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Abstract Query engines for ontological data based on graph model8yve®cute user queries
without considering any optimization. Especially for largntologies, optimization techniques are
required to ensure that query results are delivered witasaonable time. OptARQ is a first proto-
type for SPARQL query optimization based on the conceptiplietpattern selectivity estimation.
The evaluation we conduct demonstrates how triple pateardering according to their selectivity
affects the query execution performance.
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1 Introduction

Since the advent of System R [1], query optimization has ywaeen a research topic. The
techniques introduced by D. Chamberlin and his IBM resegrolup in San José, California, in
1979 are still used in commercial database systems [2]. Ghespt of selectivity factor described
in [1] is still a crucial one. Clearly, selectivity estimati methods evolved from simply formulas to
more complex statistical techniques, but the foundatioegspplicable to modern query languages
like SPARQL.

The proposed optimization framework for SPARQL queriesmydbcuses on static optimiza-
tion techniques. By static optimization we mean generasuvhich may be applied in order to
get an optimal query execution plan (QEP). Thus, staticmipéition is a query rewriting process
usually executed after query parsing and syntax checking.

The fundamental aim of the proposed optimization framevi®tk reduce intermediate result
sets of triple patterns. Basically, each implemented apttion rule is intended to fulfill this goal.
For example, the triple pattern selectivity estimationt#es a pattern ranking according to their
intermediate result set sizes.

The paper is structured as follows: Next, we review the gdreemcept of selectivity of a con-
dition, we propose our adaptation to the selectivity ofléripatterns and we present our approach
to the selectivity estimation of triple patterns. Then, wevide a detailed explanation of the im-
plemented optimization rules. In our evaluation we disthesisefulness of the approach. Finally,
we discuss the limitations of the presented approach. Weeakath a discussion of related work
and some ideas for future work.

2 Selectivity

Selectivity is the most crucial concept on which our optiatian model is based. Piatetsky defined
the selectivity in [3] as follows.

Definition 1 Selectivity of a condition E, denoted SEL(E), is the fraction of tuples satisfying this
condition.

For example, SEL(number = 6) is about 0.16 for a typical didas definition can be adapted
with some small modification to ontological data models. Wayrmodify the definition for
SPARQL queries, to

Definition 2 Selectivity of a triple pattern T, denoted SEL(T), is the fraction of triples satisfying
the pattern.

Selectivity is fundamental because it quantifies the sizentgifmediate result sets of triple
patterns. Thus, the overall goal is to find the ordering ofrgumatterns which minimizes the
intermediate result sets for each stage during query execut

The optimization we focus on is based on static query rengitules. In the following we
define some general rules for SPARQL query rewriting and vgerilee the histogram based model
for triple pattern selectivity estimation.



2.1 Selectivity Estimation

Selectivity can be calculated either by an exact formularoestimation which is mostly based
on statistics about the underlying data. Because an explg pattern selectivity computation
basically requires the pattern to be executed, we cannobreéxact information since this would
require as much time to perform the optimization as it is neglito execute the query. Thus, we
base our optimization model on statistical informationwttibe ontological resources in order to
get an estimation of the selectivity for each triple pattdinis allows to rank the patterns according
to their estimated selectivity which is expected to redheantermediate result set sizes. This may
results in considerable performance improvement.

The evaluation (Section 4) shows that the estimation basestatistics is enough precise to
reduce the execution performance by orders of magnitude.

2.2 Selectivity Cost Function

We define a cost function that reflects the selectivity edtonaand is used to rank triple patterns
in increasing order of selectivity. The cost function retia value between 0 and 1, thus, it is
basically a normalization to [0,1] of the estimated selaisti

We model the overall cost for a triple pattern as follows

c(t) = c(s) * ¢(p) * c(0)

wherec(t) is the overall cost for a triple pattetrands, p, o are respectively the subject, predi-
cate and object of. Thus, the expected execution costfot(t), is modeled as the multiplication
of the expected cost for the subject), predicate:(p), and object(o).

Subject Cost Estimation

The subject of a triple pattern may be either a variable oRanlh the case of a variable, we assign
the cost 1.0 since we miss information to make a more preoiseestimation. In the case of an IRl
the subject matches a resource in the graph model. Thusxaéloe rumber of triples returned by
a pattern where the subject is specified by an IRI correspiuniifee number of predicates defined
for the referenced resource. In order to avoid creating daxrtontaining the exact information
for each resource, our statistical model estimates theofagbattern where the subject is specified
with an IRI by

c(s) = @

where|R| is the total number of resources in our ontology. This rasimlta constant for the
selectivity of subjects in the queried ontology which iglfaa rough estimation that holds well
only for ontologies containing resources of the same chlags, (publications) or queries addressing
just one class of subject. We will investigate more precgarations in future work.



Predicate Cost Estimation

The predicate of a triple pattern can be either a variable ¢R& In the case of a variable, we again
assign the cost 1.0 as for the subject since we miss infoom#dimake a more precise estimation.
In the case of an IRI, it matches each triple which featured®i as predicate. We estimate the
cost for predicate by

_ 15
c(p) = T

where|T,,| corresponds to the (exact) number of triples matching pegelp and|T'| is the total
number of triples. This is the fraction of triples which mfas predicate. Thus, the predicate
cost estimation given an IRl is exact. Since the number aindispredicates defined in ontologies
is mostly marginal compared to the number of resources plesj it is worth to index the exact
information for predicates in order to get a precise seldgti

Object Cost Estimation

The triple pattern object can be either a variable, an IRIRDé literal. In the case of a variable,
we assign the cost 1.0 as for the subject and the predicateern@se, we extract the estimated
selectivity from a histogram. The object values domain fedgcates is represented by histograms,
more precisely equal-width histograms [3]. As we will depater on in this chapter, the range of
object values is divided int®& equal-width histogram classes where the class heightsqmonels

to the number of objects given a predicate that fall into tless Hence, for each predicate a
histogram of the corresponding object value domain is etkatVe estimate the object casb)

by

| clp, o), if p is bound;
elo) = Epie]}DC(pi;Oc), otherwise.

wherec(p, o.) = help.oe) ' @, the frequency af. (i.e., the height of the histogram class Q)

normalized by the number of triples matchingndo.. is the histogram class in which the object
o falls into. In the case a predicate is not bound, the histagrheach predicate in the model is
considered for the object cost estimation. Please notéhtbitgrams represent the object values
domain of a specific predicate. Thus, to address a specifignésn the predicate IRI is required.

2.3 Examples

In order to illustrate the cost model described in the previSection 2.2, we illustrate some ex-
amples. They are based on a sample ontolog¥irst, we perform a process overto gather the
required statisticsO contains 1’317 triples and an average of 11.52 predicatesaich resource.
Moreover, the predicate RDFS:labalppears in 114 triplesD is a publication ontology and the
predicate RDFS:label is used to describe the title of pabbas. The title ‘XQuery: A Query
Language for XML [4] falls into a histogram class of height.1

Ihttp://www.w3.0rg/2000/01/rdf-schematlabel



Based on these statistics we are now able to estimate thettgtle patterns. Table 1 il-
lustrates some examples which show the estimated exeaagirdepending whether a subject,

predicate or object are variable or not.

t c(s) c(p) c(0) c(t)
1| 7?s?p?0 1.0 1.0 1.0 1.0
2|:87?p7?0 0.008747| 1.0 1.0 0.008747
3 | ?srdfs:label ?0 1.0 0.0865604 1.0 0.0865604
4 | :srdfs:label ?0 0.008747| 0.0865604 1.0 0.0007571
5 | ?s rdfs:label "XQuery: A Query ... 1.0 0.0865604| 0.0129081 0.0011173
6 | :s rdfs:label "XQuery: A Query ..."| 0.008747| 0.0865604| 0.0129081 0.0000097

Table 1: Triple Pattern Cost Estimation

2.4 Statistical Model

The required statistical information about the underlygmgph model is (usually) previously ex-
tracted by a pre-process step. There is a special case wieegtatistics may be extracted dur-
ing query execution, namely when the unoptimized query @kae is expected to be more time
consuming than the process which gathers the statistif@hation. During our evaluation we

experienced that this special case may be surprisingly inegeent than expected.

In either case, the implementation of our ARQ optimi£amtARQ, requires a statistical model
to estimate the triple pattern cost. We implement an apjdicaon top of Jenawhich creates
an ontology model containing all required statistical mfiation. The model is serialized to a
RDF/XML representation which can be loaded into a query eten environment.

The statistical model is represented as a graph. It congasisat : St ati sti cs resource
with both predicatest at : avgNr O Pr edi cat es holding the average number of predicates
for any resource andt at : nr O Tri pl es for the number of triples contained in the ontology.
Furthermore, the model containsfat : Pr edi cat es resources with a RDF sequedasehich
lists all distinct predicates contained in the ontologyclipredicate in the list is described on its
part by a RDF resource which defines a predicdtat : f r equency for the absolute number
of occurrences the predicate appears in triples and a jatedit at : hi st ogr amwhich is a
reference to the histogram representation for the objdaesaof the corresponding predicate. A
histogram representation is again a resource which ca#alRDF sequence of histogram classes.
Each histogram class defines a reference to a RDF resoutta witdicatet at : | abel which
specifies the histogram class lower bound and a predstade : i t ens which describes the his-
togram class height, i.e., the number of elements fallibg tine class.

3 SPARQL Optimization

This section focuses on SPARQL optimization. We descrileegéneral optimization rules con-
sidered in our optimization framework which are used to reA8PARQL queries in order to get

2http://jena.sourceforge.net
Shttp://iwww.w3.org/TR/rdf-primer/



Listing 1: Example: Rewrite Filter Variables

PREFIX person: <http :// person®
PREFIX publication: <http :// publicationt
SELECT ?person ?firstname ?title
WHERE {
?person person:firstname ?firstname
?person person:lastname ?lastname
?person person:age ?age
?publication publication:author ?person
?publication publication: title ?title
FILTER (?firstname = "Donald”
& ?lastname = "Chamberlin” && ?age> 30)
}

an optimized QEP. Rules contain a prepare and a transfoga.dbaring prepare stage we gather
information about the query. The information is subsedyamed during transform stage in or-

der to rewrite the query according to a specific optimizagoal. Please note that the execution
order of rules is relevant since the estimated triple pattsecution cost may vary after applying

rewriting rules (e.g., FILTER rewriting).

3.1 Rewrite Filter Variables

The purpose of this rule is to inspect whether FILTER expoesscan be decomposed and vari-
ables included in expressions eliminated by substitutiegvialue directly in some triple pattern.
There are a couple of issues to consider. First, we can dexsemgnly FILTER expressions that
are connected by an AND logical operator. SPARQL triplegratt are joined by a logical AND.
Thus, if we substitute a triple pattern variable, we need ak@rsure that the variables in FILTER
expressions are connected by AND. The substitution of blesaconnected by OR would lead to
a different semantic and, thus, to a different result sebtAer important remark is that a variable
in some triple pattern cannot be simply substituted if thealde is read (referenced) somewhere
else in the query (for example in query projection). Thus,need to make sure that substituted
variables occur only once in query. Finally, we need to atersihe operator used in FILTER ex-
pressions to contrain a variable by a value. There is onlycase that a variable can be substituted,
namely in the case of an equal operate}.(

Listing 1 shows an example where the optimization rule magypdied. Please mark that some
of the issues described above need to be considered. Thadlesrdefined in FILTER expression
are connected by a logical AND. Hence, they may be decompoBadhermore, the variable
?f i rstnane is listed in projection variables. Thus, we cannot simphyrite the first triple
pattern (Listing 1).

At this point we have two options. We could leave the triplégra with the variable and filter



Listing 2: Optimized Example: Rewrite Filter Variables

PREFIX person: <http :// person®

PREFIX publication: <http :// publicationt

SELECT ?person ?firstname ?title

WHERE {
?person person:firstname "Donald”
?person person:lastname "Chamberlin”
?person person:age ?age
?person person:firstname ?firstname
?publication publication:author ?person
?publication publication: title ?title
FILTER (?age> 30)

¥

the variable in FILTER expression. A more optimized altéiuggis to rewrite the?f i r st nanme
variable for the first triple pattern (Listing 1) and to ade ttame triple pattern holding the vari-
able as object as last pattern in the basic graph patterrs Wéy, we very early constrain the
intermediate result set by matching only resources withti@sne ‘Donald’. Because the variable
?f i r st nanme is specified in projection we need to add a triple patternaiaintg the variable as
object. Further, we need to pay attention to the vari@blge defined in FILTER expression. Age
is of type integer and the operator usedis ‘Thus, we cannot rewrite thigage variable specified
in the pattern.

The optimized query is displayed in Listing 2. Please no#t?h ast nane is the only vari-
able which could be rewritten without any further modifioati

3.2 Move Up Filter

The purpose of this rule is to decompose FILTER expressiotdggecute them as early as possible
in query, i.e., after the first basic graph pattern whichadtrces the corresponding variable. We
need to make similar considerations as for the rule destabeve (Rewrite Filter Variables). In
fact, we can decompose FILTER expressions only if the FILTé#tnents are connected by a
logical AND.

As an example, we take the query specified in Listing 2. TreeeeHILTER expression defined
at the bottom of the query. We can move the FILTER expressiosec to the?age variable
defined as object in the pattern. The optimized version ofgunery is listed in Listing 3. The
FILTER move up may constrain the intermediate result set efzthe first basic graph pattern
matching theper son resources. This results in a smaller join with publicatiansl thus the
execution performance may be optimized.



Listing 3: Optimized Example: Move Up Filter

PREFIX person: <http :// person®
PREFIX publication: <http :// publicationt

SELECT ?person ?firstname ?title

WHERE {
?person person:firstname "Donald”
?person person:lastname "Chamberlin”
?person person:age ?age
?person person:firstname ?firstname
FILTER (?age> 30)

?publication publication:author ?person
?publication publication: title ?title

3.3 Reorder by Selectivity

The purpose of this rule is to reorder triple patterns adogrtb their estimated selectivity. Please
refer to the discussion of triple pattern selectivity estiilon used in our optimization approach in
Section 2.1.

The rule computes the expected execution cost for eacle figttern using our cost function
(Section 2.1). This is done in the prepare stage of the rulerinD the transform stage triple
patterns are reordered according to their costs in inargasider (i.e., increasing selectivity).
Thus, triple patterns that potentially yield to smalleermediate result sets are executed first. As
we show in Section 4 this transformation is very fundameatal yields to significant SPARQL
optimization.

4 Evaluation

In this section we describe the evaluation approach usedhtaae the SPARQL query execution
performance. We illustrate the methods, datasets, qugines, and retrieval tasks used and we
present our findings. The evaluation focuses on executidompeance of SPARQL queries on a
sampled dataset. We show how the performance of retrieskd tscales for multiple query engines.
The evaluation is based on a dataset which fits into main meribus, the results presented in this
section focuses on execution performance evaluation oR&RAquery engines with in-memory
models. Although the considerations we made in Section 3itatpoery optimization and the
evaluations presented in this chapter are valid also faigtent triple stores, the results and charts
presented here are valid for in-memory models only.

We conduct our experiments on a two processor dual core AM2Op 270 2.0 GHz server
with 4 GB main memory and two 150 GB 7200rpm disks with a 32 bision of Fedora Core 5
as operating system.



4.1 Query Engines

We evaluate the SPARQL query performance on different gaegines, namely AR Sesame
and KAONZ. The optimized ARQ engine, callgdbt ARQ is used as reference for comparison
to other engines. ARQ is a query engine for Jena. Sesame isFadaf@abase with support for
RDF-Schema inferencing and querying. Sesame was origidaiteloped by Adunafor an EU
research project and is still maintained by Aduna in coltabion with the community and NLnet
Foundatiof. Sesame supports an own query language called S2R@Qd provides a SPARQL
engine which is developed third party by Ryan LevelhgKAON2!! is an infrastructure for
managing OWL-DL, SWRL, and F-Logic ontologies.

The SwetoDblp Dataset

SwetoDbl@? is a RDF representation of the DBEPpublication database and is published by the
Large Scale Distributed Information Systems (LSDIS) lahivérsity of Georgia, USA. SwetoD-
blp is a spin-off of the Semantic Web Technology Evaluationalbgy (SWETO}* and is intended
as an infrastructure for testing the scalability of newwafte. The schema-vocabulary of SwetoD-
blp aggregates concepts from FOAFDublin Coré® and OPUS (specific to the LSDIS library).
SwetoDblp contains approximatively 1.3 million resouredth a size of 787 MB (November
2006). The considerable size of the ontology allows an ekterquery execution performance
evaluation.

SwetoDblp Sampling

In order to evaluate the scale performance of retrievakt&skdifferent query engines, we create
a set of samples of the full SwetoDblp ontology. The sampgjrmth is set to approximatively
10%. Thus, we sample the complete ontology in 10 samplede Paltlustrates the sample sizes
in mega bytes including the number of triples and resourdésreover we list the resulting set
size in number of resources for or retrieval task. Please thatlinear growth of the result sets for
each sample. We create samples with linear growth for thurredl tuples in order to avoid that
matching resources are clustered in a subset of the samples.



Sample (%)| Size (MB) | Triples Resources Result Set Size
10 78.7 893'965 | 79'733 2
20 157.3 1'787'629 | 159'467 | 4
30 235.8 2'681'237 | 239'203 | 6
40 314.6 3'573'684| 318934 |8
50 393.4 4'468'666 | 398’665 | 10
60 472.0 5'360'604 | 478'401 | 12
70 550.6 6'253'930| 558’112 | 14
80 629.4 7'145'344 | 637'852 | 16
90 708.1 8'040'767| 717’574 | 18
100 786.5 8'933'272| 797'278 | 20

Table 2: SwetoDblp Samples: Sample Size, Number of TripNespber of Resources and Result
Set Size for the Retrieval Tasks

4.2 Retrieval Task

We specify a retrieval task for SwetoDblp which reflects a smn usage of the ontology. The
task (Listing 4) focuses on articles published by a journaird) a specific year. It extracts all
articles published in 2004 by VLDB journtél An article is described by its title, the researchers
that authored the publication, the journal volume and numntbe publication year and the number
of pages.

4.3 Optimizations

In order to better understand the evaluation, we first dieednow our optimization approach

rewrites the input query for the retrieval task. The optedizjuery returned is expected to be
optimal according to the statistical selectivity estiroati In addition we shortly describe the op-
timizations executed by Sesame for the SeRQL query langudgRQL is a RDF/RDFS query

language developed by Adufias a part of Sesartie

“http://jena.sourceforge.net/ARQ/
Shttp://www.openrdf.org/
Shttp://kaon2.semanticweb.org/
http://lwww.aduna-software.com/
8http://www.nInet.nl/
http://www.openrdf.org/doc/sesame/users/ch06.html
Ohttp://ryan.levering.name
Uhttp://kaon2.semanticweb.org
http://isdis.cs.uga.edu/projects/semdis/swetodblp/
Bhttp://dblp.uni-trier.de/
Yhttp://isdis.cs.uga.edu/projects/semdis/sweto/
Bhttp://xmins.com/foaf/0.1/

8http://dublincore.org/
http:/lwww.informatik.uni-trier.de/ ley/db/journaidéib/index.html
Bhttp://www.aduna-software.com/
Phttp://iwww.openrdf.org/doc/sesame/users/ch06.html
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Listing 4: Retrieval Task

PREFIX opus: <http://Isdis.cs.uga.edu/propo#s
PREFIX rdfs: <http ://ww.w3.0rg/2000/01/rdfschema>
SELECT ?label ?author ?volume ?pages ?number
WHERE {

?article opus:year ?year

?article opus:publicatiormuthoredby ?author

?article rdfs:label ?label

?article opus:volume ?volume

?article opus:pages ?pages

?article opus:number ?number

?article opus:journahame ?journalname

FILTER (?year = 2004 & ?journalname = "VLDB J.”)
}

The query of our retrieval task (Listing 4) is optimized byotwifferent optimization rules.
First, we rewrite the FILTER expression. During the prepstage, the optimizer searches for
FILTER expressions and checks whether they can be rewritfermay rewrite a FILTER expres-
sion when its elements are connected by a boolean AND openatithey are compared by equal
operator €). Since both variable8year and?j our nal _-nanme are not read elsewhere in the
guery, we can just overwrite both object variables in theesponding triple patterns. Further, we
apply the rule ‘Reorder by Selectivity’. During prepareggaf the rule, the optimizer calculates
the estimated triple pattern execution costs as a funcfidimeoestimated selectivity (please refer
to Section 2 for further details). We get a set of [0,1]-valused in transformation stage to reorder
the triple patterns. The optimized query is listed in Ligtkh After rewriting the FILTER expres-
sion the first triple pattern (line 6) has the smallest sel#ygti.e., lowest cost and is thus placed
first. This is reasonable compared to the second triple npaftiee 7) since the articles published
by the VLDB journal are expected to be less than the articlégdighed in 2004. The following
three patterns (lines 8 - 10) are more difficult to anticiphté it is reasonable that there are more
triples matching the predicatgus: nunber than triples matching the second triple pattern (line
7) since not only the articles published in 2004 but everglarvill match the third pattern (line
8). Because the ontology not only contains articles butrasources too (e.g., master thesis) it is
straightforward that the sixth pattern (line 11) is placédrahe pattern with thepus: vol une
predicate (line 10). Only article resources matchdpes: nunber predicate whereas each re-
source matches thedf s: | abel predicate (i.e., the resource title). Last but not leastyvay
explain why the seventh pattern (line 12) is placed lastc&an article features only one title but
it is often written by one or more authors, the last patterepially matches more triples. Thus,
it is placed to the bottom of the query.

Listing 6 presents the optimization executed by Sesamaé&BeRQL query language. Sesame
applies some general optimization rules too. In fact, itri@s expressions in SeRQL WHERE
clause as our optimization framework for FILTER expressidrurther, Sesame reorders SeRQL

11



Listing 5: Optimized Query

PREFIX opus: <http://Isdis.cs.uga.edu/propo#s
PREFIX rdfs: <http ://ww.w3.0rg/2000/01/rdfschema>
SELECT ?label ?author ?volume ?pages ?number
WHERE {

?article opus:journahame "VLDB J.”

?article opus:year 2004

?article opus:number ?number

?article opus:pages ?pages

?article opus:volume ?volume

?article rdfs:label ?label

?article opus:publicatiorauthoredby ?author
}

triple patterns defined in FROM clause according to the nuraobeariables. Patterns with more
variables are considered to be less specific. Thus, theyaoeited later in query. This is a more
naive approach compared to ours, but it is based on the saaeoidreducing the intermediate
result set sizes.

By looking at the query (Listing 6), we may notice that th@leipattern containing the pred-
icateopus: j our nal _nane should be executed first, since the number of articles puddidy
the VLDB journal are less than those published in 2004. Aeogroblem of the approach used
by Sesame emerges for the following triple patterns whesethe predicate is specified (Listing
6). Since an article has only one title but mostly severdiaus, the ordering of the patterns is ob-
viously wrong. This behavior arises because of unavailstalestics about the selectivity of triple
patterns. Thus, Sesame is missing fundamental informa&tiaptimize the query with a more
precise ordering of triple patterns. As we will see latethiis section, the more precise reordering
of our approach makes a significant difference.

4.4 Results

In this section we present our evaluation results for theenetl task (Listing 4) performed on the
sampled SwetoDblp ontology.

Figure 1 shows the absolute values on a logarithmic scalsunea for the retrieval task (List-
ing 4). We evaluate the query for ARQ, KAON2 and Sesame, wBesame is evaluated for both
SPARQL and SeRQL query languages. The values are measuestfosample. The approxima-
tively linear behavior is expected because of the linearilligion for the resources which matches
the retrieval task. Because of main memory limitations af tegt server, the measurements for
KAON2 stop at 70%. For KAONZ2, the sample with 551 MB requireer2.5 GB, which is the
maximum amount of memory we can allocate for the Java viruathine. Please note that the
difference between OptARQ and Sesame SeRQL is considerébliact, at 100% OptARQ is
31.22 times faster than Sesame SeRQL. The main differenoptimization between OptARQ
and Sesame SeRQL consists in the selected approach fergafiern reordering. While Sesame

12



Listing 6: Sesame SeRQL Optimized Query

SELECT
Title , Author, Volume, Pages, Number
FROM
{Article} opus:year {2004};
opus:journalname {"VLDB J.” };
opus:publicationauthoredby {Author};
rdfs:label {Title };
opus:volume {Volume};
opus:pages{Pages;
opus:number{Number};
USING NAMESPACE
opus =<http://Isdis.cs.uga.edu/propo#o,
rdfs = <http ://ww.w3.0rg/2000/01/rdfschema>

100000

10000 . M

100 ‘/‘/‘/*’_./t/‘—_—*—f—_‘
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Figure 1: Absolute Values (logarithmic scale)

SeRQL is using a more simple and general approach (i.e.,atistgts are required), the model
based on statistical information about the underlying lmgfpused in our optimization framework
yields a more accurate reordering. Table 3 shows the mehsahees for each engine. All values
are listed in milliseconds and approximated to the seconagd place.

In order to quantify the performance improvement of OptARhpared to the other engines,
we create a chart which shows how many times OptARQ is fastapared to the other engines.
We call the chart ‘OptARQ normalized’. Figure 2 shows thedator ARQ, KAON2 and Sesame
on a logarithmic scale.

Finally, we evaluate the performance for each engine whempitimized query is used as in-
put query. Thus, instead to execute the query defined inngstiwe execute the optimized query
defined in Listing 5. Figure 3 shows the evaluation for thermed query. Sesame SeRQL out-
performs the other engines. The SPARQL implementation ga®e resulted to be less efficient.
Further, the figure shows OptARQ less efficient than ARQ wisdiraightforward because of the
overhead due to the optimizer (which is executed althougtytlery is already optimized). Table
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Sample (MB)| OptARQ | Sesame SeRQLKAON2 | ARQ Sesame SPARQI
78 4.16 20.87 606.20 | 1'459.59 | 1'771.45
157 4.76 46.39 1'169.09| 2'920.37 | 3'669.46
236 5.34 67.77 1'997.22| 4'668.49 | 5'444.43
314 5.61 89.90 2'182.24| 6'252.73 | 7'251.89
393 6.00 106.87 2'611.55| 8'122.98 | 9'239.51
472 6.26 129.58 3'841.20| 9'641.68 | 11'454.73
551 6.55 155.05 4'355.03| 11'291.75| 13'241.42
629 6.57 179.12 13'110.01| 14'915.84
708 6.89 196.30 15'247.22| 16'575.31
786 6.71 209.46 16'243.94| 18'697.85

Table 3: Absolute Values
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Figure 2: OptARQ Normalized Values
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Figure 3: Optimized Retrieval Task

4 lists the absolute values measured for this evaluatidodimg those for Sesame SPARELAI

20we think, Sesame SPARQL performs not better even if the apgichquery is used because it does not drop
potential results as soon as they don't satisfy the queriepat | conclude this because of a separate evaluation
performed for Sesame SPARQL where the optimized query faeval task A listed in 5 was executed triple pattern
by triple pattern. The evaluation showed that Sesame SPAREbrmed similar to KAON2 and better than ARQ and
OptARQ for the query containing only the first triple patteFor the query containing the first two patterns Sesame
SPARQL performed already 3.5 times inferior to OptARQ at 18%ih three triple patterns the factor is 12.6 at 10%.
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values are listed in milliseconds and approximated to thersgdecimal place.

Sample (MB)| OptARQ | ARQ | Sesame SeRQLKAON2 | Sesame SPARQL
78 4.07 3.80 | 2.02 5.50 350.41
157 4.62 4.15 | 2.79 6.12 1'073.65
236 5.40 5.06 | 3.15 6.25 1'961.03
314 5.63 5.01 | 3.39 6.73 2'431.63
393 5.75 5.65 | 3.64 7.05 3'211.96
472 6.09 5.67 | 3.93 7.09 4'369.13
551 6.46 6.79 | 4.07 7.34 4'812.85
629 6.61 6.52 | 4.10 6'095.34
708 7.53 6.42 | 4.16 6'956.67
786 6.59 6.68 | 4.31 8'303.01

Table 4: Optimized Retrieval Task

To the best of my understanding, | believe that the enginakiation with the optimized query
demonstrates the correctness of our approach and the patiom techniques discussed in this
paper. Since the engines behaves very similar when the iaptinquery is used, | believe that the
performance improvement which is achieved by the optinoraechniques is realistic.

Figure 4 shows the improvements between the original querthe retrieval task (Listing 4)
and the corresponding optimized query (Listing 5) for eanfjiee on a logarithmic scale. Please
note the performance of Sesame SPARQL. Although the opgaingiery is also performing better
for Sesame SPARQL, the performance improvement becomdkesmiaen the sample size grows.
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Figure 4: Improvements

5 Limitations and Future Work

The proposed SPARQL optimization framework implementssadostatistical model used for se-
lectivity estimation. More research should be investedrprove the accuracy of estimations. For
example, SPARQL variables constrained by an inequalityaipe(e.g.,>, <) are not considered
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yet while estimating the selectivity of patterns. Moreowaur framework calculates the object
selectivity according to a specific predicate. This limdatcan be avoided by generalizing the
function for the selectivity estimation of triple patterbjects. In fact, when a predicate is un-
bound, we may compute the selectivity of an object by comsigehe histograms describing the
object domain values for each predicate. Furthermore,ubgst selectivity estimation formula
used in our framework may be determined more accuratelyltoact, the subject selectivity is
constant in our framework. A more precise statistic wheeerthmber of predicates are modeled
for each resource class inside the ontology may lead to a auatgate subject selectivity estima-
tion. For example, resources of a cl&&s son may have more predicates compared to resources
of a classAddr ess in an ontology. A statistical representation of the avenagmber of predi-
cates for resources according to the resource class maydeadre accurate and natural subject
selectivity estimation. Last but not least, our framewodesl not consider the behavior of triple
pattern selectivity for joined variables. In fact, assignthe selectivity 1.0 to variables which are
previously bound is a too rough approximation.

During the last decades, different statistical models Haa@n proposed to characterize at-
tribute value distributions. Our model uses an equal-widéstogram to represent the object value
domains. Other histogram based approaches have been gdogas are summarized in [2]. They
all aim the cost estimation of query execution plans. It reenbshown that some methods are less
erroneous on selectivity estimation compared to other$adt) the equal-width histogram based
selectivity estimation used in our optimization framew@la relatively simple approach which
may lead to significantly higher estimation errors (i.ergéaclasses result into inaccurate estima-
tion). Moreover, other selectivity estimation models haeen proposed too, e.g., probabilistic
selectivity estimation models [8].

6 Related Work

Perzet al. [5] conduct an extensive analysis of the semantics and aitplof SPARQL, focus-
ing, as argued by the authors, on the two most complicatethtigpe in SPARQLUNI ON and
OPTI ONAL. This work may be a starting point for discussions about IBA optimizations es-
pecially for future optimization rules, since we do curkgmtot consider query optimization for
gueries including SPARQDPTI ONAL or UNI ON keywords.

Sirin [6] presents optimization techniques for OWL-DL odogies focusing on knowledge
bases containing large number of individuals. Aduna Sof#adeveloper and maintainer of
Sesame open source RDF framewdylkntroduced some general query optimization techniques
based on query rewriting rules for Sesame RDF Query Lang{&efeQL).

KAON22%, an infrastructure for managing OWL-DL ontologies, intnods algorithms which
allow optimization of DL reasoning by applying deductivaatzase techniques. According to [7]
such algorithms yield to significant performance improvetm@mmpared to other available DL
reasoners.

2Ihttp:/iwvww.aduna-software.com/
2http://www.openrdf.org/
Znttp://kaon2.semanticweb.org/
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7 Conclusions

To the best of our knowledge, the proposed SPARQL optinundtamework is a first approach for
triple pattern selectivity estimation based on statisii@@rmation about the resources contained
in the underlying ontology. As the evaluation shows, therapph seems to be reasonable and we
believe this is the way to go. Obviously, more research werlequired to get even more accurate
estimations. It is remarkable that a few optimization ruMdsch all aims the common goal to
reduce the intermediate result set size of triple patteigtgyaffect query execution performance.

The optimization work discussed in this paper, focuses aticstiuery reordering in order
to get an execution plan which is optimal according to thedelity of triple patterns. Static
optimization techniques may be combined with dynamic teghes to achieve optimization also
when static techniques do not lead to any effective optitiinge.g., when the query is already
optimized according to the selectivity of triple patterns)
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