
SPARQL Basic Graph Pattern Optimization Using
Selectivity Estimation

Markus Stocker
HP Laboratories

Bristol
United Kingdom

markus.stocker@gmail.com

Andy Seaborne
HP Laboratories

Bristol
United Kingdom

andy.seaborne@hp.com

Abraham Bernstein
Department of Informatics

University of Zurich
Switzerland

bernstein@ifi.uzh.ch

Christoph Kiefer
Department of Informatics

University of Zurich
Switzerland

kiefer@ifi.uzh.ch

Dave Reynolds
HP Laboratories

Bristol
United Kingdom

dave.reynolds@hp.com

ABSTRACT
In this paper, we formalize the problem of Basic Graph Pat-

tern (BGP) optimization for SPARQL queries and main

memory graph implementations of RDF data. We define
and analyze the characteristics of heuristics for selectivity-
based static BGP optimization. The heuristics range from
simple triple pattern variable counting to more sophisti-
cated selectivity estimation techniques. Customized sum-
mary statistics for RDF data enable the selectivity estima-
tion of joined triple patterns and the development of effi-
cient heuristics. Using the Lehigh University Benchmark
(LUBM), we evaluate the performance of the heuristics for
the queries provided by the LUBM and discuss some of them
in more details.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-

ing

General Terms
Algorithms, Performance

Keywords
SPARQL, query optimization, selectivity estimation

1. INTRODUCTION
In this paper, we focus on selectivity-based static Ba-

sic Graph Pattern (BGP) optimization for SPARQL queries
[14] and main memory graph implementations of RDF [9]
data. In SPARQL, a BGP is a set of triple patterns where a
triple pattern is a structure of three components which may
be concrete (i.e. bound) or variable (i.e. unbound). The
three components which form a triple pattern are respec-
tively called the subject, the predicate and the object of a
triple pattern. Sets of triple patterns, i.e. Basic Graph Pat-
terns, are fundamental to SPARQL queries as they specify
the access to the RDF data.
Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
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Query optimization is a fundamental and crucial subtask
of query execution in database management systems. We fo-
cus on static query optimization, i.e. a join order optimiza-
tion of triple patterns performed before query evaluation.
The optimization goal is to find the execution plan which
is expected to return the result set fastest without actually
executing the query or subparts. This is typically solved by
means of heuristics and summaries for statistics about the
data.

The problem we are going to tackle in this paper is best
explained by a simple example. Consider the BGP displayed
in Listing 1 which represents a BGP of a SPARQL query
executed over RDF data describing the university domain.
Typically, there are a number of different subjects working,
teaching, and studying at a university (e.g. staff members,
professors, graduate, and undergraduate students). They
are all of type Person in our RDF dataset. We know that
the dataset contains a huge number of RDF resources of type
Person among others of type Publication, Course, Room.

The OWL [1] schema ontology used to describe the vo-
cabulary for the RDF dataset states that the property for
the social security number is inverse functional. Therefore,
the object of the property uniquely determines the subject.
Hence, the second triple pattern in our BGP of Listing 1
matches only one subject with the social security number
”555-05-7880”. Our schema ontology specifies further that
the domain of the social security number property is a class
of type Person. Therefore, we can state that the subject
with social security number ”555-05-7880” is of type Person
(or our data is inconsistent).

The question is in which order a query engine should ex-
ecute the two triple patterns. Given the research on join
order strategies that has been pursued for relational data-
base systems, we can safely state that a query engine should
execute first the second triple pattern as its result set is
considerably smaller compared to the result set of the first
triple pattern. Therefore, a static optimizer should reverse
the triple patterns. The join over the subject variable will be
less expensive and the optimization eventually lead to bet-
ter query performance. Note that, as the ontology schema
specifies that the domain of the property for the social secu-
rity number is a class Person, and provided that the data is



Listing 1: Example BGP
?x rd f : type uv : Person .
?x uv : hasSocia lSecur ityNumber ”555−05−7880”

consistent, a static optimizer may even drop the first triple
pattern as, in our example, a subject with a social security
number has to be of type Person.

The main contributions of this paper are (1) a framework
for static optimization of Basic Graph Patterns, (2) a set of
heuristics for the selectivity estimation of joined triple pat-
terns, (3) a proposal for summary statistics of RDF data to
support heuristics in their selectivity estimation, and (4), a
query performance evaluation for the heuristics that under-
lines the importance of query optimization for RDF query
engines.

The focus in our work is on main memory graph imple-

mentations of RDF data (i.e. in-memory models). Currently
most RDF toolkits support both in-memory and on-disk
models. Relational database management systems (RDBMS)
are commonly used as persistent triple stores for on-disk
models. Because of the fundamentally different architec-
tures of in-memory and on-disk models, the considerations
regarding query optimization are very different. Whereas
query engines for in-memory models are native and, thus,
require native optimization techniques, for triple stores with
RDBMS back-end, SPARQL queries are translated into SQL
queries which are optimized by the RDBMS. It is not our
goal in this paper to analyze optimization techniques for
on-disk models and, hence, we are not going to compare in-
memory and on-disk models. Furthermore, we focus on the
evaluation of the presented optimization techniques without
comparing the figures with the performance of alternative
implementations. A comparison of implementations requires
a comprehensive study that goes beyond the scope of this pa-
per. In fact, the query performance of query engines is not
just affected by static query optimization techniques but,
for instance, also by the design of index structures or the
accuracy of statistical information. Finally, our focus is on
static query optimization techniques. Hence, we do not dis-
cuss optimal index structures for RDF triple stores, neither
in-memory nor on-disk, as this too is a research topic that
goes beyond the scope of this paper.

Our focus on main memory graph implementations, i.e. in-
memory models, has an important limitation: scaling. In-
deed, the few gigabytes of main memory clearly limit the
size of RDF data which may be processed in main mem-
ory. Therefore, we might question the relevance of studying
optimization techniques for RDF in-memory models. We
argue, that in-memory models are important for a number
of reasons. First, optimized queries on in-memory models
run much faster than on-disk. Second, 64-bit architectures
pose virtually no more limits to the theoretical amount of
main memory in computers. Third, in a cluster, distributed
in-memory models could be used for parallel query evalua-
tion. Finally, optimization techniques and customized sum-
mary statistics of RDF data are important for native RDF
persistent stores as they do not rely on relational database
technology and, hence, require a native optimizer.

We believe, native optimization techniques and optimized
summary statistics of RDF data are a key requirement for
efficient SPARQL query evaluation on the Semantic Web.

The paper is organized as follows. In Section 2, we suc-
cinctly discuss related work and set our work in context.
In Section 3, we present the theoretical background, the
architecture, and the proposed heuristics implemented for
the Jena ARQ [5] optimizer. In Section 4, we discuss our
approach for summary statistics of RDF data, i.e. meta in-
formation about RDF data used for selectivity estimation
of joined triple patterns. Section 5 describes our approach
for selectivity estimation of (joined) triple patterns. Finally,
in Section 6, we present the query performance evaluation
we conducted for the optimizer and the proposed heuristics.
We close the paper with future work and limitations.

2. RELATED WORK
The execution time of queries is heavily influenced by the

number of joins necessary to find the results of the query.
Therefore, the goal of query optimization is (among other
things) to reduce the number of joins required to evaluate
a query. Such optimizations typically focus on histogram-
based selectivity estimation of query conditions.

Piatetsky et al. introduce in [12] the concept of selectivity
estimation of a condition. In [15] Selinger et al. present the
System R optimizer, a dynamic programming algorithm for
the optimization of joins. Likewise, POSTGRES [17] imple-
ments an exhaustive search optimization algorithm. In con-
trast, INGRES [18] introduced an optimization technique
based on query decomposition. Estimation of conditions are
often supported by histogram distributions of attribute val-
ues [10]. More recently, developments in deductive and ob-
ject oriented database technology showed the need for more
cost-effective optimization techniques [16] as the traditional
techniques work well for queries with only a few relations
to join. Steinbrunn et al. summarizes and analyzes in [16]
randomized algorithms for the problem of query optimiza-
tion where the overall goal is to search the solution space
for the global minima moving randomly between connected
solutions according to certain rules. Further, the authors de-
scribe deterministic, genetic and hybrid algorithms as tech-
niques for the problem of cost-effective query optimization.
PostgreSQL is and example of an open source databases
system experimenting with genetic algorithms for query op-
timization.1

Related to the Semantic Web, Pérez et al. analyze in [11]
the semantics and complexity of SPARQL. Harth et al. [7]
investigate the usage of optimized index structures for RDF.
The authors argue that common RDF infrastructures do
not support specialized RDF index structures. The index
proposed by the authors supports partial keys and allows
selectivity computation for single triple patterns. Hartig et

al. [8] present a SPARQL query graph model (SQGM) which
supports all phases of query processing, especially query op-
timization. The authors refer to a discussion on the Jena
mailing list which showed that a simple rearrangement of a
SPARQL query leads to an improvement of factor 220.2

The concepts and ideas presented in this paper are in-
spired by and rely on some previous, unpublished, own work.

1http://www.postgresql.org/docs/8.2/static/geqo.html
2http://tech.groups.yahoo.com/group/jena-
dev/message/21436



Listing 2: BGP of the LUBM Query 2
1 ?X rd f : type ub : GraduateStudent .
2 ?Y rd f : type ub : Un ive r s i ty .
3 ?Z rd f : type ub : Department .
4 ?X ub : memberOf ?Z .
5 ?Z ub : subOrganizat ionOf ?Y .
6 ?X ub : undergraduateDegreeFrom ?Y .

Figure 1: Undirected connected graph g1 ∈ G

In [4, 3] the authors describe the fundamental techniques
which are further extended in this paper.

3. THE OPTIMIZER
In this section, we first discuss the preliminaries and for-

malize the theory underlying the optimizer and the heuris-
tics. Second, we present the architecture of the optimizer
and we describe its components. Finally, we discuss the
heuristics used for selectivity estimation of graph patterns.

3.1 Preliminaries
For a better understanding, we develop the theory by

means of the example BGP displayed in Listing 2 (i.e. the
WHERE clause of the Lehigh University Benchmark (LUBM)
[6] Query 2).

Given a BGP, B, we define B to be a graph G as a set G
of undirected connected graphs. The elements g ∈ G are the
components of G. For each pair (gi, gj) ∈ G, gi and gj are
disconnected. Note that the elements g ∈ G have different
semantics than RDF graphs, i.e. the nodes of g ∈ G are
triple patterns.

A graph g ∈ G is represented as an ordered pair g :=
(N , E), where N is an unordered set of distinct triple pat-
terns (i.e. the nodes of g) and E is an unordered set of distinct
triple pattern pairs (i.e. the edges of g).

A triple pattern pair shares at least one bound or unbound
component. The subject, predicate, and object are the com-
ponents of a triple (pattern) [9]. In this paper, we refer to
triple pattern pairs as joined triple patterns. Hence, two
triple patterns with a shared variable are joined as well as
two triple pattern with, for instance, the same subject URI.

In Figure 1, we display the undirected connected graph
g1 ∈ G for the BGP in Listing 2. As the BGP triple patterns
in Listing 2 are (transitively) joined, the graph G has only
one component, thus G contains only the connected graph g1.
Note, that the numbers used for the nodes of g1 in Figure 1
correspond to the numbers of the triple patterns of the BGP
in Listing 2. Further, note that, for the sake of simplicity, in
Figure 1 (and generally in our working example) we consider
only joins defined by unbound components (i.e. variables).
This is a specialization of the more general case described

Figure 2: DAG dg for Listing 2 with highlighted
nodes with only outgoing directed edges

in this section as, in our example, we do not consider bound
components shared by two triple patterns, e.g. the bound
rdf:type predicate.

For a BGP B the execution order of pairwise disconnected
graphs (gi, gj) ∈ G does not affect query performance as
the overall result set corresponds to the Cartesian product
of the result sets for gi and gj . Therefore, we can reduce
the optimization problem for B to the optimization of each
g ∈ G. In the following, we focus on the optimization of
connected graphs g ∈ G.

Definition 1. The size N of g ∈ G is the number of nodes
of g, i.e. the number of triple patterns in g.

Definition 2. An execution plan pg for g ∈ G is a well
defined order for the nodes of g.

Definition 3. The set Pg is the execution plan space of
g ∈ G. An execution plan pg ∈ Pg is an element of the
space. The size of Pg is the total number of execution plans
for g ∈ G.

Given the size N of g ∈ G, the size of Pg is N ! (on single
processor machines).3 Therefore, the expanded execution
plan space Pg is potentially huge even for a simple BGP
with only a few triple patterns.

An execution plan pB for a BGP B is an unordered set,
Q, whose elements are execution plans pg. The size of Q
equals the size of G, i.e. every connected graph g ∈ G has an
associated execution plan pg ∈ Pg which is an element of Q.

An execution plan pg ∈ Pg can be represented as a di-
rected acyclic graph (DAG). We define Dg as the set of di-
rected acyclic graphs for the execution plans in Pg. Each
DAG dg ∈ Dg represents one or more execution plans pg of
an undirected connected graph g ∈ G. In Figure 2 we show
the DAG corresponding to the execution plan pg which exe-
cutes the BGP of Listing 2 top-down, i.e. the triple patterns
are evaluated in the same order as they are listed in Listing
2. For any two nodes (i, j) ∈ dg, there is a directed path
between i and j, if (1) the triple patterns corresponding to
i and j are (transitively) joined and (2) i is executed first
in the execution plan. There is a clear relationship between
the set Pg of execution plans pg and the set Dg of directed
acyclic graphs dg. More formally, we can state the following
function f : pg → dg that is injective and not surjective.
Thus, an execution plan pg can be mapped uniquely to a
DAG dg, whereas a DAG dg is an abstraction for one or

3There are N ! plans for N triple patterns when considered
to be executed linearly. On truly parallel systems, we have
the option to execute patterns in parallel and so there are
at least N ! plans.



more execution plans pg. For instance, the execution plan
which executes the triple patterns of the BGP in Listing
2 top-down, i.e. the sequence (1, 2, 3, 4, 5, 6) of triple pat-
terns, is uniquely mapped to the DAG displayed in Figure
2. However, the DAG in Figure 2 is also an abstraction for
the execution plan expressed by the sequence (2, 3, 1, 4, 5, 6)
of triple patterns. The size of Dg is, hence, generally not
equal to the size of Pg.

3.2 The Architecture
In this section, we present the architecture of the opti-

mizer implemented in ARQ. The optimizer consists of three
main components: (1) the BGP abstraction, (2) the core
optimization algorithm, and (3) the extensible pool of selec-
tivity estimation heuristics.

The selectivity estimation of graph patterns is fundamen-
tal for the optimization of basic graph patterns. According
to [12], the selectivity of a condition is the fraction of tuples
satisfying the condition. In our domain, the selectivity of a
(joined) triple pattern is the fraction of triples matching the
pattern. For a typical dice, the selectivity of even numbers is
0.5. Refer to Section 5 for a detailed discussion about RDF
selectivity estimation for our purpose of BGP optimization.

BGP Abstraction. As discussed in Section 3.1, we ab-
stract a BGP as an undirected graph B which is character-
ized by the connected components g ∈ G, where each g is
an ordered pair g = (N , E) consisting of a set N of triple
patterns (i.e. the nodes of g) and a set E of triple pattern
pairs (i.e. joined triple patterns/edges of g). The connected
graph g ∈ G represents a subset of (transitively) joined triple
patterns of B. In the following we describe the algorithm
for the optimization of g = (N , E).

Based on the BGP abstraction for g ∈ G, we perform a
variation of the deterministic minimum selectivity approach
[16] to identify the execution plan pg which is optimal ac-
cording to the algorithm and the selectivity estimations.
The optimization algorithm constructs a solution in a de-
terministic manner applying a heuristic search. Eventually,
the algorithm identifies an order for the elements of the set
N (i.e. triple patterns). Note that this is not a total order
on N . The triple patterns in the resulting execution plan
are not necessarily ranked by estimated selectivity.

Optimization Algorithm. In Algorithm 1, we provide
the pseudo-code for the core optimization algorithm. The
algorithm first selects the edge with minimum estimated se-
lectivity from g = (N , E). The corresponding nodes are
marked as visited and added to the final execution plan pg

ordered by estimated selectivity, i.e. the more selective node
is added first to the execution plan. After selecting the first
edge e ∈ E , the core optimization algorithm iteratively se-
lects the edge which satisfies the two properties (1) mini-
mum estimated selectivity and (2) visited node. With each
iteration a new node is added to the final execution plan.

The property of minimum estimated selectivity is moti-
vated in the deterministic minimum selectivity optimization
approach according to which good solutions are generally
characterized by selective intermediate results [16]. The sec-
ond property, i.e. visited node, ensures the iterative selection
of a triple pattern, i.e. a node n ∈ N , which joins with the
previous partial execution plan. This is an important char-
acteristic of good execution plans as result sets will never

Algorithm 1 Find optimized execution plan EP for g ∈ G

N ← Nodes(g)
E ← Edges(g)
EP [size(N)]
e← SelectEdgeMinSel(E)
EP ← OrderNodesBySel(e)
while size(EP ) ≤ size(N) do

e← SelectEdgeMinSelV isitedNode(EP, E)
EP ← SelectNotV isitedNode(EP, e)

end while
return EP

Figure 3: Optimized DAG d1 ∈ D with highlighted
node with only outgoing directed edges

be the Cartesian product of two intermediate result sets.
Therefore, at each stage of query processing the intermedi-
ate result sets are iteratively constrained.

The algorithm terminates when all nodes n ∈ N have
been visited and the optimal execution plan pg, i.e. a well
defined order for the elements of N , is returned as a result.

Directed acyclic graphs of execution plans which satisfy
the second property, i.e. visited node, of the edge selec-
tion process for BGP abstractions described above, feature a
common characteristic: there is only one node that has only
outgoing directed edges, i.e. the node which is executed first
in the execution plan. Nodes with only outgoing directed
edges do not join with the previous partial execution plan
and, hence, result in a Cartesian product of two intermediate
result sets. For instance, the execution plan which executes
the triple patterns of Listing 2 top-down, abstracted as DAG
in Figure 2, creates two Cartesian products for the interme-
diate result sets of the first three triple patterns (highlighted
in Figure 2 by the three nodes labeled 1, 2, and 3 which are
nodes with only outgoing directed edges). In contrast, the
optimized execution plan, abstracted as DAG in Figure 3,
does never create Cartesian products of intermediate result
sets. This is highlighted by the DAG in Figure 3 with one
node with only outgoing directed edges (i.e. node 5). This
node represents the first triple pattern in the optimized ex-
ecution plan for the BGP in Listing 2.

Selectivity Estimation Heuristics. In order to decide
the selection of edges during the optimization process, the
core optimization algorithm requires figures about the se-
lectivity [12] of graph patterns. The extensible pool of se-
lectivity estimation heuristics is the component intended to
provide the required selectivity figures to the core optimizer.

Heuristics are used to weight the nodes and edges of a
BGP abstraction. Given a weighted connected graph g ∈
G the core optimization algorithm is able to proceed with
the iterative selection of nodes based on the deterministic
minimum selectivity optimization approach described above.



3.3 Heuristics
In this section, we present the heuristics implemented and

used by the optimizer for the selectivity estimation of graph
patterns. We categorize the heuristics according to whether
or not they require pre-computed statistics about the RDF
data.

Heuristics Without Pre-computed Statistics. The
simplest heuristic, ARQ/VC, is called variable counting. For
this heuristics, the selectivity of a triple pattern is com-
puted according to the type and number of unbound compo-
nents and is characterized by the ranking sel(S) < sel(O) <

sel(P ), i.e. subjects are more selective than objects and ob-
jects more selective than predicates. Whether subjects are
more selective than objects (or predicates) effectively de-
pends on the RDF data. In typical RDF datasets, there
are more triples matching a predicate than a subject or an
object. The distinction between subject and object is more
difficult. The ranking we have chosen is clearly a pragmatic
choice. The selectivity of a joined triple pattern is com-
puted according to the type and number of joins (either
bound or unbound). Bound joins are considered more selec-
tive than unbound joins and subject-subject joins are more
selective than subject-object or object-object joins. Unusual
joins (e.g. subject-predicate) are considered the most selec-
tive. Note that the specific choice on how to estimate the
selectivity of (joined) triple patterns without any statistics
is certainly arguable.

The variable counting predicates heuristic, ARQ/VCP, is
very close to ARQ/VC. In fact, the only difference is a de-
fault selectivity of 1.0 for triple patterns joined by bound
predicates. For certain queries, estimating patterns joined
by bound predicates as selective can be a bad choice. For
instance, consider the two patterns [?x rdf:type C] and
[?y rdf:type D]. Typically, both patterns return a consid-
erable result set and it is generally a bad choice to estimate
the pattern as selective. Refer to our evaluation in Section
6 for a practical example where this heuristic has a high
impact on query performance (LUBM Query 2).

The graph statistics handler, ARQ/GSH, is the heuris-
tic with the most accurate estimation for the selectivity of
triple patterns. However, the selectivity estimation of joined
triple patterns is not supported (instead we use ARQ/VC).
The high accuracy of this heuristic is enabled by the un-
derlying Jena [5] in-memory graph which enables for certain
graph implementations to look-up for exact size information
of any triple pattern component. We use such information to
compute selectivities. The Jena graph implementation for
non-inference in-memory models supports the look-up for
the number of triples matching either a subject, a predicate
or an object of a triple pattern. Note that, combinations
(e.g. subject-predicate) are not supported by the graph im-
plementation. Moreover, Jena graph implementations for
inference models currently do not support graph statistics.
In absence of a graph statistics handler for the graph the
optimizer chooses the default heuristic, ARQ/VC.

Heuristics With Pre-computed Statistics. The prob-
abilistic framework (PF) is a standalone framework for the
selectivity estimation of RDF graph patterns (Section 5). It
implements selectivity estimation techniques based on sta-
tistics about RDF data (Section 4). A wrapper around the
PF implements the ARQ/PF heuristic for the optimizer en-

abling the selectivity estimation of triple patterns and joined
triple patterns. Although, the heuristic requires statistics
about the RDF data which have to be previously computed,
heuristics based on the PF are, in average, the most ac-
curate. Whereas ARQ/GSH only supports non-inference
graph models, we can build the statistics required for the PF
by computing the summary statistics of an inference model.
Moreover, heuristics based on the PF are the most accurate
for the selectivity estimation of joined triple patterns as the
PF creates customized statistics about joined RDF graph
patterns.

Based on the probabilistic framework, we implement an-
other heuristic, called ARQ/PFJ. There are two differences
to ARQ/PF. First, the estimated selectivity for joined triple
patterns is a function of the estimated join selectivity and

the selectivity of the more selective triple pattern involved
in the join. This is slightly different to ARQ/PF where the
selectivity for joined triple patterns is a function only of
the estimated join selectivity. Second, ARQ/PFJ does not
consider bound predicates, similar to ARQ/VCP.

The last presented heuristic is called ARQ/PFN and is a
variation of ARQ/PF, hence, it is also based on the PF. The
primary goal of the PF is to estimate as accurate as possi-
ble the selectivity of graph patterns (with one or two triple
patterns). Since the estimated selectivity might be lower
than the minimum meaningful selectivity for some RDF data
(i.e. the selectivity of matching one triple) the probabilistic
framework limits the estimated selectivity to this minimum.
As limiting the lower bound for the estimated selectivity has
a positive effect for the accuracy of the framework, it might
have a negative effect for our purpose of optimization. In
fact, the estimation error does not affect the performance
of the optimizer as long as the order of triple patterns is
correct. Hence, although the estimation might be off the
boundaries, the performance of the optimizer in ordering
triple patterns might be higher. Based on this observation,
ARQ/PFN does not limit the lower bound of selectivity es-
timation (whereas ARQ/PF does). LUBM Query 12 in our
evaluation in Section 6 is an example where limiting forces
the optimizer to select a wrong order for the triple patterns.

4. SUMMARY STATISTICS FOR RDF
Maintaining summaries for the statistics about the data

stored in databases has a long tradition in database tech-
nology. Such meta information on the distribution of data
is used as an efficient way to estimate cardinalities during
query processing for a number of tasks (e.g. static query op-
timization, result set size estimation). Histograms are typi-
cally used to represent the distribution of data [13]. In this
section, we describe in detail the statistics required by the
probabilistic framework (PF) to estimate the selectivity of
(joined) triple patterns.

The need for customized summary statistics of RDF data
for the purpose of BGP optimization is motivated by at least
the following two arguments. First, our architecture dis-
cussed in Section 3 requires selectivity information to weight
the nodes n ∈ N (i.e. triple patterns) and edges e ∈ E
(i.e. joined triple patterns) for every connected component
g ∈ G of the graph G, the abstraction of the BGP B. Sec-
ond, RDF graph patterns are typically characterized by a
large number of joins. The attribute value independence as-

sumption discussed in database literature [13] is perhaps the
most difficult challenge also for the cardinality estimation of



RDF graph patterns. Therefore, tailored summaries for the
statistics of RDF data are required to accurately estimate
the selectivity of graph patterns.

We have chosen a pragmatic solution which is shown to
be a reasonable compromise between statistical expressivity,
achieved optimizations, and the size of the summary. In the
following, we first discuss the required statistics for the se-
lectivity estimation of triple patterns. Afterwards, we focus
on the statistics for joined triple patterns.

4.1 Triple Pattern Statistics
Triple pattern components may be bound (i.e. concrete)

or unbound (i.e. variable). Thus, we have to consider two
dimensions: the first dimension includes the subject, the
predicate, and the object of a triple pattern, whereas the
second dimension differentiates between bound and unbound
components.

The case of unbound components is trivial as they do not
affect the required statistics. However, we need to differen-
tiate the case of bound components as they require different
statistics. Note that in the following we refer to the number
of triples matching a pattern as the size of the pattern. As
discussed in Section 5, the size is strongly related to the se-
lectivity. Hence, given an approximation for the size, it will
be straightforward to compute the selectivity.

The size of a bound subject is approximated as the average
number of triples matching a subject, i.e. the average num-
ber of triples for an RDF resource. Thus, the total number
of triples and the total number of distinct subjects are the
statistics required to estimate the size of a bound subject.
The size of a bound predicate is the number of triples match-
ing the predicate. We compute the exact statistics for each
distinct predicate contained in the summarized RDF data,
i.e. the exact number of triples matching a predicate. Fi-
nally, the size of a bound object is approximated by means
of classical equal-width histograms [12]. For each distinct
predicate we compute a histogram to represent the corre-
sponding object-value distribution.4

4.2 Joined Triple Pattern Statistics
Schema ontologies provide useful information about the

relations of classes and properties of vocabularies used in
RDF data.

For our purpose, we especially look at rdf:Property in-
stances which are related together because of a matching
rdfs:Class instance for their domain or range. For instance,
a property p1 with domain C and a property p2 with domain
C are related because they both define the same class C as
domain. We take into account not only matching domains
but also domain and range or only ranges.

Given two related properties p1, p2 and their join relation
(relation type), i.e. whether they define the same class C for
their domains, domain/range, range/domain or both ranges,
we compute the size of the corresponding BGP as the result
set size of a SPARQL query. For instance, for p1 and p2 with
a relation type SS (i.e. the two properties define the same

4For practical reasons, we use the hash code of the lexical
form of objects. Hence, we create histograms of integer val-
ues which allow comfortable computation of histogram class
sizes as well as upper and lower bound of histograms and
histogram classes. Certainly, a data type specific implemen-
tation would support selectivity estimation for ranges which
is particularly interesting for the selectivity estimation of
SPARQL variables constrained by the FILTER operator.

class C for their domains), the corresponding BGP might
be described by the two triple patterns [?x p1 ?y] and [?x

p2 ?z]. The returned size is used as an upper bound for the
size of any BGP involving the two properties p1 and p2 with
join relationship SS.

In real world queries, joined triple patterns do not always
have unbound subjects and objects. For instance, the BGP
B with the two triple patterns [?x p1 C] and [?x p2 ?y]

(where C is a bound object) is potentially more selective
than the BGP B′ with the patterns [?x p1 ?y] and [?x p2

?z]. Though, the summary supports accurate size informa-
tion only for the BGP B′. In order to consider the object
restriction for B, the size of B is a function of the upper
bound size (i.e. the size of B′) and the size of the restricted
object (which is a look-up in the histogram of p1 for C).

Often the schema of an ontology is not available, which
makes it impossible to get the required insights on related
properties. For this reason, we create a full summary of all
combinations of distinct predicates defined in the summa-
rized RDF data. Certainly, a schema would greatly reduce
the summary size because related predicates are explicitly
defined. However, in absence of the schema, it would not be
possible to create the summary.5

4.3 Summary Features
Summarizing statistics for RDF data is a process which

is performed separately from and prior to query execution.
Thus, statistics are, generally, not computed during query
evaluation. The size of the summary, i.e. the required mem-
ory space, is most influenced by the number of distinct pred-
icates as they characterize the number of histograms and
joined patterns indexed in the summary. As long as the
number of distinct predicates is constant, a growing RDF
dataset does not affect the size of the summary. A growing
RDF dataset does, however, affect the figures representing
the statistics in the summary. The size of the summary is
typically of multiple orders of magnitude smaller than the
size of the RDF dataset. We represent the summary in RDF
and typically serialize it as RDF/XML [2].

Gathering the statistics on joined triple patterns (Section
4.2) is the most expensive task in the process of summary
computation. The number of entries in the summary is a
quadratic function of the number of distinct predicates, more
precisely f(n) = 4n2, where n is the number of distinct
predicates. For instance, for an ontology with 14 distinct
predicates, the summary for joined triple patterns is of size
784.

In real world settings, ontologies often have more than just
10 or 20 distinct predicates. For this reason, we allow spe-
cific configurations (i.e. manual intervention) to potentially
improve the performance. The summary can be computed
either with full support for both triple pattern and joined
triple pattern selectivity estimation or with partial support

for selectivity estimation of triple patterns only. Building
the statistics to support triple pattern selectivity estimation
is, compared to the full summary, much faster. However, it
is a trade-off between time and accuracy as the accuracy of
joined triple pattern selectivity estimation will be lower with
a partial summary. Further, the summary supports a prop-
erty exclusion list. Thus, we can specify a set of properties

5A trivial optimization would be to consider the schema if
it is available and consider all predicate combinations if the
schema is unavailable.



which are ignored during the process. This is useful espe-
cially in environments where the query patterns are known.
The technique may potentially significantly reduce the time
required to built the summary without loss of accuracy for
the specific queries. Finally, we support random sampling
of RDF data. Given a set of triple statements T and a sam-
pling percentage, the sampling technique randomly selects
triple statements from T to create a new set of statements
of the size according to the given sampling percentage. This
new set will be used to compute the statistics. Sampling is
potentially useful for large RDF datasets at the cost, how-
ever, of a loss of accuracy. Note that it is not our intention to
comprehensively analyze sampling techniques for RDF data
in this paper.

5. RDF SELECTIVITY ESTIMATION
In this section we describe the framework for RDF selec-

tivity estimation. The probabilistic framework (PF) is in-
tended to provide selectivity information for (joined) triple
patterns of basic graph patterns.

The framework builds on top of the summary statistics for
RDF data discussed in Section 4 and implements a simple
interface that provides two methods: one for the selectivity
estimation of triple patterns and one for the selectivity es-
timation of joined triple patterns. Heuristics based on the
probabilistic framework (Section 3.3) implement wrappers
around these two methods and, hence, provide selectivity
information for the optimization of basic graph patterns.

The selectivity of a pattern is strongly related to its prob-
ability. Both the selectivity and the probability accept real
values of the interval [0, 1]. Selective patterns, e.g. [ex:s
ex:p ex:o], have a selectivity value that approaches the
lower bound of the interval, i.e. 0. Selective patterns have a
low probability to match triples in some RDF dataset. On
the contrary, unselective patterns, e.g. [?s ?p ?o], have a
selectivity value that approaches the upper bound of the in-
terval, i.e. 1. Unselective patterns have a high probability to
match triples in some RDF dataset. This definition is valid
for both triple patterns and joined triple patterns. Note that
this might be in contrast with the definition for selectivity
in other parts of the literature, in which the selectivity is
the inverse of the probability.

5.1 Triple Pattern Selectivity
The selectivity of a triple pattern is estimated by the for-

mula sel(t) = sel(s) × sel(p) × sel(o) where sel(t) denotes
the selectivity for the triple pattern t, sel(s) the selectiv-
ity for the subject s, sel(p) the selectivity for the predicate
p, and sel(o) the selectivity for the object o. The (esti-
mated) selectivity is a real value in the interval [0, 1] and
corresponds to the (estimated) number of triples matching
a pattern, i.e. the size (Section 4), normalized by the total
number of triples in the RDF dataset. Note that this for-
mulation only approximates sel(t) as it implicitly assumes
that sel(s), sel(p), and sel(o) are statistically independent,
which they will not be in most cases.

The selectivity of unbound triple pattern components, i.e.
the selectivity of a variable subject, predicate, or object, is
generally 1.0 as an unbound component essentially matches
every triple in the dataset.

In the following, we discuss the selectivity of bound com-
ponents. The selectivity of a bound subject is estimated by
the formula sel(s) = 1

R
where R denotes the total number

of resources in the RDF dataset.6 Note that the estimated
selectivity for a bound subject is constant in our model.

The selectivity of a bound predicate is computed by the

formula sel(p) =
Tp

T
where Tp is the number of triples match-

ing predicate p and T is the total number of triples in the
RDF dataset. Note that, as discussed in Section 4, the sum-
mary provides exact figures for Tp and T . Therefore, the
selectivity of p is exact and not an estimation.

The selectivity of a bound object is estimated by the for-
mula

sel(o) =

�
sel(p, oc), if p is bound;P

pi∈P
sel(pi, oc), otherwise.

(1)

where the pair (p, oc) represents the class of the histogram
for predicate p in which object o falls, and sel(p, oc) =
hc(p,oc)

Tp
denotes the frequency of class (p, oc) normalized by

the number of triples matching predicate p. If the predicate
is unbound, the histogram of each predicate is considered
for the object selectivity estimation, i.e. the selectivity of
the object is the sum of sel(pi, oc) for each predicate pi ∈ P

in the summary.

5.2 Joined Triple Pattern Selectivity
The selectivity estimation of joined triple patterns is sup-

ported by the summary described in Section 4.2. The sum-
mary provides upper bound sizes for related predicates with
unbound subjects and objects, where size denotes the result
set size of a joined triple pattern. Given the upper bound
size SP for a joined triple pattern P , the selectivity of P is
estimated as

sel(P ) =
SP

T 2
(2)

where T 2 denotes the square of the total number of triples
in the RDF dataset. The square of the total number of
triples equals the size of the Cartesian product of two triple
patterns with pairwise distinct unbound components.

The selectivity computed by Equation 2 is corrected by a
specific factor for joined triple patterns with bound subjects
or objects. This factor is a function of the selectivities for
the bound components (subject and object) of the triple
patterns. For instance, if the pattern P is joined over the
subjects by a variable and the first triple pattern has a bound
object O, i.e. P contains the triple pattern [?x p1 O] and
[?x p2 ?y], the selectivity of P is estimated as

sel(P ) =
SP

T 2
× sel(p1, oc) (3)

where sel(p1, oc) is the object selectivity of the first triple
pattern in P (Equation 1).

6. EVALUATION
In this section, we present the results of our evaluation

based on the Lehigh University Benchmark (LUBM) [6].
The LUBM features an OWL ontology for the university
domain, enables scaling of datasets to an arbitrary size, and

6Note that this is in accordance with the description in Sec-

tion 4.1. In fact, sel(s) =
T
R

T
= T

R
× 1

T
= 1

R
, where T denotes

the total number of triples.



���������������������������������������������
� � � ��

LUBM Query

A
b

s
o

lu
te

 v
a

lu
e

s
 

(m
s

, 
lo

g
a

ri
th

m
ic

 s
c

a
le

)

�
FF VC VCP GSH PF PFN PFJ

Figure 4: LUBM Query Performance

provides 14 extensional queries. Our evaluations are per-
formed on a dataset containing the description of a single
university (the LUBM University0) and the OWL-DL en-
tailed statements. The total number of triples on which we
perform the evaluations is 156,407.

First, we evaluate the query performance for the 14 LUBM
queries using ARQ and the optimizer with the heuristics dis-
cussed in this paper (Section 3.3). Second, we evaluate the
performance of the optimizer using summaries for the statis-
tics of sampled LUBM datasets where samples are created by
randomly selecting statements from the full dataset. Finally,
in our third evaluation we explore the execution plan space
of the 14 queries and identify the position that ARQ and
the optimization heuristics occupy within this space. This
allows us to investigate whether or not our heuristics are able
to find the best execution plan for the queries. Moreover,
we can compute an average distance (in execution plans)
from the best performing plan for each heuristic and the 14
LUBM queries.

We align the performance of ARQ with disabled opti-
mizer (ARQ/OFF) as a reference for the performance of the
heuristics implemented by the ARQ optimizer. All evalua-
tions are performed on a Red Hat Linux empowered AMD
OpteronTMdual core machine with 8GB main memory.

6.1 Query Performance
The query performance evaluation for the LUBM is sum-

marized in Figure 4. The LUBM specifies some queries
that are more interesting for the purpose of BGP optimiza-
tion than others. Some queries define a BGP with a sub-
stantial number of triple patterns and joins between them,
e.g. Queries 2 and 9. Others are more simple and contain
just one triple pattern, e.g. Queries 6 and 14, or two triple
patterns, e.g. Queries 1, 3, 5, 10, 11, and 13. Hence, it
is not surprising that for certain queries no optimization is
achieved at all.

Figure 4 summarizes the query performance for 4 queries
of the LUBM. On one dimension we show the LUBM queries.
The second dimension shows the absolute values for the
query performance in milliseconds on a logarithmic scale.
The figure compares the performance for ARQ with dis-
abled optimizer (ARQ/OFF) and ARQ with the heuristics
discussed in Section 3.3, i.e. the variable counting (AR-
Q/VC), the variable counting (no) predicates (ARQ/VCP),
the graph statistics handler (ARQ/GSH), the probabilistic
framework (ARQ/PF), the probabilistic framework with-
out limit for the lower bound of selectivity estimation (AR-
Q/PFN) and, finally, the heuristic based on the probabilistic

framework with a different selectivity estimation for joined
triple patterns (ARQ/PFJ).

Query 1 is similar to our example query in Listing 1 as it
defines a BGP with two triple patterns. A simple rearrange-
ment for the two triple patterns leads to a performance im-
provement of one order of magnitude.

Query 2 is interesting for multiple reasons. First, the
achieved optimization is of four orders of magnitude for the
heuristics based on the probabilistic framework. Second, the
explicit low selectivity (1.0, i.e. unselective) of triple patterns
joined by bound predicates used for ARQ/VCP avoids to
first execute the three triple patterns with bound rdf:type

predicates. In fact, the three triple patterns create a huge in-
termediate result set which is only subsequently constrained.
In contrast, ARQ/GSH does estimate the first three triple
patterns of the BGP as selective and, hence, executes them
first in query evaluation. This results in a poor query per-
formance although ARQ/GSH has precise selectivity infor-
mation for the components of triple patterns. Of course,
we can think of a heuristic that combines ARQ/GSH and
ARQ/VCP which would most likely perform better than
ARQ/VCP. Note that the fact that ARQ/GSH and AR-
Q/VC build Cartesian products for intermediate result sets
is not in contrast with the discussion in Section 3.1. If the
BGP graph abstraction would not define a join for bound
predicates, the algorithm would guarantee to not choose ex-
ecution plans with Cartesian products as intermediate result
sets. It was a design choice to define a join for every bound or
unbound pair of triple pattern components to be as general
as possible. In future, we might choose to ignore bound pred-
icate joins directly in the BGP abstraction process. Finally,
some words about ARQ/PF and ARQ/PFJ: the former ex-
ecutes the two triple patterns with empty joined result set
first in the query (triple pattern 5 and 6 of LUBM Query 2).
The problem is that the computation of this join is more ex-
pensive than the overall join computations for the execution
plan selected by ARQ/PFJ. In fact, the first triple pattern
executed by ARQ/PF matches 2414 triples, whereas the sec-
ond triple pattern matches 463 triples. Although combined
the result set is empty and, hence, the final result set is
identified after executing the second triple pattern, the cost
of executing the first join is more expensive than the total
cost of three joins required to evaluate the execution plan
selected by ARQ/PFJ. Note that the first triple pattern exe-
cuted by ARQ/PFJ matches only 15 triples. Although, this
small result set is joined another two times to get the final
empty result set, it is, overall, less expensive.

The considerations for Query 9 are similar to Query 2.
The achieved optimizations are of five orders of magnitude
for the best performing heuristics. Again, we note that AR-
Q/VCP performs optimally without requiring any statistics.
Clearly, it is crucial to avoid the execution of the three triple
patterns with bound rdf:type predicates first in query eval-
uation. The rationale is the same as for Query 2.

Query 12 is also worth a couple of words. Whereas for
all other queries ARQ/PF shows a similar performance as
the other heuristics based on the probabilistic framework,
for Query 12 ARQ/PF clearly selects a wrong ordering of
the triple patterns. This is caused by the explicit limit of
the lower bound for selectivity estimation in ARQ/PF. In
fact, two triple patterns of the BGP in Query 12 are esti-
mated with the same (lowest) selectivity by ARQ/PF. By
not limiting the estimation to the lowest meaningful selectiv-
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Figure 6: Plan Space for the LUBM query 2

ity (ARQ/PFN) the optimizer identifies a better ordering.
Whereas the accuracy of the estimation is higher for AR-
Q/PF compared to ARQ/PFN, for the purpose of ordering
triple patterns the limitation to the lowest meaningful selec-
tivity is, in this case, better avoided.

6.2 Sampling Performance
The sampling performance evaluation for the LUBM is

summarized in Figure 5. We use a random selection of
statements from the original dataset to create three subsets
containing respectively 0.1%, 1%, and 10% of the triples
contained in the original dataset. We create the summary
statistics for each sample and use them for query evaluation
with the ARQ/PF heuristic. Generally, we can state that
the summaries for the 0.1% sample are accurate enough to
significantly improve query performance. Being more accu-
rate, summaries of larger samples further improve the query
performance, however, in most cases this improvement is
not as significant as the improvement achieved by the 0.1%
summary. Note that the LUBM is a synthetic RDF dataset
which may bias the evaluation based on samples.

The main advantage of summaries for samples is the time
required to create them. The time required to create the
summary for the 0.1% sample is approximately 13 seconds
while the time required to create the summary for the entire
dataset is approximately 1,764 seconds (∼30 minutes).

Figure 5 summarizes the query performance for a subset of
interesting LUBM queries. For Query 1, the summary of the
0.1% sample is clearly enough accurate to correctly reorder
the simple BGP consisting of two triple patterns. Query 2
is an example where more accurate information is required
to capture the peculiarity of the BGP, i.e. that the two last
triple patterns together have an empty intermediate result
set. A summary of 10% of the original dataset is accurate

Query Min Max ARQ/PFJ
2 1.88 1,532,992.17 1.95
4 1.59 218.59 1.61
7 1.36 98,474.56 1.36
8 115.56 30,382.56 116.09

12 2.74 61.84 10.66

Table 1: The best, the worst, and the ARQ/PFJ
execution plan performance for the LUBM queries
with at least three triple patterns (in milliseconds)

enough to optimize the query. Query 4 is an example where
sampling worsens the performance compared to the origi-
nal BGP, for the 0.1% sample. As we select the statements
randomly, the resulting inaccurate statistics entice the opti-
mizer to select a bad execution plan for the BGP. Finally,
Query 9 is similar to Query 2 with the difference that the
summary of the 0.1% sample is already enough accurate to
optimize the query.

6.3 Exploring the Execution Plan Space
In this section, we evaluate the query performance for each

execution plan in the plan space of each of the 14 LUBM
queries. The evaluation allows us to identify the position of
the execution plans selected by the different heuristics in the
plan space of each query. Moreover, it enables to identify
the best and worst execution plan, and to compute the per-
formance interval between the two boundaries. Further, we
can calculate the average distance from the best performing
execution plan for each heuristic.

Following the discussion in Section 3.1, the BGP of the
LUBM Query 2 is abstracted as a set G = {g1} with a single
connected graph g1. The size of g1 is the number of triple
patterns, i.e. 6. The size of the execution plan space is,
therefore, 6! = 720. Figure 6 shows the query execution
performance for a subset of the 720 queries (execution plans)
in the execution plan space of the LUBM Query 2. We
highlight the execution plans which reflect the plans selected
by ARQ and the optimization heuristics.

In Table 1, we list the query performance of the best and
worst execution plan and the performance of ARQ/PFJ for
the LUBM queries with at least three triple patterns. The
table shows that our best performing heuristic is very close
to the best performing execution plan in the space of the
listed LUBM queries. Note that the plan space evaluation
for the LUBM Query 9 had to be terminated after over two
weeks and could not be completed.

Finally, Figure 7 shows the distance of ARQ with dis-
abled optimizer (ARQ/OFF) and each optimization heuris-
tic to the best performing execution plan normalized by the
size of the plan space, averaged over the 14 LUBM queries.
While ARQ with disabled optimizer (ARQ/OFF) has a nor-
malized average distance of 0.68 from the best plan, the best
performing heuristic (ARQ/PFJ) has a normalized average
distance of 0.023 from the best execution plan and is, hence,
very close to the best performing execution plans.

The evaluation shows that although the best performing
heuristic is not always able to find the best performing exe-
cution plan, it is, however, able to identify an execution plan
that, essentially, performs in average equally to the optimal
execution plan.
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7. LIMITATIONS AND FUTURE WORK
As we argued in Section 1, scaling is one of the major lim-

itations of the presented work. Clearly, main memory graph
implementations do not scale. However, we believe that the
optimization of native SPARQL query engines is, neverthe-
less, an important issue for an efficient query evaluation on
the Semantic Web.

Basic graph patterns are fundamental to SPARQL as they
define the access to the RDF graph. However, they are not
the only part of the SPARQL syntax interesting for sta-
tic optimizations. SPARQL includes a number of operators
which are modifiers for the result sets of basic graph pat-
terns, e.g. OPTIONAL, UNION, and FILTER. For instance, fil-
tered variables may be rewritten in basic graph patterns.
By means of typed histograms for the distribution of ob-
ject values, variables filtered by inequality operators could
be considered during (joined) triple pattern selectivity esti-
mation. A filtered variable defining the age of a person to
be ≤ 10 could, for example, influence the selectivity of the
(joined) triple pattern, which introduces the filtered vari-
able. As our equal-width histograms are untyped, the op-
timizer is currently not able to estimate the selectivity of
value ranges.

One shortcoming of the evaluation is that the underly-
ing data is artificial. We, therefore, ran two queries which
are similar to the ones used in [3] against the SwetoDBLP
dataset.7 Preliminary findings indicate that the relative per-
formance of the different heuristics is analogous to the ones
observed in the LUBM dataset.

8. CONCLUSIONS
The paper summarizes the research we have been doing

on static Basic Graph Pattern (BGP) optimization based on
selectivity estimation for main memory graph implementa-
tions of RDF data.

We formalized the problem of BGP optimization (Sec-
tion 3.1) and we presented the architecture for the optimizer
(Section 3.2) that has been implemented for ARQ. Further,
we discussed a number of heuristics (Section 3.3) for the se-
lectivity estimation of joined triple patterns. The heuristics
range from simple variable counting techniques to more so-
phisticated selectivity estimations based on the probabilistic
framework (Section 5) that builds on top of tailored sum-
mary statistics for RDF data (Section 4).

As the evaluation clearly showed, the characteristics of the
heuristics greatly influence the selected ordering of the triple

7http://lsdis.cs.uga.edu/projects/semdis/swetodblp/

patterns of a BGP and, hence, the query execution perfor-
mance. In our experience, we found the following proper-
ties of heuristics to be important for the problem of BGP
optimization. First, the optimizer should avoid Cartesian
products as intermediate result sets. Second, the selectivity
should not be limited in lower bound estimation. Third, the
selectivity of joined triple patterns should be a function of
the estimated selectivity of the join (i.e. the size of the result
set) and the selectivity of the more selective triple pattern
involved in the join. Finally, as we noticed multiple times,
bound predicates should not be considered as joins.
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