Estimation

The triple pattern object can be either a variable or a graph term. In the case of a variable, we
assign the cost 1.0 as for subject and predicate. In the case of a term we extract the estimated se-
lectivity from a histogram. The object values domain for predicates is represented by histograms,
more precisely equal-width histograms [Piatetsky-Shapiro et al., 1984]. As we will depict later on
in this chapter, the range of object values is divided into B equal-width histogram classes where
the class height corresponds to the number of objects given a predicate that fall into the class.
Hence, for each predicate a histogram of the corresponding object value domain is created. We
estimate the object cost c(o) by

c(o) =

{

c(p, oc), if p is bound;
∑

pi∈P
c(pi, oc), otherwise.

22 Chapter 4. Query Optimization

where c(p, oc) = hc(p,oc)
|Tp|

, i.e., the frequency of oc normalized by the number of triple matching

p. In the case a predicate is not bound, the histogram of each predicate in the model is considered
for the object cost estimation. Histograms represent the object values domain of a specific predi-
cate. Thus, to address a histogram the predicate URI-reference is required. Please refer to Section
4.9 for a discussion about a more general case where only the object is specified.

4.5 Examples

In order to illustrate the cost model described in previous section, we illustrate some examples
for which we calculate the estimated cost. The examples are based on a sample ontology O. We
perform an index over O to gather the required statistics. O contains 1’317 triples and an average
of 11.52 predicates for each resource. Moreover, the predicate RDFS:label1 appears in 114 triples.
In O, RDFS:label is used to describe the title of publications. The title ‘XQuery: A Query Language
for XML’ [Chamberlin et al., 2001] falls into a histogram class of height 17.

Based on these statistics, we are now able to estimate the cost of triple patterns. Table 4.1
illustrates some examples.

t c(s) c(p) c(o) c(t)
1 ?s ?p ?o 1.0 1.0 1.0 1.0
2 :s ?p ?o 0.008747 1.0 1.0 0.008747
3 ?s rdfs:label ?o 1.0 0.0865604 1.0 0.0865604
4 :s rdfs:label ?o 0.008747 0.0865604 1.0 0.0007571
5 ?s rdfs:label ”XQuery: A Query ...” 1.0 0.0865604 0.0129081 0.0011173
6 :s rdfs:label ”XQuery: A Query ...” 0.008747 0.0865604 0.0129081 0.0000097

Table 4.1: Triple Pattern Cost Estimation

The examples show the execution cost variation according to a variable or specific subject,
predicate and object. At this point, an interesting question may be whether the cost estimation
behaves naturally in respect to the ontology. Consider the examples listed in Table 4.1. It is
straightforward that the triple pattern (5) potentially matches more triples than the pattern (6).
Thus, the smaller cost for the pattern (6) is justified, but perhaps the cost function does not behave
naturally in respect to the ontology. For example, in case the ontology contains only a single
publication entitled ‘XQuery: A Query Language for XML’, the effective costs for the triple pattern
(5) and (6) are the same. Our cost function returns a different estimation for the triple pattern (5)
and (6), but this is admissible, since the selectivity of the triple patter (6) is a lower bound for the
selectivity of the pattern (5).

4.6 Statistical Model

The required statistical information about the underlying graph model is (usually) previously
extracted by an indexing process. In a special case the statistics may be extracted during query
execution, namely when the unoptimized query execution is expected to be longer than the index-
ing process required to gather the statistical information. During our evaluation we experienced
that this special case is more frequent than expected.

1http://www.w3.org/2000/01/rdf-schema#label

4.6 Statistical Model 23

Listing 4.1: Statistical Ontology Model: Average Number of Predicates and Number of Triples

<?xml vers ion=” 1 . 0 ”?>

<rdf : RDF
xmlns : j .0= ” h t t p : / / l o c a l h o s t / ”
xmlns : rdf=” h t t p : / / www . w3 . o r g / 1 9 9 9 / 0 2 / 2 2 − r d f −s y n t a x −n s # ”>

<rdf : Descr ipt ion rdf : about=” h t t p : / / l o c a l h o s t / s t a t i s t i c s ”>
< j . 0 : avgNrOfPredicates >3.3333333333333335</ j . 0 : avgNrOfPredicates>

< j . 0 : nrOfTriples >20</ j . 0 : nrOfTriples>

< j . 0 : p r e d i c a t e s rdf : resource=” h t t p : / / l o c a l h o s t / p r e d i c a t e s / # P1 ”/>

</rdf : Descr ipt ion>

<rdf : Descr ipt ion rdf : about=” h t t p : / / l o c a l h o s t / p r e d i c a t e s / # P1 ”>
<rdf : 7 rdf : resource=” h t t p : / / l o c a l h o s t / p e r s o n / l a s t n a m e ”/>

<rdf : 6 rdf : resource=” h t t p : / / l o c a l h o s t / p e r s o n / f i r s t n a m e ”/>

<rdf : 5 rdf : resource=” h t t p : / / l o c a l h o s t / a d d r e s s / c i t y ”/>

<rdf : 4 rdf : resource=” h t t p : / / l o c a l h o s t / p e r s o n / age ”/>

<rdf : 3 rdf : resource=” h t t p : / / l o c a l h o s t / a d d r e s s / z i p ”/>

<rdf : 2 rdf : resource=” h t t p : / / l o c a l h o s t / p e r s o n / a d d r e s s ”/>

<rdf : 1 rdf : resource=” h t t p : / / l o c a l h o s t / a d d r e s s / s t r e e t ”/>

<rdf : type rdf : resource=” h t t p : / / www . w3 . o r g / 1 9 9 9 / 0 2 / 2 2 − r d f −s y n t a x −n s # S e q ”/>

</rdf : Descr ipt ion>

</rdf : RDF>

In either case, the implementation of our ARQ optimizer requires a statistical model for the
triple pattern cost estimation. We implement a Jena indexer which creates an ontology model con-
taining all required statistical information. The model is serialized to a RDF/XML representation
which can be loaded into a query execution environment2.

Basically the statistical model is represented as a graph (Listings 4.1, 4.2 and 4.3). It contains a
statistics resource3 with both predicates avgNrOfPredicates4 and nrOfTriples5. Fur-
thermore, the model contains a predicates resources6 with a RDF sequence7 which lists all
distinct predicates contained in the indexed ontology. Each predicate in the list is described on its
part by a RDF resource with a predicate frequency8 for the absolute number of occurrences the
predicate appears in triples and a predicate histogram9 which is a reference to the histogram
representation for the object values of the corresponding predicate (Listing 4.2). A histogram rep-
resentation is again a resource which contains a RDF sequence of histogram classes (Listing 4.3).
The histogram classes are URI-references to a RDF resource (Listing 4.3) with a predicate label10

2Please note that for performance reasons it is advisable to load the statistical model only once and to keep it in
memory. This may be achieved by some query execution environment, either an own application or for example Joseki,
http://www.joseki.org/

3http://localhost/statistics
4http://localhost/avgNrOfPredicates
5http://localhost/nrOfTriples
6http://localhost/predicates
7http://www.w3.org/TR/rdf-primer/
8http://localhost/frequency
9http://localhost/histogram

10http://localhost/histogram/class/label

24 Chapter 4. Query Optimization

Listing 4.2: Statistics: Predicate Resource

<?xml vers ion=” 1 . 0 ”?>

<rdf : RDF
xmlns : j .0= ” h t t p : / / l o c a l h o s t / ”
xmlns : rdf=” h t t p : / / www . w3 . o r g / 1 9 9 9 / 0 2 / 2 2 − r d f −s y n t a x −n s # ”>

<rdf : Descr ipt ion rdf : about=” h t t p : / / l o c a l h o s t / p e r s o n / l a s t n a m e ”>
< j . 0 : histogram rdf : resource=” h t t p : / / l o c a l h o s t / h i s t o g r a m / # H7”/>

< j . 0 : frequency>3</ j . 0 : frequency>

</rdf : Descr ipt ion>

</rdf : RDF>

which specifies the histogram class lower bound and a predicate items11 which describes the
histogram class height, i.e., the number of elements falling into the class.

To give an example, we show some RDF/XML extracts from a statistical model. Listing 4.1 dis-
plays the statistics resource. The average number of predicates corresponds to 3.33, whereas
the total number of triples found in the ontology is 20. In addition, the predicates resource is
displayed too. This resource features a RDF list of all distinct resources that are identified during
indexing.

Listing 4.2 displays an example predicate resource which describes the occurrences of the
predicate within the ontology (3) and the URI-reference for the corresponding histogram. List-
ing 4.3 shows a histogram representation which is a RDF sequence of classes for the histogram
(H7). In Listing 4.3 both histogram and class resources are described12. Figure 4.1 displays a
histogram example used to model the object domain values for a specific predicate.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Histogram Class Frequency

Figure 4.1: Example of Histogram Classes

Figure 4.2 displays the RDFS which defines the statistical ontology used to describe the sta-
tistical information required for triple pattern selectivity estimation. In addition, the example
individual listed in 4.1, 4.2 and 4.3 is displayed as instance data.

11http://localhost/histogram/class/items
12Please remark the label. In order to abstract from the specific object data type, we use the object hash code, to classify

the item inside of the histogram.

4.7 SPARQL Optimization 25

Listing 4.3: Statistics: Histogram Representation

<?xml vers ion=” 1 . 0 ”?>

<rdf : RDF
xmlns : j .1= ” h t t p : / / l o c a l h o s t / h i s t o g r a m / c l a s s / ”
xmlns : rdf=” h t t p : / / www . w3 . o r g / 1 9 9 9 / 0 2 / 2 2 − r d f −s y n t a x −n s # ”>

<rdf : Descr ipt ion rdf : about=” h t t p : / / l o c a l h o s t / h i s t o g r a m / # H7”>
<rdf : 6 rdf : resource=” h t t p : / / l o c a l h o s t / h i s t o g r a m / c l a s s / # C39 ”/>

<rdf : 5 rdf : resource=” h t t p : / / l o c a l h o s t / h i s t o g r a m / c l a s s / # C38 ”/>

<rdf : 4 rdf : resource=” h t t p : / / l o c a l h o s t / h i s t o g r a m / c l a s s / # C37 ”/>

<rdf : 3 rdf : resource=” h t t p : / / l o c a l h o s t / h i s t o g r a m / c l a s s / # C36 ”/>

<rdf : 2 rdf : resource=” h t t p : / / l o c a l h o s t / h i s t o g r a m / c l a s s / # C35 ”/>

<rdf : 1 rdf : resource=” h t t p : / / l o c a l h o s t / h i s t o g r a m / c l a s s / # C34 ”/>

<rdf : type rdf : resource=” h t t p : / / www . w3 . o r g / 1 9 9 9 / 0 2 / 2 2 − r d f −s y n t a x −n s # S e q ”/>

</rdf : Descr ipt ion>

<rdf : Descr ipt ion rdf : about=” h t t p : / / l o c a l h o s t / h i s t o g r a m / c l a s s / # C34 ”>
< j . 1 : l a b e l >4695060.980000019</ j . 1 : l a b e l >
< j . 1 : items>6</ j . 1 : items>

</rdf : Descr ipt ion>

</rdf : RDF>

4.7 SPARQL Optimization

This section focuses on SPARQL optimization. We describe our general optimization rules con-
sidered in the framework. As for the imprecise extension iSPARQL (Chapter 3), our proposed
optimization architecture may be viewed as a framework too, i.e., a general infrastructure for the
implementation of optimization rules.

Rules are organized in specific packages and embody two stages: a prepare and a transform
stage. During a prepare stage we usually gather information about the query required during a
transform stage in order to rewrite the query according to a specific rule. For example, during
a prepare stage we may create statistics about the variables used in query to assure a correct
rewriting of variables while processing FILTER rewriting rule.

The execution order of rules is relevant for multiple reasons. First, the triple pattern execu-
tion cost may be different when some variable is substituted during FILTER rewriting. Moreover,
the execution performance of some transformation rules may be enhanced when dispensable el-
ements in a query are removed first. Finally, for iSPARQL queries we need to identify imprecise
statements and reorder them in a correct manner. We recommend a rule execution ordering that
reflects the sequence of the following sections.

4.7.1 Remove Dispensable Pattern

The purpose of this rule is to check whether the query contains triple patterns that are not ex-
pected to be meaningful. A triple pattern may not be meaningful, if the variables for subject,
predicate, and object are never read in the query. Yet, this is a little tricky. In fact, although vari-
ables of some triple pattern may not be used in the query, it may modify the result set. Thus,

26 Chapter 4. Query Optimization

rdfs:Resource

rdfs:subClassOf

rdfs:Class

rdfs:subClassOf

rdf:Property

stat:Statistic

stat:Predicate

stat:Class

stat:avgNrOfPredicatesrdfs:domain xsd:doublerdfs:range

stat:nrOfTriples

rdfs:domain

xsd:integerrdfs:range

stat:predicates

rdfs:domain

rdf:Seqrdfs:range

stat:histogram

rdfs:domain

stat:frequency

rdfs:domain

xsd:integerrdfs:range

stat:label

rdfs:domain

stat:items

xsd:doublerdfs:range

xsd:integerrdfs:range

rdf:Seqrdfs:range

http://localhost/statistics

stat:avgNrOfPredicates

3.33

20

stat:nrOfTriples

stat:predicates

rdf:Seq

rdf:type

http://localhost/address/lastname

rdf:_7

stat:histogram

rdf:Seq

rdf:type

3

stat:frequency

http://localhost/histogram/class/#C34rdf:_1

4695060.98

stat:label

6

stat:items

Individuals

Application specific schema

RDF/RDFS layer

instanceOf

rdfs:domain

Figure 4.2: RDF/RDFS Model of Statistics Ontology

4.7 SPARQL Optimization 27

Listing 4.4: Example: Rewrite Filter Variables

PREFIX person : <http :// person/>

SELECT ? person ? f i rs tname
WHERE {

? person person : f i r s tname ? f i rs tname .
? person person : lastname ? lastname .
? person person : age ? age .

FILTER (? f i r s tname = ” D o n a l d ” && ? lastname = ” C h a m b e r l i n ” && ? age > 30)
}

although at first glance the elimination of a triple pattern may not affect the query semantics,
this assumption may be wrong. Even in the case we define a triple pattern that matches the en-
tire graph, i.e., ?s ?o ?p with variables that are not read somewhere in query, the elimination of
this pattern modifies the result set. Even though the pattern does not constrain the results and
none of the variables is read in query, the triple pattern does affect the result set size. Thus, if
a query should always return the correct result set, regardless if they are meaningful or not, we
may consider avoiding the execution of this rule.

4.7.2 Reorder Imprecise

Although this is not properly an optimization rule, it alleviates a drawback of our iSPARQL
framework and is required for a correct execution of subsequent rules, even though it is only
relevant for the optimization of iSPARQL queries.

As explained in Chapter 3, a major problem of iSPARQL is the required ordering of imprecise
statements. In order to alleviate this drawback which is contrary to the logic of SPARQL where
ordering is not relevant for a correct execution, this rule allows to specify a casual order of impre-
cise statements in an iSPARQL query. The rule rewrites the query in order that it can be executed
by ARQ.

In fact, the rule does have an optimization function, but it is not inherent to SPARQL opti-
mization. We discuss the optimization achieved by this rule in Section 4.8.

4.7.3 Rewrite Filter Variables

The purpose of this rule is to inspect whether FILTER expressions can be decomposed and vari-
ables included in expressions eliminated by substituting the value directly in some triple pattern.
There are a couple of issues to consider. First, we can decompose only FILTER expressions that
are connected by an AND logical operator. SPARQL triple patterns are joined by a logical AND.
Thus, if we substitute a triple pattern variable, we need to make sure that the variables in FILTER
expressions are connected by AND. The substitution of variables connected by OR would lead
to a different semantic and to a wrong result set. Another important remark is that a variable in
some triple pattern cannot be simply substituted, if it is read (referenced) somewhere else in the
query. Thus, we need to make sure that substituted variables occur only once in query. Finally,
we need to consider the operator used in FILTER expressions for a variable and his value. There
is obviously only one case that a variable can be substituted, namely for an equal operator (=).

28 Chapter 4. Query Optimization

Listing 4.5: Optimized Example: Rewrite Filter Variables

PREFIX person : <http :// person/>

SELECT ? person ? f i rs tname
WHERE {

? person person : f i r s tname ” D o n a l d ” .
? person person : lastname ” C h a m b e r l i n ” .
? person person : age ? age .
? person person : f i r s tname ? f i rs tname .

FILTER (? age > 30)
}

Listing 4.6: Optimized Example: Move Up Filter

PREFIX person : <http :// person/>

SELECT ? person ? f i rs tname
WHERE {

? person person : f i r s tname ” D o n a l d ” .
? person person : lastname ” C h a m b e r l i n ” .
? person person : age ? age .
FILTER (? age > 30)
? person person : f i r s tname ? f i rs tname .

}

Listing 4.4 shows an example where the optimization rule is applied. Please mark that some
of the issues described above need to be considered. The variables defined in FILTER expression
are connected by a logical AND. Hence, they may be decomposed. Furthermore, the variable
?firstname is listed in projection variables. Thus, we cannot simply rewrite the first triple
pattern (Listing 4.4).

We have two options at this point. We could leave the triple pattern with the variable and filter
the variable in FILTER expression. A more optimized alternative is to rewrite the ?firstname
variable for the first triple pattern (Listing 4.4) and to add the same triple pattern holding the
variable as object at the bottom of the query. This way, we very early constrain the intermediate
result set by matching only resources with first name ‘Donald’. Because the variable ?firstname
is specified in projection we need to add a triple pattern containing the variable as object. Further,
we need to pay attention to the variable ?age defined in FILTER expression. Age is of type Integer
and the operator used is ‘>’. Thus, we cannot rewrite the ?age variable specified in the pattern.

The optimized query is displayed in Listing 4.5. Please note that ?lastname is the only
variable which could be rewritten without any further modification.

4.7.4 Move Up Filter

The purpose of this rule is to decompose FILTER expressions and execute them as early as possible
in query, i.e., after the first variable encounter in the query. We need to make similar considera-
tions as for the rule described above (Rewrite Filter Variables). In fact, we can decompose FILTER
expressions only if the FILTER elements are connected by a logical AND.

4.8 Imprecise SPARQL Optimization 29

As an example, we take the query specified in Listing 4.5. There is a FILTER expression defined
at the bottom of the query. We can move the FILTER expression closer to the ?age variable
defined as object in the pattern. The optimized version of the query is listed in 4.6.

4.7.5 Reorder by Selectivity

After defining some trivial transformations this last rule is a bit more sophisticated. While the
other rules may also be manually accomplished by someone that is sensitized to optimization
issues, this last rule requires statistical information about the underlying ontology. Thus, it can
hardly be executed manually.

The purpose of this rule is to reorder triple patterns according to their selectivity. Please refer
to the explications of triple pattern selectivity estimation used in our optimization approach in
Section 4.3.

The rule computes the expected execution cost for each triple pattern using our cost function
(Section 4.3). This is done in the prepare stage of the rule. During the transform stage triple
patterns are reordered according to their costs in increasing order (i.e., increasing selectivity).
Thus, triple patterns that potentially yield smaller intermediate result sets are executed first. As
we show in Chapter 5 this transformation is very fundamental and yields significant iSPARQL
optimization.

4.8 Imprecise SPARQL Optimization

Our proposed optimization framework considers besides specific SPARQL optimization tech-
niques iSPARQL optimization too. Of course, SPARQL optimization rules are fundamental for
iSPARQL. Thus, the rules discussed in Section 4.7 are valid and relevant for iSPARQL too. More-
over, for iSPARQL we discuss some rules and techniques that may result in further optimization.
This section addresses specific iSPARQL optimization techniques.

4.8.1 Reorder Imprecise

We discussed this rule previously in Section 4.7 where the focus was set on a correct reordering
of imprecise statements. Moreover, this rule executes a specific iSPARQL optimization.

In fact, the rule can be applied for iSPARQL strategies which define a threshold. They poten-
tially constrain the values in the final result set, because of the threshold. We apply our general
optimization idea of executing first operations which result in smaller intermediate sets also for
this rule. The more the results are constrained by a high threshold, the less matches potentially
lead to final results. Thus, we rewrite the query in order to execute iSPARQL strategies ordered
by decreasing threshold.

4.8.2 Similarity Index

A similarity index is basically a cache for strategy similarity values. It allows a lookup for a simi-
larity value during iSPARQL query execution. The cache may be a table holding combinations of
resource URI-references and the corresponding similarity value which is calculated for each simi-
larity strategy. The high maintenance effort required for a similarity index is the major problem of
this optimization technique. Yet, the achieved performance optimization is considerably (Chapter
5). This is true especially for complex strategies, i.e., strategies based on information content or

30 Chapter 4. Query Optimization

edge counting similarity measures. Anyway, the time required to calculate the complete index
makes it difficult to provide a useful index, especially for massive ontologies.

Nevertheless, for stable ontologies where resources are not modified, deleted or added, a sim-
ilarity index may be a very useful optimization technique. Unstable ontologies are more problem-
atic. Because modifications to a single ontology resource (especially for OWL or RDFS ontologies
where concepts are related in a taxonomy or specific tree structure) may affect other resources
too, simply re-calculate the similarities of the modified resource is not sufficient. The similarities
of affected resources have to be re-calculated too. Not only it is algorithmically challenging to
identify resources that are affected by some modification, but the time required to compute the
similarities of affected resources obviously grows.

4.8.3 Avoid Execution of Complex Measures

This optimization technique is a recommendation which is not globally implemented in our opti-
mization framework. It is applicable while developing similarity strategies or designing iSPARQL
queries. The aim is to avoid executing complex similarity measures when the result can be pre-
dicted by the similarity computation of a more efficient measure. For example, we may consider
to execute a fast Levenshtein measure over URI-references to first verify if we face the same re-
source. For equal resources we can avoid to calculate the complex Lin similarity because the result
of Levenshtein is already sufficient13.

Constraining the resources that need to be compared for similarity using a threshold is an-
other practice. For example, we may consider to add a Levenshtein strategy which constrains
the resulting resources by setting a high threshold. Although we may be interested in a semantic
similarity of concepts, we can constrain with Levenshtein the number of resources that need to be
compared for semantic similarity (e.g., using Lin measure). Thus, we filter the subset of resources
we are interested in.

4.8.4 Aggregation Optimization

Some aggregation methods fulfill properties that can be exploited while similarity values are se-
quentially computed and subsequently aggregated. For example, if similarity values are expected
to be in [0, 1] and a max or a noisy-or aggregation method is used we may stop computing the
similarity as soon as we get a 1.0 similarity value since we are able to return 1.0 as final similarity.
Similarly, for a min, noisy-and or geometric aggregation method we may stop as soon as we get
a 0.0 similarity value because we can return 0.0 as final similarity. This optimization should be
considered while developing similarity strategies.

4.9 Some Final Thoughts: Pattern Dependency

Pattern dependency is an important consideration. In fact, triple patterns and their elements are
dependent entities. First, there is a dependency between a subject, predicate, and object, thus,
a triple pattern internal dependency. Further, there is a dependency between triple patterns,
thus, a triple pattern external dependency. While for simple queries with a few patterns such
deliberations may be less important (or in practice even irrelevant) for more complex queries
pattern dependency becomes relevant.

13By the way, the Java equals method for strings leads to the same result and is even faster.

4.9 Some Final Thoughts: Pattern Dependency 31

4.9.1 S/P/O Dependency

Subject, predicate, and object (S/P/O) dependency corresponds to triple pattern internal depen-
dency, i.e., the interdependency of subject, predicate and object. In this section, we describe the
interdependency by considering the combination of triple pattern states. Each triple pattern ele-
ment (S/P/O) may be either bound or unbound. A triple pattern element is unbound only in the
case of an unbound variable. However, a triple pattern element is bound in the case of a bound
variable or an explicitly specified value. A variable v is bound if v appears previously in query.

Consider b(e) to be a bound element and u(e) an unbound element. For example, b(s) corre-
sponds to a bound subject. This leads to 8 different triple pattern states, namely the following:

• u(s), u(p), u(o): This triple pattern matches every triple in the underlying graph model. We
know nothing about the elements of the pattern. Thus, it is reasonable to assign the highest
selectivity to the pattern.

• b(s), u(p), u(o): The subject is bound either by a specified URI-reference or a previously
bound variable. In both cases, the selectivity of the pattern is only constrained by the subject
and is quantified by the number of predicates for the resource referenced by the URI.

• u(s), b(p), u(o): The predicate is bound either by a URI-reference or a previously bound
variable. The selectivity is only constrained by the predicate and is quantified by the number
of occurrences returned for the predicate referenced by the URI.

• u(s), u(p), b(o): Because of the potentially unlimited domain of values for objects, it is useful
to describe the domain values as statistical distribution. Object domain values are charac-
terized in respect to a specific predicate. If the predicate is unbound the object selectivity is
approximated by aggregating the estimations of multiple distributions, i.e., histograms.

• b(s), b(p), u(o) and b(s), u(p), b(o) and u(s), b(p), b(o) and b(s), b(p), b(o): This are com-
binations of basic cases and we believe that multiplying the single pattern selectivity is a
reasonable approximation to get a correct ordering for the triple pattern selectivity.

There is another case which should be considered too. In SPARQL we can specify FILTER
expressions for object values which constrain the values by a relation, e.g., >, <, <= or >=.
The selectivity of a triple pattern is affected by a possible FILTER constrain. In other words,
it is reasonable to consider such FILTER expressions for the pattern selectivity estimation. For
example, the following triple pattern

?s :p ?o FILTER (?o = 30)

features potentially a smaller selectivity than

?s :p ?o FILTER (?o >= 30)

Generally we may state that the selectivity of a pattern is affected to a great extent by FILTER
expressions. Thus, they should be considered on triple pattern selectivity estimation. The se-
lectivity of the first pattern above is estimated correctly because our framework rewrites FILTER
expressions for elements constrained by an equal operator (=). However, our framework does not
consider the FILTER expression of the second pattern above although the statistical model sup-
ports this type of operator in a straightforward manner, i.e., by considering all histogram classes
of elements >= 30. The selectivity evaluation of special operators such as regular expressions is
another interesting case which is not further discussed in this thesis.

32 Chapter 4. Query Optimization

4.9.2 Triple Pattern Dependency

Triple pattern dependency considers the interdependency of triple patterns. Triple patterns can
be joined by a shared variable. This dependency of two or more patterns affects the selectivity
of the involved patterns. Again, we list the possible join variable combinations of two patterns
to describe the selectivity behavior. Potentially, we have a total of 9 possible S/P/O joins for
two patterns. We believe that a subset of them is more relevant in practice, namely joins of both
subjects and joins of subject and object (or object and subject).

• Join of subjects: The selectivity of the joined triple pattern (i.e., the pattern which is joined)
is directly affected by the selectivity of the joining triple pattern (i.e., the pattern which
joins). The selectivity of predicate and object determines which pattern should be executed
first. However, the selectivity of the joined pattern should be considered in dependency to
the selectivity of the joining pattern. Consider the example below. We assign the highest
cost (1.0) to the subject variable ?s of the first triple pattern (tp1). Instead of assigning the
same cost to the subject variable ?s of the second triple pattern (tp2), which would be a too
rough estimation, we need to consider the cost in dependency to the first triple pattern. This
may be modeled by assigning the cost for the first pattern, c(tp1), to the cost of the subject
variable ?s of the second triple pattern. Thus,

tp1 := ?s :p1 ”o1”
tp2 := ?s :p2 ”o2”
c(tp1) = 1.0 * c(:p1) * c(:p1, ”o1”)
c(tp2) = c(tp1) * 1.0 * c(:p2) * c(:p2, ”o2”) = c(tp1) * c(:p2) * c(:p2, ”o2”)

• Join of subject and object (vice versa): The considerations we made above for joining subjects
may be applied as well to this case. Thus, we adopt the same strategy of multiplying the cost
of the joining triple pattern to the join variable. Please note that this model has a cascading
behavior. If a third pattern is joined we simply assign the cost of the second joining triple
pattern to the third variable.

tp1 := ?s1 :p1 ”o1”
tp2 := :s2 :p2 ?s1
c(tp1) = 1.0 * c(:p1) * c(:p1, ”o1”)
c(tp2) = c(:s2) * c(:p2) * c(tp1)

tp1 := :s1 :p1 ?o1
tp2 := ?o1 :p2 ”o2”
tp3 := ?o1 :p3 ”o3”
c(tp1) = c(:s1) * c(:p1) * 1.0
c(tp2) = c(tp1) * c(:p2) * c(:p2, ”o2”)
c(tp3) = c(tp2) * c(:p3) * c(:p3, ”o3”)

• Join of predicates, join of objects, and other combinations: The model described for the
previous cases may be adopted for other combinations too.

We can state that the selectivity for the joined triple pattern is constrained as a function of
the selectivity for the joining pattern. A general way how to model this in our framework is to
multiply the variable cost (i.e., 1.0) with the estimated cost of the joining triple pattern.

5
Evaluation

In order to evaluate and validate both frameworks, i.e., the imprecise extension described in
Chapter 3 and the optimization framework described in Chapter 4, we build an evaluation en-
vironment which allows to evaluate several retrieval tasks for multiple query engines.

This chapter illustrates the selected evaluation method and the results in more details. We
first describe the quantitative evaluation approach used to evaluate the SPARQL query execution
performance. Afterward, we describe the qualitative evaluation approach used to evaluate the
iSPARQL retrieval performance. For each approach we illustrate the methods, datasets, query
engines, and retrieval tasks used and we present our findings.

5.1 Quantitative Query Performance Evaluation

The quantitative evaluation focuses on execution performance of SPARQL queries on a sampled
dataset. We show how the performance of retrieval tasks scales for multiple query engines. The
evaluation is based on a dataset which fits into main memory. Thus, the results presented in
this chapter focuses on execution performance evaluation of SPARQL query engines with in-
memory models. Although the considerations we made in Chapter 4 about query optimization
and the evaluations presented in this chapter are valid also for triple stores, the results and charts
presented here are valid for in-memory models only.

We conduct all our experiments on a two processor dual core AMD Opteron 270 2.0 GHz
server with 4 GB main memory and two 150 GB 7200rpm disks with a 32 bit version of Fedora
Core 5 as operating system.

5.1.1 Query Engines

We evaluate the SPARQL query performance on different query engines, namely ARQ1, Sesame2

and KAON23. Our ARQ optimization framework is used as reference for comparison to other
engines. To distinguish the optimization framework from ARQ we name the optimized ARQ
engine OptARQ. ARQ is a query engine for Jena (Chapter 3). Sesame is a RDF database with
support for RDF-Schema inferencing and querying. Sesame was originally developed by Aduna4

1http://jena.sourceforge.net/ARQ/
2http://www.openrdf.org/
3http://kaon2.semanticweb.org/
4http://www.aduna-software.com/

34 Chapter 5. Evaluation

for an EU research project and is still maintained by Aduna in collaboration with the community
and NLnet Foundation5. Sesame supports an own query language called SeRQL6 and provides a
SPARQL engine which is developed third party by Ryan Levering7. KAON28 is an infrastructure
for managing OWL-DL, SWRL, and F-Logic ontologies.

5.1.2 Dataset

In order to investigate the scale performance of retrieval tasks for different query engines, we
conduct a sampling of the dataset (SwetoDblp). The sampling procedure is described later on in
this section. In order to get useful results we consider two important characteristics the samples
must accomplish. First, the samples should grow linearly. Secondly, the resulting set size for a
retrieval task needs to grow linearly too. We must assure that the results for a specific retrieval
task are not all contained in a couple samples since this would lead to erroneous results.

SwetoDblp

SwetoDblp9 is a RDF representation of the DBLP10 publication database and is published by the
Large Scale Distributed Information Systems (LSDIS) lab, University of Georgia, USA. SwetoDblp
is a spin-off of the Semantic Web Technology Evaluation Ontology (SWETO)11 and is intended as
an infrastructure for testing the scalability of new software. The schema-vocabulary of SwetoDblp
aggregates concepts from FOAF12, Dublin Core13 and OPUS (specific to the LSDIS library). Swe-
toDblp contains approximatively 1.3 million resources with a size of 787 MB (November 2006).
The considerable size of the ontology allows an extensive query execution performance evalua-
tion.

SwetoDblp Sampling

In order to evaluate the scale performance of multiple retrieval tasks for different query engines,
we create a set of samples of the full SwetoDblp ontology. The sampling growth is set to approx-
imatively 10%. Thus, we sample the complete ontology in 10 samples. Table 5.1 illustrates the
sample sizes in mega bytes including the number of triples and resources. Moreover we list the
resulting set size in number of resources for both retrieval tasks (RT A and RT B). Please refer to
Section 5.1.3 for more details about the retrieval tasks.

The sample development is challenging for a couple of reasons. The native RDF SwetoDblp
ontology in not compatible with KAON2, since KAON2 is an infrastructure for managing OWL-
DL ontologies. To turn SwetoDblp into a compatible ontology we need to apply some transforma-
tion. First, we must explicitly state the ontology type by adding the owl:Ontology tag14. Secondly,
RDF sequences (rdf:Seq) need to be rewritten since they are undefined for OWL-DL ontologies.

5http://www.nlnet.nl/
6http://www.openrdf.org/doc/sesame/users/ch06.html
7http://ryan.levering.name
8http://kaon2.semanticweb.org
9http://lsdis.cs.uga.edu/projects/semdis/swetodblp/

10http://dblp.uni-trier.de/
11http://lsdis.cs.uga.edu/projects/semdis/sweto/
12http://xmlns.com/foaf/0.1/
13http://dublincore.org/
14Please note that this tag is required for KAON2. Removing this tag, leads to a weird behavior. KAON2 manages a

buffer of exact 1 million bytes, used to figure out the ontology type. The buffer is filled until it is full or the ontology type
is found. If the ontology type could not be detected after reading the first 1 million bytes of the ontology, KAON2 throws
an I/O exception.

5.1 Quantitative Query Performance Evaluation 35

Sample (%) Size (MB) Triples Resources RT A RT B
10 78.7 893’965 79’733 2 4
20 157.3 1’787’629 159’467 4 8
30 235.8 2’681’237 239’203 6 12
40 314.6 3’573’684 318’934 8 16
50 393.4 4’468’666 398’665 10 20
60 472.0 5’360’604 478’401 12 24
70 550.6 6’253’930 558’112 14 28
80 629.4 7’145’344 637’852 16 32
90 708.1 8’040’767 717’574 18 36
100 786.5 8’933’272 797’278 20 40

Table 5.1: SwetoDblp Samples: Sample Size, Number of Triples, Number of Resources and Result Set Size for both
Retrieval Tasks A and B

Further, the amount of character encoded data of the full SwetoDblp is another challenge. Since
we need to redistribute the matching resources for both retrieval tasks linearly over the samples,
a careful selection of the sampling method is required. In order to manage the amount of data
and to allow flagging matching resources that need to be linearly distributed over the samples,
we first import the SwetoDblp resources into a relational database. Once in database we create
the required samples.

5.1.3 Retrieval Tasks

Listing 5.1: SwetoDblp Retrieval Task A

PREFIX opus : <http :// l s d i s . cs . uga . edu/propono#>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>

SELECT ? l a b e l ? author ?volume ? pages ?number
WHERE {

? a r t i c l e opus : year ? year .
? a r t i c l e opus : publ i ca t ion authored by ? author .
? a r t i c l e r d f s : l a b e l ? l a b e l .
? a r t i c l e opus : volume ?volume .
? a r t i c l e opus : pages ? pages .
? a r t i c l e opus : number ?number .
? a r t i c l e opus : journal name ? journal name .
FILTER (? year = 2004 && ? journal name = ” VLDB J . ”)

}

We specify two retrieval tasks for SwetoDblp which reflect a common usage of the ontology.
The first task (Listing 5.1) focuses on articles published by a journal during a specific year. It
extracts all articles published in 2004 by VLDB journal15. An article is described by its title, the
researchers that authored the publication, the journal volume and number, the publication year

15http://www.informatik.uni-trier.de/ ley/db/journals/vldb/index.html

36 Chapter 5. Evaluation

Listing 5.2: SwetoDblp Retrieval Task B

PREFIX opus : <http :// l s d i s . cs . uga . edu/propono#>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>

SELECT ? l a b e l ? year
WHERE {

? author r d f s : l a b e l ?name .
? a r t i c l e opus : publ i ca t ion authored by ? author .
? a r t i c l e opus : year ? year .
? a r t i c l e r d f s : l a b e l ? l a b e l .

FILTER (? name = ” D o n a l d D . C h a m b e r l i n ”)
}

and the number of pages. The second retrieval task (Listing 5.2) focuses on a specific researcher
and extracts all articles authored by him quoting the year and title of the publication.

5.1.4 Optimizations

In order to better understand the evaluation, we first describe how our optimization approach
rewrites the input query for both retrieval tasks. The optimized query returned is expected to
be optimal according to the statistical selectivity estimation. In addition we shortly describe the
optimizations executed by Sesame for the SeRQL query language. SeRQL is a RDF/RDFS query
language developed by Aduna16 as a part of Sesame17.

Listing 5.3: SwetoDblp Retrieval Task A (optimized query)

1 PREFIX opus : <http :// l s d i s . cs . uga . edu/propono#>
2 PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
3

4 SELECT ? l a b e l ? author ?volume ? pages ?number
5 WHERE {
6 ? a r t i c l e opus : journal name ” VLDB J . ” .
7 ? a r t i c l e opus : year 2004 .
8 ? a r t i c l e opus : number ?number .
9 ? a r t i c l e opus : pages ? pages .

10 ? a r t i c l e opus : volume ?volume .
11 ? a r t i c l e r d f s : l a b e l ? l a b e l .
12 ? a r t i c l e opus : publ i ca t ion authored by ? author .
13 }

The query of retrieval task A (Listing 5.1) is optimized by two different optimization rules.
First, we rewrite the FILTER expression. During the prepare stage, the optimizer checks for FIL-
TER expressions and whether they can be rewritten. We may rewrite a FILTER expression when
its elements are connected by a boolean AND operator and they are compared by equal (=).
Since both variables ?year and ?journal name are not read elsewhere in the query, we can just

16http://www.aduna-software.com/
17http://www.openrdf.org/doc/sesame/users/ch06.html

5.1 Quantitative Query Performance Evaluation 37

Listing 5.4: SwetoDblp Retrieval Task A (Sesame SeRQL)

SELECT
T i t l e , Author , Volume , Pages , Number

FROM
{ A r t i c l e } opus : year {2004} ;

opus : journal name {” VLDB J . ” } ;
opus : publ i ca t ion authored by {Author } ;
r d f s : l a b e l { T i t l e } ;
opus : volume {Volume } ;
opus : pages {Pages } ;
opus : number {Number} ;

USING NAMESPACE
opus = <http :// l s d i s . cs . uga . edu/propono#>,
r d f s = <http ://www. w3 . org /2000/01/ rdf−schema#>

overwrite both object variables in the corresponding triple patterns. Further, we apply the rule
‘Reorder by Selectivity’. During prepare stage of the rule, the optimizer calculates the estimated
triple pattern execution costs as a function of the estimated selectivity (please refer to Chapter 4
for further details about the optimization technique). We get a set of [0,1]-values which is used
in transformation stage to reorder the triple patterns. The optimized query is listed in 5.3. After
rewriting the FILTER expression the first triple pattern (line 6) has the smallest selectivity, i.e., low-
est cost and is thus placed first. This is reasonable compared to the second triple pattern (line 7)
since the articles published by VLDB journal are expected to be less than the articles published in
2004. The following three patterns (lines 8 - 10) are more difficult to anticipate, but it is reasonable
that there are more triples matching the predicate opus:number than triples matching the sec-
ond triple pattern (line 7) since not only the articles published in 2004 but every article will match
the third pattern (line 8). Because the ontology not only contains articles but other resources too
(e.g., master thesis) it is straightforward that the sixth pattern (line 11) is placed after the pattern
with the opus:volume predicate (line 10). Only article resources match the opus:number pred-
icate whereas each resource matches the rdfs:label predicate (i.e., the resource title). Last but
not least, we may explain why the seventh pattern (line 12) is placed last. Since an article features
only one title but it is often written by one or more authors, the last pattern potentially matches
more triples. Thus, it is placed to the bottom of the query.

Listing 5.4 presents the optimization executed by Sesame for the SeRQL query language.
Sesame applies some general optimization rules. In fact, it rewrites expressions in SeRQL WHERE
clause as our optimization framework for FILTER expressions. Further, Sesame reorders SeRQL
triple pattern defined in FROM clause according to the number of triple pattern variables. Pat-
terns with more variables are considered to be less specific. Thus, they are executed later in query.
This is a more naive approach compared to ours, but it is based on the same idea of reducing the
intermediate result set sizes.

By looking at the query (Listing 5.4), we may notice that the triple pattern containing the
predicate opus:journal name should be executed first, since the number of articles published
by VLDB journal are less than those published in 2004. Another problem of the approach used
by Sesame emerges for the following triple patterns where just the predicate is specified (Listing
5.4). Since an article has only one title but mostly several authors, the ordering of the patterns
is obviously wrong. This behavior arises because of unavailable statistics about the selectivity
of triple patterns. Thus, Sesame is missing fundamental information to optimize the query with
a more precise ordering of triple patterns. As we will see later in this section, the more precise

38 Chapter 5. Evaluation

Listing 5.5: SwetoDblp Retrieval Task B (optimized query)

1 PREFIX opus : <http :// l s d i s . cs . uga . edu/propono#>
2 PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
3

4 SELECT ? l a b e l ? year
5 WHERE {
6 ? author r d f s : l a b e l ” D o n a l d D . C h a m b e r l i n ” .
7 ? a r t i c l e opus : publ i ca t ion authored by ? author .
8 ? a r t i c l e opus : year ? year .
9 ? a r t i c l e r d f s : l a b e l ? l a b e l .

10 }

reordering of our approach makes a significant difference. Yet, the optimization achieved through
FILTER rewriting is even more important.

Now we take a look closer to the optimization that can be executed for the query used in re-
trieval task B (Listing 5.2). The optimized query is listed in 5.5. Again, the FILTER expression can
be rewritten. This is the only optimization rule that can be applied. The second triple pattern (line
7) is constrained by the joined variable ?author which is defined as subject in the first pattern
(line 6). It is trivial to state that the first triple pattern (line 6) potentially features the smallest
selectivity. For our ontology, the ?author variable is bound to just one URI-reference, namely
the one for Mr. Chamberlin. This constrains the joined triple pattern (line 7). Although the object
of the pattern at line 7 is a variable (i.e., ?author) the selectivity of the object should not be esti-
mated as usual for variables by 1.0. Please refer to Section 4.9 for a detailed description about the
behavior of joined variables. The selectivity of articles where Mr. Chamberlin is listed as author
is expected to be smaller than the selectivity of articles featuring both predicates opus:year and
rdfs:label. Thus, the pattern with predicate opus:publication authored by takes the
second place (line 7). Similar considerations are applicable to the following patterns (line 8 and
9). Resources featuring the opus:year predicate are expected to be less than those with a title
(predicate rdfs:label). This explains the selected ordering by our optimizer. An interesting
variation of retrieval task B (Listing 5.2) is discussed in Section 5.1.5. There, we evaluate the per-
formance when the second triple pattern (line 7, Listing 5.5) is replaced by the third pattern (line
8, Listing 5.5).

The optimizations executed by Sesame for retrieval task B (Listing 5.2) are the same as those
executed by our optimization framework. Thus, we expect that the Sesame SeRQL performance
for retrieval task B is very similar or even better than OptARQ.

5.1.5 Results

After describing the optimizations that can be performed for both retrieval tasks we now present
our evaluation results for both retrieval tasks A (Listing 5.1) and B (Listing 5.2).

Retrieval Task A

Figure 5.1 shows the absolute values for retrieval task A (Listing 5.1). We evaluate the query for
ARQ, KAON2 and Sesame, where Sesame is evaluated for both SPARQL and SeRQL query lan-
guages. The values are measured for each sample. The approximatively linear behavior (Figure
5.1) is expected because of the linear distribution for the resources which matches the retrieval

5.1 Quantitative Query Performance Evaluation 39

0

2

4

6

8

10

12

14

16

18

20

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

S
ec

o
n

d
s

ARQ KAON2 Sesame SPARQL

Figure 5.1: Retrieval Task A: Absolute Values

task. Because of main memory limitations of our test server, the measurements for KAON2 stop
at 70%. For KAON2, the sample with 551 MB requires over 2.5 GB, which is the maximum amount
of memory we can allocate for the Java virtual machine.

0

1

2

3

4

5

6

7

8

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

M
ill

is
ec

o
n

d
s

OptARQ

Figure 5.2: Retrieval Task A: OptARQ Absolute Values

0

50

100

150

200

250

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

M
ill

is
ec

o
n

d
s

Sesame SeRQL

Figure 5.3: Retrieval Task A: Sesame SeRQL Absolute Values

Since the behavior for OptARQ and Sesame SeRQL can be hardly extracted from Figure 5.1,
we create two separate charts for both engines. The absolute values for OptARQ are displayed
in Figure 5.2 those for Sesame SeRQL in Figure 5.3. The difference between OptARQ and Sesame
SeRQL is considerable: at 100% OptARQ is 31.22 times faster than Sesame SeRQL (Figure 5.6).

40 Chapter 5. Evaluation

As we remarked previously in this section, Sesame SeRQL perfoms some optimizations. This
explains the difference between Sesame SeRQL and other engines.

1

10

100

1000

10000

100000

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

M
ill

is
ec

o
n

d
s

(l
o

g
ar

it
h

m
ic

)

ARQ KAON2 OptARQ Sesame SPARQL Sesame SeRQL

Figure 5.4: Retrieval Task A: Absolute Values (logarithmic scale)

The main difference in optimization between OptARQ and Sesame SeRQL consists in the se-
lected approach for triple pattern reordering. While Sesame SeRQL is using a more simple and
general approach, the model based on statistical information about the underlying ontology used
in our optimization framework yields a more accurate reordering. Yet, the performance improve-
ment obtained because of FILTER rewriting is considerably more important than the one obtained
through a statistical reordering of triple patterns. Nevertheless, our approach is useful since FIL-
TER rewriting is a trivial optimization that can be done manually, whereas our approach for triple
pattern reordering can hardly be done manually. Figure 5.4 resumes the evaluated engines on a
logarithmic scale.

0

500

1'000

1'500

2'000

2'500

3'000

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

F
ac

to
r

ARQ KAON2 Sesame SPARQL

Figure 5.5: Retrieval Task A: OptARQ Normalized Values

In order to quantify the performance improvement for OptARQ compared to the other en-
gines, we create a chart which shows how many times OptARQ is faster compared to the other
engines. We call the charts ‘OptARQ normalized’. Figure 5.5 shows the factor for ARQ, KAON2
and Sesame SPARQL. Because of a smaller scale, we separately show in Figure 5.6 the factor be-
tween OptARQ and Sesame SeRQL. Table 5.2 shows the measured values for each engine. All
values are listed in milliseconds and approximated to the second decimal place.

Next we evaluate the time required to load the underlying model in main memory and the

5.1 Quantitative Query Performance Evaluation 41

0

5

10

15

20

25

30

35

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

F
ac

to
r

Sesame SeRQL

Figure 5.6: Retrieval Task A: Sesame SeRQL OptARQ Normalized Values

Sample (MB) OptARQ Sesame SeRQL KAON2 ARQ Sesame SPARQL
78 4.16 20.87 606.20 1’459.59 1’771.45
157 4.76 46.39 1’169.09 2’920.37 3’669.46
236 5.34 67.77 1’997.22 4’668.49 5’444.43
314 5.61 89.90 2’182.24 6’252.73 7’251.89
393 6.00 106.87 2’611.55 8’122.98 9’239.51
472 6.26 129.58 3’841.20 9’641.68 11’454.73
551 6.55 155.05 4’355.03 11’291.75 13’241.42
629 6.57 179.12 13’110.01 14’915.84
708 6.89 196.30 15’247.22 16’575.31
786 6.71 209.46 16’243.94 18’697.85

Table 5.2: Retrieval Task A: Absolute Values

0

100

200

300

400

500

600

700

800

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

S
ec

o
n

d
s

ARQ KAON2 Sesame

Figure 5.7: Retrieval Task A: Model Load Time

consumption of main memory required to load the model. Figure 5.7 shows the time required
to load the model in main memory for each evaluated engine. Sesame definitively outperforms
the other engines. Figure 5.8 displays the amount of main memory consumed after loading the
underlying model. Again, Sesame outperforms the other engines. Further, the figure shows why
our evaluations for KAON2 always stop after sample 70%. KAON2 requires for the 551 MB
sample the complete memory that can be allocated to the Java virtual machine on our test server.
Table 5.3 lists the absolute values of the time required to load the model whereas table 5.4 shows
the memory consumption for each engine.

42 Chapter 5. Evaluation

Sample (MB) Sesame KAON2 ARQ
78 19’799 36’857 53’702
157 39’676 85’954 106’369
236 65’477 127’508 174’253
314 99’935 173’339 247’007
393 123’198 235’027 297’636
472 141’119 287’628 382’143
551 180’575 336’154 431’507
629 195’761 543’878
708 226’848 595’898
786 262’796 709’669

Table 5.3: Retrieval Task A: Model Load Time (milliseconds)

0

0.5

1

1.5

2

2.5

3

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

G
B

ARQ KAON2 Sesame

Figure 5.8: Retrieval Task A: Model Memory Consumption

Sample (MB) Sesame ARQ KAON2
78 316’276’736 454’885’376 598’278’144
157 615’907’328 673’710’080 958’726’144
236 798’162’944 869’662’720 1’305’018’368
314 1’003’552’768 1’041’432’576 1’710’555’136
393 1’185’153’024 1’340’604’416 2’137’391’104
472 1’290’141’696 1’535’049’728 2’466’578’432
551 1’413’677’056 1’823’604’736 2’620’260’352
629 1’509’556’224 2’006’253’568
708 1’691’484’160 2’159’804’416
786 1’952’448’512 2’574’909’440

Table 5.4: Retrieval Task A: Model Memory Consumption (bytes)

Finally, we evaluate the performance for each engine when the optimized query is used as
input query. Thus, instead to execute the query defined in Listing 5.1 we execute the optimized
query defined in Listing 5.3. Figure 5.9 shows the evaluation for the optimized query. Sesame
SeRQL outperforms the other engines. The SPARQL implementation in Sesame resulted to be
less efficient. Further, the figure shows OptARQ less efficient than ARQ which is straightforward
because of the overhead due to the optimizer (which is executed although the query is already
optimized). Table 5.5 lists the absolute values measured for this evaluation including those for

5.1 Quantitative Query Performance Evaluation 43

0

1

2

3

4

5

6

7

8

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

M
ill

is
ec

o
n

d
s

ARQ KAON2 OptARQ Sesame SeRQL

Figure 5.9: Retrieval Task A: Optimized

Sesame SPARQL18. All values are listed in milliseconds and approximated to the second decimal
place.

Sample (MB) OptARQ ARQ Sesame SeRQL KAON2 Sesame SPARQL
78 4.07 3.80 2.02 5.50 350.41
157 4.62 4.15 2.79 6.12 1’073.65
236 5.40 5.06 3.15 6.25 1’961.03
314 5.63 5.01 3.39 6.73 2’431.63
393 5.75 5.65 3.64 7.05 3’211.96
472 6.09 5.67 3.93 7.09 4’369.13
551 6.46 6.79 4.07 7.34 4’812.85
629 6.61 6.52 4.10 6’095.34
708 7.53 6.42 4.16 6’956.67
786 6.59 6.68 4.31 8’303.01

Table 5.5: Retrieval Task A: Optimized

To the best of my understanding, I believe that the engine evaluation with the optimized query
demonstrates the correctness of our approach and the optimization techniques discussed in this
thesis. Since the engines behaves very similar when the optimized query is used, I believe that
the performance improvement which is achieved by the optimization techniques is realistic.

Figure 5.10 shows the improvements between the original query for retrieval task A (Listing
5.1) and the corresponding optimized query (Listing 5.3) for each engine on a logarithmic scale.
Please note the performance of Sesame SPARQL. Although the optimized query is also perform-
ing better for Sesame SPARQL, the performance improvement becomes smaller when the sample
size grows.

18I believe, Sesame SPARQL performs not better even if the optimized query is used because it does not drop potential
results as soon as they don’t satisfy the query pattern. I conclude this because of a separate evaluation performed for
Sesame SPARQL where the optimized query for retrieval task A listed in 5.3 was executed triple pattern by triple pattern.
The evaluation showed that Sesame SPARQL performed similar to KAON2 and better than ARQ and OptARQ for the
query containing only the first triple pattern. For the query containing the first two patterns Sesame SPARQL performed
already 3.5 times inferior to OptARQ at 10%. With three triple patterns the factor is 12.6 at 10%.

44 Chapter 5. Evaluation

1

10

100

1000

10000

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

F
ac

to
r

(l
o

g
ar

it
h

m
ic

)

ARQ KAON2 Sesame SPARQL Sesame SeRQL

Figure 5.10: Retrieval Task A: Improvements

Retrieval Task B

The evaluation method for retrieval task B is very similar to the one used for retrieval task A.
Because of a different query (Listing 5.2) the optimizations performed are different (for a detailed
description refer to Section 5.1.4). Thus, the results are expected to be different but the general
trend should be comparable.

0

200

400

600

800

1'000

1'200

1'400

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

M
il

li
s
e
c
o

n
d

s

ARQ KAON2

Figure 5.11: Retrieval Task B: Absolute Values

Figure 5.11 displays the absolute values measured for both ARQ and KAON2 engines. Com-
pared to retrieval task A (Figure 5.1) we may mark the different scale (milliseconds toward sec-
onds). Although this difference, the trend for both engines is comparable. Figure 5.12 shows the
absolute values for OptARQ and Sesame executed with the SeRQL query language. Compared
to retrieval task A (Figures 5.2 and 5.3) we may mark a very similar behavior for OptARQ. How-
ever, the difference between OptARQ and Sesame SeRQL in both retrieval tasks is considerable.
In retrieval task B the performance of Sesame SeRQL is better compared to OptARQ. However, in
retrieval task A, OptARQ was much better than Sesame SeRQL. This is because the optimizations
performed by Sesame for SeRQL are alike to those performed for OptARQ. Although our statis-
tical model is more precise in triple pattern selectivity estimation, retrieval task B is an example
query where the statistical information does not yield a more optimized query because the input
query is already optimal according to the statistical model (after FILTER rewriting).

5.1 Quantitative Query Performance Evaluation 45

0

1

2

3

4

5

6

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

M
il

li
s
e
c
o

n
d

s

OptARQ Sesame SeRQL

Figure 5.12: Retrieval Task B: OptARQ and Sesame SeRQL Absolute Values

Sample (MB) OptARQ ARQ Sesame SeRQL KAON2 Sesame SPARQL
78 3.26 72.71 1.55 60.16 434.37
157 3.56 170.79 1.69 114.41 1’195.66
236 3.84 262.87 1.85 167.53 1’710.13
314 4.03 417.59 1.74 202.62 2’710.30
393 4.23 475.57 1.92 298.90 3’961.51
472 4.41 607.71 2.07 302.50 4’504.60
551 4.51 787.42 2.19 306.79 6’050.07
629 4.69 981.24 2.28 6’967.85
708 4.88 1’158.09 2.31 7’855.22
786 5.10 1’257.53 2.54 9’178.89

Table 5.6: Retrieval Task B: Absolute Values

1

10

100

1000

10000

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

M
il

li
s
e
c
o

n
d

s
 (

lo
g

a
ri

th
m

ic
)

ARQ KAON2 OptARQ Sesame SeRQL Sesame SPARQL

Figure 5.13: Retrieval Task B: Absolute Values (logarithmic scale)

Table 5.6 shows the absolute values measured for retrieval task B. All values are listed in
milliseconds and are approximated to the second decimal place. Figure 5.13 resumes the perfor-
mance for each engine on a logarithmic scale. Figure 5.14 shows the performance for each engine
normalized by OptARQ on a logarithmic scale.

Figure 5.15 displays the behavior for each engine when the optimized query (Listing 5.5) is
used as input query. Again, the behavior is very similar to the one resulting for retrieval task A
(Figure 5.9). Figure 5.16 shows the improvements between the original query for retrieval task B

46 Chapter 5. Evaluation

0.1

1

10

100

1000

10000

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

F
ac

to
r

(l
o

g
ar

it
h

m
ic

)

ARQ KAON2 Sesame SPARQL Sesame SeRQL

Figure 5.14: Retrieval Task B: Normalized by OptARQ (logarithmic scale)

0

1

2

3

4

5

6

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

M
ill

is
ec

o
n

d
s

ARQ KAON2 OptARQ Sesame SeRQL

Figure 5.15: Retrieval Task B: Optimized

Sample (MB) OptARQ ARQ Sesame SeRQL KAON2 Sesame SPARQL
78 3.20 2.66 1.55 4.07 357.96
157 3.39 3.07 1.69 4.30 1’124.64
236 3.69 3.35 1.85 4.54 1’708.89
314 3.78 3.59 1.74 4.74 2’594.69
393 4.14 3.79 1.92 4.91 3’094.30
472 4.33 3.99 2.07 4.95 4’311.97
551 4.55 4.26 2.19 4.98 4’957.93
629 4.66 4.31 2.28 6’035.04
708 4.82 4.44 2.31 6’747.16
786 5.03 4.75 2.35 7’530.76

Table 5.7: Retrieval Task B: Optimized

(Listing 5.2) and the corresponding optimized query (Listing 5.5) for each engine on a logarithmic
scale.

Finally, we show both charts for the required time to load the underlying graph model in main
memory (Figure 5.17) and the consumed main memory after loading the model (Figure 5.18). As
we could expect, the behavior is very similar to retrieval task A (Figure 5.7 and 5.8).

5.1 Quantitative Query Performance Evaluation 47

0.001

0.01

0.1

1

10

100

1000

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

F
ac

to
r

(l
o

g
ar

it
h

m
ic

)

ARQ KAON2 Sesame SPARQL Sesame SeRQL

Figure 5.16: Retrieval Task B: Improvements

0

100

200

300

400

500

600

700

800

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

S
ec

o
n

d
s

ARQ KAON2 Sesame

Figure 5.17: Retrieval Task B: Model Load Time

0

0.5

1

1.5

2

2.5

3

78 157 236 314 393 472 551 629 708 786

MB (10% - 100% of DBLP)

G
B

ARQ KAON2 Sesame

Figure 5.18: Retrieval Task B: Model Memory Consumption

One More Experiment

This experiment is executed only for ARQ and with a different sampling size using retrieval task
B (Listing 5.2). Instead to sample SwetoDblp with 10 samples holding 10% - 100% of the data we

48 Chapter 5. Evaluation

create 10 samples holding just 1% - 10%. As we will see, the performance downgrades consistently
by simply replacing the joined triple pattern by one or two patterns lower. The relevant queries
for this experiment are respectively listed in 5.6 and 5.7

Listing 5.6: SwetoDblp Experiment A

1 PREFIX opus : <http :// l s d i s . cs . uga . edu/propono#>
2 PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
3

4 SELECT ? l a b e l ? year
5 WHERE {
6 ? author r d f s : l a b e l ?name .
7 ? a r t i c l e opus : year ? year .
8 ? a r t i c l e opus : publ i ca t ion authored by ? author .
9 ? a r t i c l e r d f s : l a b e l ? l a b e l .

10

11 FILTER (? name = ” D o n a l d D . C h a m b e r l i n ”)
12 }

Listing 5.7: SwetoDblp Experiment B

1 PREFIX opus : <http :// l s d i s . cs . uga . edu/propono#>
2 PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
3

4 SELECT ? l a b e l ? year
5 WHERE {
6 ? author r d f s : l a b e l ?name .
7 ? a r t i c l e opus : year ? year .
8 ? a r t i c l e r d f s : l a b e l ? l a b e l .
9 ? a r t i c l e opus : publ i ca t ion authored by ? author .

10

11 FILTER (? name = ” D o n a l d D . C h a m b e r l i n ”)
12 }

Please refer to Listing 5.2 and remark the difference between the queries. As we will demon-
strate later in this section, the performance over 10 samples can be approximated by a parabolic
function. By means of a trend analysis, we estimate the execution time required to execute both
queries on 100% of SwetoDblp.

Figure 5.19 shows the ARQ query execution performance for both queries of this experiment.
The curve ‘ARQ a’ characterizes the performance for the query listed in 5.6 for the samples con-
taining 1% - 10% of the SwetoDblp data. The curve ‘ARQ b’ describes the performance for the
query listed in 5.7. The equations for both trend functions are displayed in Figure 5.19. A par-
abolic approximation of the measured values seems to be reasonable.

Based on both trend functions extracted from the measurements, we show in Figure 5.20 the
expected behavior for the full SwetoDblp ontology, i.e., the performance between 1% and 100%
of the dataset. For query 5.7 the expected execution time is approximatively 4 million seconds
which corresponds to 46.3 days.

5.1 Quantitative Query Performance Evaluation 49

y = 209966x2.1352

y = 17292x2.2198

0

5'000

10'000

15'000

20'000

25'000

30'000

7,8 15,7 23,6 31,4 39,3 47,2 55,1 62,9 70,8 78,6

MB (1% - 10% of DBLP)

S
ec

o
n

d
s

ARQ a ARQ b

Figure 5.19: Experiment A and B

0

500'000

1'000'000

1'500'000

2'000'000

2'500'000

3'000'000

3'500'000

4'000'000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Percent (1% - 100% of DBLP)

S
ec

o
n

d
s

ARQ a ARQ b

Figure 5.20: Experiment A and B: Trend Function

5.1.6 Similarity Index

Because of the usually very high computational complexity of similarity measures and the con-
sequent poor execution performance, we investigate the usage of a precomputed similarity index
which allows a similarity lookup of resources according to a specific similarity strategy. We eval-
uate the usefulness of a similarity index using a semantic similarity measure, more precisely a
similarity strategy based on Lin [Lin, 1998] similarity measure with a retrieval task defined for
the Suggested Upper Merged Ontology (SUMO)19.

In the following, we specify the retrieval task used for the evaluation and the results. The
selected task can be formulated as a retrieval of the 20 most similar concepts to ‘Wine’ in the
SUMO. The retrieval task is specified in Listing 5.8 as iSPARQL query. First, each concept defined
as OWL class is matched in the underlying ontology. The resources returned are then compared
by means of a strategy based on Lin similarity measure. The similarity between each concept and
the ‘Wine’ concept is calculated and ranked in decreasing order of similarity.

Figure 5.21 shows the performance of our retrieval task when the similarity index is deacti-
vated, i.e., the Lin similarity is calculated during query execution. However, Figure 5.22 shows

19http://ontology.teknowledge.com/

50 Chapter 5. Evaluation

Listing 5.8: Similarity Index Retrieval Task

1 PREFIX rdf : <http ://www. w3 . org/1999/02/22− rdf−syntax−ns#>
2 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
3 PREFIX sumo : <http : / / 1 2 7 . 0 . 0 . 1 / ontology/simplif ied sumo . owl#>
4 PREFIX i s p a r q l : <j ava : ch . unizh . i f i . i s p a r q l . query . property .>
5

6 SELECT ? resource ? s i m i l a r i t y
7 WHERE {
8 ? resource rdf : type owl : Class .
9

10 ? s t r a t e g y i s p a r q l : name ” SUMOLinResCmp ” .
11 ? s t r a t e g y i s p a r q l : arguments (sumo : Wine ? resource) .
12 ? s t r a t e g y i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y
13 }
14

15 ORDER BY DESC(? s i m i l a r i t y)
16

17 LIMIT 20

401

402

403

404

405

406

407

408

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tests

S
ec

o
n

d
s

Index off

Figure 5.21: Similarity Index Off

the performance when the similarity index is activated. Thus, instead to calculate the similarity
during query execution the framework performs an index lookup which results in a remarkable
performance improvement.

We implement the similarity index as a MySQL table where resource pairs specified by URI-
references are stored together with the corresponding similarity calculated by a specific strategy.
The SUMO contains 121 concepts. In order to evaluate our retrieval task, we create an index
of similarities between the ‘Wine’ concept and all other concepts. Thus, the index contains 121
entries. The index computation for our retrieval task takes 422 seconds (around 7 minutes) on our
test server.

In a more realistic environment, the maintenance of a similarity index requires more effort.
First, each time a new concept is added to the ontology the index should be updated by adding
the new similarity pairings. Since the addition of a new concept to an ontology may affect the
similarity of existing resources (e.g., type hierarchy alteration) an incrementally calculated index
should consider to compute similarity values not only for new pairings but also for resources that
are affected by some modification. Further, it is typically not enough to index the similarity of a

5.1 Quantitative Query Performance Evaluation 51

50

52

54

56

58

60

62

64

66

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tests

M
ill

is
ec

o
n

d
s

Index on

Figure 5.22: Similarity Index On

concept and each other concept in the ontology (1:n) but we need to index the similarity of each
possible concept pair (n:n). Since usually we can assume that

sim(A,B) = sim(B,A)

the number of similarity values that need to be indexed can be specified by

I = (
m + 1

2
) =

(m + 1)!

2!(m − 1)!
=

m(m + 1)

2

for an ontology holding m concepts. Thus, in order to create a complete index of the SUMO
we need to calculate

I =
(121 + 1)!

2!(121 − 1)!
= 7′381

pairings of two concepts, where the order does not matter and a concept can be chosen more
than once (combination with repetition). We may estimate the time required to create the simi-
larity index for the SUMO to 25’742 seconds which is around 7 hours. Please note the required
effort and mark that the number of concepts contained in the SUMO is relatively small and the
similarity strategy used could be even more complex.

5.1.7 Final Example: Putting It All Together

To close this first evaluation, we perform a final retrieval task on another ontology and with a
new purpose. This final evaluation shows two things. First, how similarity may be used to join
data of different ontologies by means of similarity strategies executed on a key attribute shared
by both ontologies. Secondly, the performance improvement rule-by-rule including the similarity
index.

For this purpose, we take a subset of the SwetoDblp ontology and another publication on-
tology maintained by the Institute for Angewandte Informatik und Formale Beschreibungsverfahren
(AIFB), University of Karlsruhe, Germany20. The resource schema in both ontologies is different
not only because of unlike URI-references but also because of a different set of predicates.

20http://www.aifb.uni-karlsruhe.de/

52 Chapter 5. Evaluation

Our purpose is to extract information from both ontologies by joining a shared resource pred-
icate. A similarity strategy specified for this predicate allows a ranking of the most similar re-
sources to the referenced resource (i.e., the AIFB publication entitled ‘Semantic Methods for P2P
Query Routing’). The top result is expected to be the one which joins the same resource (i.e.,
publication) in both ontologies. In Appendix B we list the query used for the evaluation.

The second purpose is to show the performance improvement achieved rule-by-rule. Figure
5.23 displays for each rule level the seconds required to execute the query. A rule level executes
not only the newly added rule but all the previous rules too. As showed in Figure 5.23, each
rule level improves the performance. The improvement ratios between the rules highly depends
on the query and ontology. For example, the reorder imprecise rule may not yield significant
performance improvement if Levenshtein is used for both strategies defined in query (Appendix
B). Although some rules may affect more than others, it is the total improvement achieved by all
rules that matters.

0

20

40

60

80

100

120

140

160

180

200

Remove Dispensable Reorder Imprecise Rewrite Filter Move up Filter Reorder by Selectivity

Optimization Rules on DBLP - AIFB

S
ec

o
n

d
s

Without Similarity Index With Similarity Index

Figure 5.23: Final Example: Performance Rule-by-Rule including Similarity Index

Since the measures used in both similarity strategies (DiceStrCmp and LOLStrCmp) are very
efficient in similarity computation, the similarity index method used in the previous Section 5.1.6
based on a MySQL table would not lead to optimization because of the JDBC21 overhead. Thus,
we implement an in-memory similarity index based on a HashMap22 which allows a fast lookup
for similarities. As illustrated in Figure 5.23, at each optimization level the similarity index based
on a HashMap performs faster. The difference in optimization achieved by the similarity index
for both ‘Remove Dispensable’ and ‘Reorder Imprecise’ is notable. In fact, because of the ‘Reorder
Imprecise’ rule, the amount of similarity comparisons is almost reduced to the half. This behavior
can be noticed in Figure 5.23.

Please note that because of the dispensable triple pattern specified in query, we could not
measure the time required to execute the query without any activated rule. This pattern yields a
tremendous intermediate result set because it matches each resource specified in the ontology.

In Appendix B we list both original and optimized queries used to perform this evaluation.
Table 5.8 lists the absolute values measured for this evaluation.

21http://java.sun.com/javase/technologies/database/index.jsp
22http://java.sun.com/j2se/1.4.2/docs/api/java/util/HashMap.html

5.2 Qualitative Query Retrieval Evaluation 53

Rule Level Without Similarity Index With Similarity Index
Remove Dispensable 180’618.49 172’582.19
Reorder Imprecise 174’388.29 170’506.82
Rewrite Filter 102’036.89 98’501.38
Move up Filter 28’274.48 26’849.87
Reorder by Selectivity 3’980.61 1’899.09

Table 5.8: Absolute Values for Rule-by-Rule Evaluation including Similarity Index

5.2 Qualitative Query Retrieval Evaluation

The qualitative evaluation focuses on information retrieval performance of iSPARQL queries us-
ing different similarity strategies. Mainly, we perform standard precision, recall, and f-measure
[Baeza-Yates and Ribeiro-Neto, 1999] evaluations over test collections in order to qualify the per-
formance of our imprecise framework. Moreover, we evaluate the quality of similarity strategies
according to a human similarity judgment (i.e., gold standard).

5.2.1 Datasets

For iSPARQL precision and recall evaluation we use OWLS-TC23. OWLS-TC is a retrieval test
collection to support the evaluation of the performance of Semantic Web service matchmaking
algorithms. The test collection contains 28 queries specified for different domains (e.g., commu-
nication, economy, travel, medical). For each query a corresponding relevance set of services is
given. OWLS-TC services are characterized by a service name and description. Moreover, each
service may have one or more service inputs and outputs. Both inputs and outputs are concepts
defined in 43 OWL ontologies which are included in OWLS-TC. For example, a traveling service
may require some information about which sports we like to do (e.g., hiking and surfing) which
are used as inputs and returns (output) destinations where we are able to play them.

Further, we use the MIT Process Handbook24 [Malone et al., 2003] for an interesting evalua-
tion about the deviation of similarity strategies to human similarity judgment. The MIT Process
Handbook is a rich ontology of business activities (e.g., sell, make, buy) which are classified ac-
cording to multiple hierarchical dimensions. Activities are described by a name and description.
Descriptions may be multiple paragraphs long and can include any kind of information. More-
over, activities are organized against both generalization-specialization and parts-uses dimen-
sions. Generalizations are related activities, i.e., the more general activities (e.g., ‘Exchange’ and
‘Provide’ are general activities to ‘Sell’). Specializations are other ways an activity can be done,
i.e., the different types (e.g., ‘Sell via store’ or ‘Sell via other direct marketing’ are other ways
‘Sell’ can be done). The part attributes specify sub activities (e.g., ‘Obtain order’ and ‘Receive
payments’ are sub activities of ‘Sell’) whereas the uses attributes are lists of activities that use an
activity (e.g., the activity ‘Produce as a Distributor’ uses the ‘Sell’ activity). The broad specification
of activities allows the usage and definition of very different similarity strategies which includes
different similarity measures and allows the consideration of miscellaneous features (e.g., activity
name, description, parts, specializations, etc.)

23Version 2, Release 1, Date 11/15/2005, http://projects.semwebcentral.org/projects/owls-tc/
24http://ccs.mit.edu/ph/

54 Chapter 5. Evaluation

5.2.2 Evaluations

We start evaluating iSPARQL precision and recall on OWLS-TC dataset. We show how the pre-
cision and recall changes depending on the selected similarity strategy and we calculate the
f-measure performance improvement for strategies. The evaluations discussed in this section
clearly illustrate how a similarity strategy affects the retrieval performance. Thus, our evaluation
supports the theory depicted in Chapter 3 which states that specific similarity strategies improve
retrieval performance.

iSPARQL: Precision and Recall

We evaluate precision, recall, and f-measure of OWLS-TC services by using the relevance sets
of services provided by the test collection. A similar approach is used and described for the
evaluation of iRDQL [Bernstein and Kiefer, 2006]. The goal is to perform a qualitative evaluation
of different strategies investigating their precision and recall. Further, we compute the average
precision, recall, and f-measure of 10 services for different domains and strategies and we measure
the average f-measure performance improvement for the selected strategies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of services in result set

Precision Recall F-Measure

Figure 5.24: Precision, Recall, F-Measure: TFIDF Strategy

We chose two slightly different similarity strategies. Both consider the service name, descrip-
tion and inputs/outputs of services. The difference consists in the selected similarity measure
used to calculate the similarity of descriptions. The first similarity strategy uses TFIDF whereas
the second uses Levenshtein of Levenshtein to compute the similarity of descriptions. The name
predicate is compared by means of Levenshtein whereas the Jaccard is used to compare the sets
of service inputs and outputs.

Our strategy based on TFIDF (strategy A) performs generally better compared to the one based
on Levenshtein of Levenshtein (strategy B). Figures 5.24 and 5.25 show this behavior for a specific
OWLS-TC query service (i.e., the DVD and MP3 player price service). For strategy A the top
7 retrieved services are contained in the relevance set (given by OWLS-TC test collection). For
strategy B only the first 5 retrieved services. Looking at recall, we mark that strategy A identifies
each service contained in relevance set after 19 retrieved services whereas strategy B fulfills only
after 93 retrieved services the complete relevance set.

Figures 5.26 and 5.27 resume the average precision, recall, and f-measure of 10 queries per-
formed over OWLS-TC for both strategies A and B using different OWLS-TC service domains.
As expected, the strategy based on TFIDF (strategy A) performs slightly better than strategy B

5.2 Qualitative Query Retrieval Evaluation 55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Number of services in result set

Precision Recall F-Measure

Figure 5.25: Precision, Recall, F-Measure: Levenshtein of Levenshtein Strategy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Number of services in result set

Precision Recall F-Measure OWLS-M4

Figure 5.26: Precision, Recall, F-Measure: Average for Strategy A

based on Levenshtein of Levenshtein. The average f-measure improvement of strategy A com-
pared to strategy B is 7.39%. Further, the figures includes the average f-measure for OWLS-M4
which is the best performing matchmaking algorithm of the OWLS-MX hybrid Semantic Web
service matchmaker ([Bernstein and Kiefer, 2006] and [Klusch et al., 2006]).

iSPARQL: Gold Standard Deviation

In order to evaluate the quality of iSPARQL strategies, we conduct an evaluation using a gold
standard based on human similarity judgment. The gold standard consists of 21 process pairs
extracted from the MIT Process Handbook. The similarity of each pair is judged by a number
of people which estimated the similarity of a process pair between 1 (lowest similarity) and 5
(highest similarity). For each process pair we calculate the average human similarity judgment

56 Chapter 5. Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Number of services in result set

Precision Recall F-Measure OWLS-M4

Figure 5.27: Precision, Recall, F-Measure: Average for Strategy B

value which is then normalized to [0,1]. We use the values resulting from human judgment as
gold standard to evaluate the goodness of similarity strategies implemented in our imprecise
framework.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Retrieval Tasks

S
im

ila
ri

ty

Gold-Standard MITPHLevenshteinResCmp

Figure 5.28: Gold Standard vs. Levenshtein Strategy

In the following we show the results for three different similarity strategies used to evaluate
the similarity between processes of the MIT Process Handbook. The first strategy is based on
a Levenshtein resource comparison of both process parts (i.e., sub activities). The similarity of
two processes is calculated considering the structure of parts (i.e., the number of parts) and the
Levenshtein similarity of the corresponding part names. The second strategy is based on the tree
edit distance. Hence, the similarity is calculated comparing the trees of process parts.

Figure 5.28 shows the gold standard compared to the Levenshtein based strategy whereas
Figure 5.29 shows the gold standard compared to the tree edit distance strategy. We may point
out a smaller deviation for the strategy based on tree edit distance. Thus, we can state that the
similarity strategy based on tree edit distance approximates better human similarity judgment of
MIT Process Handbook processes (assuming a qualitative human judgment). Figure 5.30 shows
the gold standard compared to a similarity strategy based on the Levenshtein of Levenshtein
similarity measure which considers the name, description, and parts of processes. This is the

5.2 Qualitative Query Retrieval Evaluation 57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Retrieval Tasks

S
im

ila
ri

ty

Gold-Standard MITPHTreeEditDistanceResCmp

Figure 5.29: Gold Standard vs. Tree Edit Distance Strategy

strategy which best approximates human similarity judgment in our evaluation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Retrieval Tasks

S
im

ila
ri

ty

Gold Standard MITPHLoLResCmp

Figure 5.30: Gold Standard vs. Levenshtein of Levenshtein Strategy

Related to this evaluation we present in the following another experiment. The aim is to
evaluate the average deviation from our gold standard for multiple similarity strategies using
different process features (i.e., predicates) which are compared by various similarity measures.
The result is an ordering of similarity strategies ranked by increasing deviation from the gold
standard. The deviation is measured as an average value of the absolute differences between the
gold standard and the similarity measured for a specific strategy.

Some strategies consider only a single predicate of business activities defined in the MIT
Process Handbook (e.g., name or description) while other consider multiple predicates (e.g., name
and description). Further, attributes are compared by means of Levenshtein, tree edit distance,
Levenshtein of Levenshtein or TFIDF, depending whether the measure is meaningful or not for
the corresponding object value. The evaluation shows that a careful selection of attributes and a
corresponding meaningful measure yield to significant performance improvement.

This evaluation supports our original idea of similarity strategies based on the ‘Features of
Similarity’ theory of A. Tversky [Tversky, 1977] described in Chapter 2. The evaluation demon-
strates that a careful selection of features (i.e., predicates) of ontological resources and the inves-
tigation of meaningful similarity measures is necessary to reach a good approximation of human

58 Chapter 5. Evaluation

similarity judgment. Although a general similarity measure or strategy can be used to compare
ontological resources, I believe that in general a specific similarity strategy which considers spe-
cific features and compares them using meaningful measures yields to respectable performance
improvement.

The definition of strategies is a task which may be affected by the attained similarity goal. As a
simple example, in an ontology which describes the curriculum vitae of individuals, a comparison
of personal details, e.g., first name or last name, is not meaningful if our aim is to characterize the
similarity of people according to their knowledge and work experience. Thus, careful feature
selection matters and is related to the attained goal.

Table 5.9 shows the results of our evaluation ranked by the increasing average deviation to the
human similarity judgment.

Strategy Average Deviation
LOL(Name, Description, Parts) 0.144846435
LOL(Parts) 0.15147453
TED(Parts) 0.152694516
LOL(Name, Description); TED(Parts) 0.154761688
LOL(Name); TED(Parts) 0.165089958
Levenshtein(Parts) 0.237248183
LOL(Name, Parts); TFIDF(Description) 0.276288123
LOL(Name); TFIDF(Description); Levenshtein(Parts) 0.291227587
LOL(Name) 0.29972154
LOL(Name); TFIDF(Description) 0.317672939
Levenshtein(Name); TFIDF(Description) 0.387880911
TFIDF(Description) 0.485221486

Table 5.9: Strategy Deviation Ranking

The strategy which performs best in our evaluation implements the Levenshtein of Leven-
shtein (LOL) similarity measure on name, description, and part predicates of MIT Process Hand-
book processes. Generally, the Levenshtein of Levenshtein measure approximates well human
similarity judgment especially if compared to the Levenshtein or the TFIDF. A measure which
compares the structure of sub processes, e.g., the tree edit distance, yields good approximations
too. The TFIDF generally yields poor performance. This may be because of bad text quality
(HTML tags inside of descriptions). The Levenshtein of Levenshtein does clearly enhance the
performance of the TFIDF also compared to the Levenshtein measure. Finally, we can mark that
strategies which consider more features or features where more data is compared (process parts)
are performing better.

All this considerations are specific to the MIT Process Handbook ontology and may be totally
different for other ontologies. This supports our preliminary statement that strategies should be
studied for a specific ontology. We may expect that specific similarity strategies perform better
compared to general purpose similarity strategies.

6
Conclusions

The seamless integration of our imprecise framework into ARQ and SPARQL is one of the major
advantages of the proposed approach. Traditional SPARQL, Jena, and ARQ can be used to run
iSPARQL queries. This allows an uncomplicated and fast deployment of iSPARQL on different
systems.

I believe, the similarity between complex resources in ontologies may be measured by dif-
ferent logics, each resulting in varying similarity values. In order to evaluate the goodness of a
logic, a gold standard is required (i.e., human similarity judgment). Thus, we are able to iden-
tify the logic which best approximates the gold standard. Complex ontology resources may not
only be measured by different logics, but similarity logics also highly depend on the underlying
ontology. The design of our imprecise framework is in line with the nature of similarities for
complex ontology resources, since it allows extending strategies that meets best the properties
of ontologies and their resources. Similarity strategies allow particular fine tuning and facilitate
good approximation of human similarity judgment.

Our proposed iSPARQL optimization framework is a first approach for triple pattern selec-
tivity estimation based on statistical information about the resources contained in the underlying
ontology. As the quantitative query performance evaluation in Section 5.1 shows, the approach
seems to be reasonable, and I believe this is the way to go. Obviously, more research work is
required to get even more accurate estimations. It is remarkable that a few optimization rules
which all aims the common goal to reduce the intermediate result set size of triple patterns highly
affect query execution performance.

The optimization work discussed in this thesis, mainly focuses on static query reordering in
order to get an execution plan which is optimal against the selectivity of triple patterns. Static
optimization techniques may be combined with dynamic techniques to achieve optimization also
when static techniques do not lead to any effective optimization (e.g., when the query is already
optimized according to the selectivity of triple patterns).

6.1 Limitations

Our flexibility for similarity strategies is also a drawback. Extending strategies not only requires a
deep study of the underlying ontology and knowledge about similarity measures, but necessitates
the implementation of specific classes, written in Java. Hence, implementing a specific strategy
with good gold standard approximation is anything but a trivial task and the required effort not

60 Chapter 6. Conclusions

negligible. Nevertheless, our imprecise framework allows the implementation of generic strate-
gies too. Generic strategies are ontology independent and usually they involve a single similarity
measure.

iSPARQL queries require a specific statement ordering. This is the major drawback of our ap-
proach. On the one hand, the SPARQL variables used as strategy arguments must be previously
bound by ARQ. On the other hand, imprecise strategy statements need to conform a special or-
dering. Nevertheless, our iSPARQL optimizer (Chapter 4) implements a rule which reorders im-
precise statements to meet this requirement. Hence, imprecise statements may be written in any
ordering, provided that the optimizer is activated.

The proposed iSPARQL optimization framework implements a basic statistical model used for
selectivity estimation. More research should be invested to improve the accuracy of estimations.
For example, SPARQL variables constrained by an inequality operator (e.g., >, <) are not consid-
ered yet while estimating the selectivity of patterns. It is straightforward, that the selectivity of
a variable constrained in a FILTER expression can be estimated more accurately. Moreover, our
framework calculates the object selectivity according to a specific predicate. This limitation can
be avoided by generalizing the function for the selectivity estimation of triple pattern objects. In
fact, when a predicate is unknown, we may compute the selectivity of an object by considering
the histograms describing the object domain values for each predicate. Furthermore, the subject
selectivity estimation formula used in our framework may be determined more accurately too.
In fact, the subject selectivity is constant in our framework. A more precise statistic where the
number of predicates are modeled for each resource class inside the ontology may lead to a more
accurate subject selectivity estimation. For example, resources of a class Person may have more
predicates compared to resources of a class Address. A statistical representation of the average
number of predicates for resources according to the resource class may lead to more accurate
and natural subject selectivity estimation. Last but not least, our framework does not consider
the behavior of triple pattern selectivity for joined variables (please refer to the discussion about
the selectivity propagation in Section 4.9). In fact, assigning the selectivity 1.0 to variables which
are previously bound is a too rough approximation. In Section 4.9 we describe our proposed
approach to solve this limitation.

6.2 Future Work

Reordering of imprecise statements is assured only if OptARQ is activated. In fact, the required
logic is implemented as rule in our optimization framework. To allow reordering of iSPARQL
statements even when the optimizer is deactivated, we should split the corresponding rule (Sec-
tion 4.7) into separate logics.

In order to enable a comfortable deployment of similarity strategies for iSPARQL, a possible
extension could be a sort of building set which allows a configuration of similarity strategies. In-
stead of implementing similarity strategies imperatively, i.e., by giving a sequence of commands
the strategy has to execute, we could implement them in a declarative way, i.e., describing what
the strategy should do.

Some of the limitations described above, especially those for the iSPARQL optimization frame-
work, may be a starting point for future work. We expect that resolving the limitations discussed
will lead to more accurate selectivity estimation and thus, enhance the model to a more general
one which may be even more robust in a productive field.

During the last decades, different statistical models have been proposed to characterize at-
tribute value distributions. Our model uses an equal-width histogram to represent the object
value domains (Chapter 4). Other histogram based approaches have been proposed and are

6.2 Future Work 61

summarized in [Oommen and Rueda, 2001]. They all aim the cost estimation of query execu-
tion plans. It has been shown that some methods are less erroneous on selectivity estimation
compared to others. In fact, the equal-width histogram based selectivity estimation used in our
optimization framework is a relatively simple approach which may lead to significantly higher
estimation errors (i.e., large classes result into inaccurate estimation). Moreover, other selectiv-
ity estimation models have been proposed too, e.g., probabilistic selectivity estimation models
[Getoor et al., 2001].

We focused mainly on static optimization techniques, e.g., query reordering or similarity in-
dexing. In Section 4.8 we sketched the aggregation optimization which exploits the characteristics
of some aggregation method. This optimization technique is performed during query execution.
Thus, it belongs to the class of dynamic query optimization. Dynamic optimization involves tech-
niques which consider the state of the environment. For example, a plan which is expected to be
optimal before query execution may not be optimal during execution, perhaps because of a mod-
ified environment or outdated statistics. Thus, the optimizer generates sub-optimal plans due
to invalid assumptions [Markl et al., 2004]. Because of the distributed nature of Semantic Web
knowledge bases considering their attributes and environment changes during query execution
will be fundamental.

A
Appendix A

Listing A.1: iSPARQL Extended Grammar

[2 1] F i l t e r e d B a s i c G r a p h P a t t e r n : : =
BlockOfTr iples ? | Imprec iseBlockOfTr iples ?
(Constra int ’ . ’ ? F i l t e r e d B a s i c G r a p h P a t t e r n) ?

[9 4] Imprec iseBlockOfTr iples : : =
NameStatement ’ . ’
ArgumentsStatement | ScoresStatement ’ . ’
(AggregatorStatement ’ . ’ ThresholdStatement ’ . ’)
(IgnorecaseStatement | WeightsStatement ’ . ’)
S i m i l a r i t y S t a t e m e n t ’ . ’

[9 5] NameStatement : : = Var IRIrefName S t r i n g ’ . ’
[9 6] ArgumentsStatement : : = Var IRIrefArguments O b j e c t L i s t ’ . ’
[9 7] ScoresStatement : : = Var I R I r e f S c o r e s O b j e c t L i s t ’ . ’
[9 8] AggregatorStatement : : = Var IRIrefAggregator S t r i n g ’ . ’
[9 9] ThresholdStatement : : = Var IRIre fThreshold S t r i n g ’ . ’
[1 0 0] WeightsStatement : : = Var IRIrefWeights O b j e c t L i s t ’ . ’
[1 0 1] IgnorecaseStatement : : = Var I R I r e f I g n o r e c a s e S t r i n g ’ . ’
[1 0 2] S i m i l a r i t y S t a t e m e n t : : = Var I R I r e f S i m i l a r i t y Var ’ . ’
[1 0 3] IRIrefName : : =

java : ch . unizh . i f i . i s p a r q l . query . property . name
[1 0 4] IRIrefArguments : : =

java : ch . unizh . i f i . i s p a r q l . query . property . arguments
[1 0 5] I R I r e f S c o r e s : : =

java : ch . unizh . i f i . i s p a r q l . query . property . s c o r e s
[1 0 6] IRIrefAggregator : : =

java : ch . unizh . i f i . i s p a r q l . query . property . aggregator
[1 0 7] IRIre fThreshold : : =

java : ch . unizh . i f i . i s p a r q l . query . property . threshold
[1 0 8] IRIrefWeights : : =

java : ch . unizh . i f i . i s p a r q l . query . property . weights
[1 0 9] I R I r e f I g n o r e c a s e : : =

java : ch . unizh . i f i . i s p a r q l . query . property . ignorecase
[1 1 0] I R I r e f S i m i l a r i t y : : =

java : ch . unizh . i f i . i s p a r q l . query . property . s i m i l a r i t y

B
Appendix B

Listing B.1: Final Example: Query

PREFIX swrc : <http :// swrc . ontoware . org/ontology #>
PREFIX opus : <http :// l s d i s . cs . uga . edu/ p r o j e c t s /semdis/opus#>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX i s p a r q l : <j ava : ch . unizh . i f i . i s p a r q l . query . property .>

SELECT ? t i t l e 1 ? proceedings1 ? year1 ? a b s t r a c t 2 ? s e r i e s 2
?volume2 ? b o o k t i t l e 2 ?month2 ? pages2 ? s i m i l a r i t y 3

WHERE
{

? resource2 swrc : year ? year2 .
? resource1 r d f s : l a b e l ? t i t l e 1 .
? resource1 opus : b o o k t i t l e ? b o o k t i t l e 1 .
? resource2 swrc : t i t l e ? t i t l e 2 .
? resource2 swrc : a b s t r a c t ? a b s t r a c t 2 .
? resource2 swrc : s e r i e s ? s e r i e s 2 .
? resource2 swrc : volume ?volume2 .
? resource2 swrc : b o o k t i t l e ? b o o k t i t l e 2 .
? resource2 swrc : month ?month2 .
? resource2 swrc : pages ? pages2 .
? resource1 opus : year ? year1 .
? resource1 opus : conta ined in proceedings ? proceedings1 .
? resource3 r d f s : l a b e l ? t i t l e 3 .
FILTER (? year2 >= 2005)
FILTER (? t i t l e 2 = ” S e m a n t i c M e t h o d s f o r P2P Q u e r y R o u t i n g ”)
? s t r a t e g y 1 i s p a r q l : name ” L O L S t r C m p ” .
? s t r a t e g y 1 i s p a r q l : arguments (? b o o k t i t l e 1 ? b o o k t i t l e 2) .
? s t r a t e g y 1 i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y 1 .
? s t r a t e g y 2 i s p a r q l : name ” D i c e S t r C m p ” .
? s t r a t e g y 2 i s p a r q l : threshold 0 . 5 .
? s t r a t e g y 2 i s p a r q l : arguments (? t i t l e 1 ? t i t l e 2) .
? s t r a t e g y 2 i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y 2 .
? s t r a t e g y 3 i s p a r q l : name ” S c o r e A g g r e g a t o r ” .
? s t r a t e g y 3 i s p a r q l : s c o r e s (? s i m i l a r i t y 1 ? s i m i l a r i t y 2) .
? s t r a t e g y 3 i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y 3 .

}

66 Appendix B. Appendix B

Listing B.2: Final Example: Optimized Query

PREFIX swrc : <http :// swrc . ontoware . org/ontology #>
PREFIX opus : <http :// l s d i s . cs . uga . edu/ p r o j e c t s /semdis/opus#>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX i s p a r q l : <j ava : ch . unizh . i f i . i s p a r q l . query . property .>

SELECT ? t i t l e 1 ? proceedings1 ? year1 ? a b s t r a c t 2 ? s e r i e s 2
?volume2 ? b o o k t i t l e 2 ?month2 ? pages2 ? s i m i l a r i t y 3

WHERE
{

? resource2 swrc : t i t l e ” S e m a n t i c M e t h o d s f o r P2P Q u e r y R o u t i n g ” .
? resource2 swrc : volume ?volume2 .
? resource2 swrc : s e r i e s ? s e r i e s 2 .
? resource2 swrc : pages ? pages2 .
? resource2 swrc : a b s t r a c t ? a b s t r a c t 2 .
? resource2 swrc : month ?month2 .
? resource2 swrc : b o o k t i t l e ? b o o k t i t l e 2 .
? resource2 swrc : year ? year2 . FILTER (? year2 >= 2005)

? resource1 opus : conta ined in proceedings ? proceedings1 .
? resource1 opus : b o o k t i t l e ? b o o k t i t l e 1 .
? resource1 r d f s : l a b e l ? t i t l e 1 .
? resource1 opus : year ? year1 .

? s t r a t e g y 2 i s p a r q l : name ” D i c e S t r C m p ” .
? s t r a t e g y 2 i s p a r q l : threshold 0 . 5 .
? s t r a t e g y 2 i s p a r q l : argument1 ? t i t l e 1 .
? s t r a t e g y 2 i s p a r q l : argument2 ” S e m a n t i c M e t h o d s f o r P2P Q u e r y R o u t i n g ” .
? s t r a t e g y 2 i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y 2 .

? s t r a t e g y 1 i s p a r q l : name ” L O L S t r C m p ” .
? s t r a t e g y 1 i s p a r q l : arguments (? b o o k t i t l e 1 ? b o o k t i t l e 2) .
? s t r a t e g y 1 i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y 1 .

? s t r a t e g y 3 i s p a r q l : name ” S c o r e A g g r e g a t o r ” .
? s t r a t e g y 3 i s p a r q l : s c o r e s (? s i m i l a r i t y 1 ? s i m i l a r i t y 2) .
? s t r a t e g y 3 i s p a r q l : s i m i l a r i t y ? s i m i l a r i t y 3 .

}

Bibliography

[Antoniou and van Harmelen, 2004] Antoniou, G. and van Harmelen, F. (2004). A Semantic Web
Primer. The MIT Press.

[Baeza-Yates and Ribeiro-Neto, 1999] Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Infor-
mation Retrieval. Addison Wesley Longman Publishing Co. Inc.

[Berners-Lee et al., 1998] Berners-Lee, T., Fielding, R., and Masinter, L. (1998). Uniform Resource
Identifiers (URI): Generic Syntax. RFC 2396.

[Bernstein et al., 2005] Bernstein, A., Kaufmann, E., Kiefer, C., and Bürki, C. (2005). Simpack: A
Generic Java Library for Similiarity Measures in Ontologies.

[Bernstein and Kiefer, 2006] Bernstein, A. and Kiefer, C. (2006). Imprecise RDQL: Towards
Generic Retrieval in Ontologies Using Similarity Joins. In 21th Annual ACM Symposium on
Applied Computing (ACM SAC 2006), New York, NY, USA. University of Zurich, Department of
Informatics, ACM Press.

[Chamberlin et al., 1981] Chamberlin, D. D., Astrahan, M. M., Blasgen, M. W., Gray, J. N., King,
W. F., Lindsay, B. G., Lorie, R., Mehl, J. W., Price, T. G., Putzolu, F., Selinger, P. G., Schkolnick,
M., Slutz, D. R., Traiger, I. L., Wade, B. W., and Yost, R. A. (1981). A History and Evaluation of
System R. Commun. ACM, 24(10):632–646.

[Chamberlin et al., 2001] Chamberlin, D. D., Florescu, D., Robie, J., Siméon, J., and Stefanescu, M.
(2001). XQuery: A Query Language for XML. Technical report.

[Cohen et al., 2003] Cohen, W., Ravikumar, P., and Fienberg, S. (2003). A Comparison of String
Distance Metrics for Name-Matching Tasks.

[Fensel, 2004] Fensel, D. (2004). Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional; 1st edition.

[Ganesan et al., 2003] Ganesan, P., Garcia-Molina, H., and Widom, J. (2003). Exploiting Hierar-
chical Domain Structure to Compute Similarity. ACM Trans. Inf. Syst., 21(1):64–93.

[Getoor et al., 2001] Getoor, L., Taskar, B., and Koller, D. (2001). Selectivity Estimation using Prob-
abilistic Models. In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD International Conference
on Management of Data, pages 461–472, New York, NY, USA. ACM Press.

68 BIBLIOGRAPHY

[Gruber, 1993] Gruber, T. R. (1993). Towards Principles for the Design of Ontologies Used for
Knowledge Sharing. In Guarino, N. and Poli, R., editors, Formal Ontology in Conceptual Analysis
and Knowledge Representation, Deventer, The Netherlands. Kluwer Academic Publishers.

[Hliaoutakis et al., 2006] Hliaoutakis, A., Varelas, G., Voutsakis, E., Ptrakis, E., and Milios, E.
(2006). Information Retrieval by Semantic Similarity. International Journal on Semantic Web
and Information Systems, 3(3):55–72.

[Hurtardo et al., 2006] Hurtardo, C. A., Pulovassilis, A., and Wood, P. T. (2006). A Relaxed Ap-
proach to RDF Querying.

[Klusch et al., 2006] Klusch, M., Fries, B., and Sycara, K. (2006). Automated Semantic Web Service
Discovery with OWLS-MX. In Proceedings of 5th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS). ACM Press.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary Codes Capable of Correcting Deletions, In-
sertions, and Reversals. Soviet Physics Doklady, 10(8):707–710.

[Lin, 1998] Lin, D. (1998). An Information-Theoretic Definition of Similarity. In Proc. 15th In-
ternational Conference on Machine Learning, pages 296–304. Morgan Kaufmann, San Francisco,
CA.

[Malone et al., 2003] Malone, T. W., Crowston, K., and Herman, G. A. (2003). Organizing Business
Knowledge: The MIT Process Handbook. MIT Press.

[Manola and Miller, 2004] Manola, F. and Miller, E. (2004). RDF Primer. Technical report, W3C.

[Markl et al., 2004] Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., and Cilimdzic,
M. (2004). Robust Query Processing through Progressive Optimization. In SIGMOD ’04: Pro-
ceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pages 659–
670, New York, NY, USA. ACM Press.

[Medin et al., 1993] Medin, D. L., Goldstone, R. L., and Gentner, D. (1993). Respects for Similarity.
Psychological Review, 100(2):254–278.

[Miller and Charles, 1991] Miller, G. and Charles, W. (1991). Contextual Correlates of Semantic
Similarity. Language and Cognitive Processes.

[Motik and Sattler, 2006] Motik, B. and Sattler, U. (2006). A Comparison of Reasoning Techniques
for Querying Large Description Logic ABoxes.

[Oommen and Rueda, 2001] Oommen, B. and Rueda, L. (2001). The Efficiency of Modern-day
Histogram-like Techniques for Query Optimization.

[Perez et al., 2006] Perez, J., Arenas, M., and Gutierrez, C. (2006). Semantics and Complexity of
SPARQL.

[Piatetsky-Shapiro et al., 1984] Piatetsky-Shapiro, G., Piatetsky-Shapiro, C. C., and Connell, C.
(1984). Accurate Estimation of the Number of Tuples Satisfying a Condition. In SIGMOD
’84: Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, pages
256–276, New York, NY, USA. ACM Press.

[Prud’hommeaux and Seaborne, 2006] Prud’hommeaux, E. and Seaborne, A. (2006). SPARQL
Query Language for RDF. Technical report, W3C.

BIBLIOGRAPHY 69

[Resnik, 1995] Resnik, P. (1995). Using Information Content to Evaluate Semantic Similarity in a
Taxonomy. In IJCAI, pages 448–453.

[Selinger et al., 1979] Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price,
T. G. (1979). Access Path Selection in a Relational Database Management System. In SIGMOD
’79: Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, pages
23–34, New York, NY, USA. ACM Press.

[Siberski et al., 2006] Siberski, W., Pan, J. Z., and Thaden, U. (2006). Querying the Semantic Web
with Preferences. In Proc. of the 5th International Semantic Web Conference (ISWC 2006).

[Sirin et al., 2006] Sirin, E., Grau, B. C., and Parsia, B. (2006). From Wine to Water: Optimizing
Description Logic Reasoning for Nominals.

[Tversky, 1977] Tversky, A. (1977). Features of Similarity. Psychological Review, (84):327–353.

[Tversky and Gati, 1978] Tversky, A. and Gati, I. (1978). Studies of Similarity. Cognition and Cate-
gorization, pages 79–98.

[Valiente, 2002] Valiente, G. (2002). Algorithms on Trees and Graphs. Springer-Verlag.

