
OptARQ: A SPARQL Optimization Approach based on
Triple Pattern Selectivity Estimation

Abraham Bernstein, Christoph Kiefer, Markus Stocker
Department of Informatics

University of Zurich
{bernstein,kiefer,stocker}@ifi.unizh.ch

Technical Report No. ifi-2007.03

March 2, 2007



Abstract Query engines for ontological data based on graph models mostly execute user queries
without considering any optimization. Especially for large ontologies, optimization techniques are
required to ensure that query results are delivered within reasonable time. OptARQ is a first proto-
type for SPARQL query optimization based on the concept of triple pattern selectivity estimation.
The evaluation we conduct demonstrates how triple pattern reordering according to their selectivity
affects the query execution performance.
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1 Introduction

Since the advent of System R [1], query optimization has always been a research topic. The
techniques introduced by D. Chamberlin and his IBM researchgroup in San José, California, in
1979 are still used in commercial database systems [2]. The concept of selectivity factor described
in [1] is still a crucial one. Clearly, selectivity estimation methods evolved from simply formulas to
more complex statistical techniques, but the foundations are applicable to modern query languages
like SPARQL.

The proposed optimization framework for SPARQL queries mainly focuses on static optimiza-
tion techniques. By static optimization we mean general rules which may be applied in order to
get an optimal query execution plan (QEP). Thus, static optimization is a query rewriting process
usually executed after query parsing and syntax checking.

The fundamental aim of the proposed optimization frameworkis to reduce intermediate result
sets of triple patterns. Basically, each implemented optimization rule is intended to fulfill this goal.
For example, the triple pattern selectivity estimation enables a pattern ranking according to their
intermediate result set sizes.

The paper is structured as follows: Next, we review the general concept of selectivity of a con-
dition, we propose our adaptation to the selectivity of triple patterns and we present our approach
to the selectivity estimation of triple patterns. Then, we provide a detailed explanation of the im-
plemented optimization rules. In our evaluation we discussthe usefulness of the approach. Finally,
we discuss the limitations of the presented approach. We close with a discussion of related work
and some ideas for future work.

2 Selectivity

Selectivity is the most crucial concept on which our optimization model is based. Piatetsky defined
the selectivity in [3] as follows.

Definition 1 Selectivity of a condition E, denoted SEL(E), is the fraction of tuples satisfying this
condition.

For example, SEL(number = 6) is about 0.16 for a typical dice.This definition can be adapted
with some small modification to ontological data models. We may modify the definition for
SPARQL queries, to

Definition 2 Selectivity of a triple pattern T, denoted SEL(T), is the fraction of triples satisfying
the pattern.

Selectivity is fundamental because it quantifies the size ofintermediate result sets of triple
patterns. Thus, the overall goal is to find the ordering of query patterns which minimizes the
intermediate result sets for each stage during query execution.

The optimization we focus on is based on static query rewriting rules. In the following we
define some general rules for SPARQL query rewriting and we describe the histogram based model
for triple pattern selectivity estimation.
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2.1 Selectivity Estimation

Selectivity can be calculated either by an exact formula or an estimation which is mostly based
on statistics about the underlying data. Because an exact triple pattern selectivity computation
basically requires the pattern to be executed, we cannot rely on exact information since this would
require as much time to perform the optimization as it is required to execute the query. Thus, we
base our optimization model on statistical information about the ontological resources in order to
get an estimation of the selectivity for each triple pattern. This allows to rank the patterns according
to their estimated selectivity which is expected to reduce the intermediate result set sizes. This may
results in considerable performance improvement.

The evaluation (Section 4) shows that the estimation based on statistics is enough precise to
reduce the execution performance by orders of magnitude.

2.2 Selectivity Cost Function

We define a cost function that reflects the selectivity estimation and is used to rank triple patterns
in increasing order of selectivity. The cost function returns a value between 0 and 1, thus, it is
basically a normalization to [0,1] of the estimated selectivity.

We model the overall cost for a triple pattern as follows

c(t) = c(s) ∗ c(p) ∗ c(o)

wherec(t) is the overall cost for a triple patternt ands, p, o are respectively the subject, predi-
cate and object oft. Thus, the expected execution cost fort, c(t), is modeled as the multiplication
of the expected cost for the subjectc(s), predicatec(p), and objectc(o).

Subject Cost Estimation

The subject of a triple pattern may be either a variable or an IRI. In the case of a variable, we assign
the cost 1.0 since we miss information to make a more precise cost estimation. In the case of an IRI
the subject matches a resource in the graph model. Thus, the exact number of triples returned by
a pattern where the subject is specified by an IRI correspondsto the number of predicates defined
for the referenced resource. In order to avoid creating an index containing the exact information
for each resource, our statistical model estimates the costof a pattern where the subject is specified
with an IRI by

c(s) =
1

|R|

where|R| is the total number of resources in our ontology. This results in a constant for the
selectivity of subjects in the queried ontology which is fairly a rough estimation that holds well
only for ontologies containing resources of the same class (e.g., publications) or queries addressing
just one class of subject. We will investigate more precise estimations in future work.
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Predicate Cost Estimation

The predicate of a triple pattern can be either a variable or an IRI. In the case of a variable, we again
assign the cost 1.0 as for the subject since we miss information to make a more precise estimation.
In the case of an IRI, it matches each triple which features the IRI as predicate. We estimate the
cost for predicatep by

c(p) =
|Tp|

|T |

where|Tp| corresponds to the (exact) number of triples matching predicatep and|T | is the total
number of triples. This is the fraction of triples which matches predicatep. Thus, the predicate
cost estimation given an IRI is exact. Since the number of distinct predicates defined in ontologies
is mostly marginal compared to the number of resources or triples, it is worth to index the exact
information for predicates in order to get a precise selectivity.

Object Cost Estimation

The triple pattern object can be either a variable, an IRI or aRDF literal. In the case of a variable,
we assign the cost 1.0 as for the subject and the predicate. Otherwise, we extract the estimated
selectivity from a histogram. The object values domain for predicates is represented by histograms,
more precisely equal-width histograms [3]. As we will depict later on in this chapter, the range of
object values is divided intoB equal-width histogram classes where the class height corresponds
to the number of objects given a predicate that fall into the class. Hence, for each predicate a
histogram of the corresponding object value domain is created. We estimate the object costc(o)
by

c(o) =

{

c(p, oc), if p is bound;
∑

pi∈P
c(pi, oc), otherwise.

wherec(p, oc) = hc(p,oc)
|Tp|

, i.e., the frequency ofoc (i.e., the height of the histogram class foroc)
normalized by the number of triples matchingp andoc is the histogram class in which the object
o falls into. In the case a predicate is not bound, the histogram of each predicate in the model is
considered for the object cost estimation. Please note thathistograms represent the object values
domain of a specific predicate. Thus, to address a specific histogram the predicate IRI is required.

2.3 Examples

In order to illustrate the cost model described in the previous Section 2.2, we illustrate some ex-
amples. They are based on a sample ontologyO. First, we perform a process overO to gather the
required statistics.O contains 1’317 triples and an average of 11.52 predicates for each resource.
Moreover, the predicate RDFS:label1 appears in 114 triples.O is a publication ontology and the
predicate RDFS:label is used to describe the title of publications. The title ‘XQuery: A Query
Language for XML’ [4] falls into a histogram class of height 17.

1http://www.w3.org/2000/01/rdf-schema#label
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Based on these statistics we are now able to estimate the costof triple patterns. Table 1 il-
lustrates some examples which show the estimated executioncost depending whether a subject,
predicate or object are variable or not.

t c(s) c(p) c(o) c(t)
1 ?s ?p ?o 1.0 1.0 1.0 1.0
2 :s ?p ?o 0.008747 1.0 1.0 0.008747
3 ?s rdfs:label ?o 1.0 0.0865604 1.0 0.0865604
4 :s rdfs:label ?o 0.008747 0.0865604 1.0 0.0007571
5 ?s rdfs:label ”XQuery: A Query ...” 1.0 0.0865604 0.0129081 0.0011173
6 :s rdfs:label ”XQuery: A Query ...” 0.008747 0.0865604 0.0129081 0.0000097

Table 1: Triple Pattern Cost Estimation

2.4 Statistical Model

The required statistical information about the underlyinggraph model is (usually) previously ex-
tracted by a pre-process step. There is a special case where the statistics may be extracted dur-
ing query execution, namely when the unoptimized query execution is expected to be more time
consuming than the process which gathers the statistical information. During our evaluation we
experienced that this special case may be surprisingly morefrequent than expected.

In either case, the implementation of our ARQ optimizer,OptARQ, requires a statistical model
to estimate the triple pattern cost. We implement an application on top of Jena2 which creates
an ontology model containing all required statistical information. The model is serialized to a
RDF/XML representation which can be loaded into a query execution environment.

The statistical model is represented as a graph. It containsa stat:Statistics resource
with both predicatesstat:avgNrOfPredicates holding the average number of predicates
for any resource andstat:nrOfTriples for the number of triples contained in the ontology.
Furthermore, the model contains astat:Predicates resources with a RDF sequence3 which
lists all distinct predicates contained in the ontology. Each predicate in the list is described on its
part by a RDF resource which defines a predicatestat:frequency for the absolute number
of occurrences the predicate appears in triples and a predicatestat:histogram which is a
reference to the histogram representation for the object values of the corresponding predicate. A
histogram representation is again a resource which contains a RDF sequence of histogram classes.
Each histogram class defines a reference to a RDF resource with a predicatestat:label which
specifies the histogram class lower bound and a predicatestat:items which describes the his-
togram class height, i.e., the number of elements falling into the class.

3 SPARQL Optimization

This section focuses on SPARQL optimization. We describe the general optimization rules con-
sidered in our optimization framework which are used to rewrite SPARQL queries in order to get

2http://jena.sourceforge.net
3http://www.w3.org/TR/rdf-primer/

5



Listing 1: Example: Rewrite Filter Variables

PREFIX person : <h t t p : / / pe rson />
PREFIX p u b l i c a t i o n : <h t t p : / / p u b l i c a t i o n />

SELECT ? person ? f i r s t n a m e ? t i t l e
WHERE {

? person person : f i r s t n a m e ? f i r s t n a m e .
? person person : l as t n am e ? l as t n am e .
? person person : age ? age .

? p u b l i c a t i o n p u b l i c a t i o n : a u t h o r ? person .
? p u b l i c a t i o n p u b l i c a t i o n : t i t l e ? t i t l e .

FILTER ( ? f i r s t n a m e = ” Donald ”
&& ? l as t n am e = ” Chamber l in ” && ? age> 30)

}

an optimized QEP. Rules contain a prepare and a transform stage. During prepare stage we gather
information about the query. The information is subsequently used during transform stage in or-
der to rewrite the query according to a specific optimizationgoal. Please note that the execution
order of rules is relevant since the estimated triple pattern execution cost may vary after applying
rewriting rules (e.g., FILTER rewriting).

3.1 Rewrite Filter Variables

The purpose of this rule is to inspect whether FILTER expressions can be decomposed and vari-
ables included in expressions eliminated by substituting the value directly in some triple pattern.
There are a couple of issues to consider. First, we can decompose only FILTER expressions that
are connected by an AND logical operator. SPARQL triple patterns are joined by a logical AND.
Thus, if we substitute a triple pattern variable, we need to make sure that the variables in FILTER
expressions are connected by AND. The substitution of variables connected by OR would lead to
a different semantic and, thus, to a different result set. Another important remark is that a variable
in some triple pattern cannot be simply substituted if the variable is read (referenced) somewhere
else in the query (for example in query projection). Thus, weneed to make sure that substituted
variables occur only once in query. Finally, we need to consider the operator used in FILTER ex-
pressions to contrain a variable by a value. There is only onecase that a variable can be substituted,
namely in the case of an equal operator (=).

Listing 1 shows an example where the optimization rule may beapplied. Please mark that some
of the issues described above need to be considered. The variables defined in FILTER expression
are connected by a logical AND. Hence, they may be decomposed. Furthermore, the variable
?firstname is listed in projection variables. Thus, we cannot simply rewrite the first triple
pattern (Listing 1).

At this point we have two options. We could leave the triple pattern with the variable and filter

6



Listing 2: Optimized Example: Rewrite Filter Variables

PREFIX person : <h t t p : / / pe rson />
PREFIX p u b l i c a t i o n : <h t t p : / / p u b l i c a t i o n />

SELECT ? person ? f i r s t n a m e ? t i t l e
WHERE {

? person person : f i r s t n a m e ” Donald ” .
? person person : l as t n am e ” Chamber l in ” .
? person person : age ? age .
? person person : f i r s t n a m e ? f i r s t n a m e .

? p u b l i c a t i o n p u b l i c a t i o n : a u t h o r ? person .
? p u b l i c a t i o n p u b l i c a t i o n : t i t l e ? t i t l e .

FILTER ( ? age > 30)
}

the variable in FILTER expression. A more optimized alternative is to rewrite the?firstname
variable for the first triple pattern (Listing 1) and to add the same triple pattern holding the vari-
able as object as last pattern in the basic graph pattern. This way, we very early constrain the
intermediate result set by matching only resources with first name ‘Donald’. Because the variable
?firstname is specified in projection we need to add a triple pattern containing the variable as
object. Further, we need to pay attention to the variable?age defined in FILTER expression. Age
is of type integer and the operator used is ‘>’. Thus, we cannot rewrite the?age variable specified
in the pattern.

The optimized query is displayed in Listing 2. Please note that?lastname is the only vari-
able which could be rewritten without any further modification.

3.2 Move Up Filter

The purpose of this rule is to decompose FILTER expressions and execute them as early as possible
in query, i.e., after the first basic graph pattern which introduces the corresponding variable. We
need to make similar considerations as for the rule described above (Rewrite Filter Variables). In
fact, we can decompose FILTER expressions only if the FILTERelements are connected by a
logical AND.

As an example, we take the query specified in Listing 2. There is a FILTER expression defined
at the bottom of the query. We can move the FILTER expression closer to the?age variable
defined as object in the pattern. The optimized version of thequery is listed in Listing 3. The
FILTER move up may constrain the intermediate result set size of the first basic graph pattern
matching theperson resources. This results in a smaller join with publicationsand thus the
execution performance may be optimized.
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Listing 3: Optimized Example: Move Up Filter

PREFIX person : <h t t p : / / pe rson />
PREFIX p u b l i c a t i o n : <h t t p : / / p u b l i c a t i o n />

SELECT ? person ? f i r s t n a m e ? t i t l e
WHERE {

? person person : f i r s t n a m e ” Donald ” .
? person person : l as t n am e ” Chamber l in ” .
? person person : age ? age .
? person person : f i r s t n a m e ? f i r s t n a m e .
FILTER ( ? age > 30)

? p u b l i c a t i o n p u b l i c a t i o n : a u t h o r ? person .
? p u b l i c a t i o n p u b l i c a t i o n : t i t l e ? t i t l e

}

3.3 Reorder by Selectivity

The purpose of this rule is to reorder triple patterns according to their estimated selectivity. Please
refer to the discussion of triple pattern selectivity estimation used in our optimization approach in
Section 2.1.

The rule computes the expected execution cost for each triple pattern using our cost function
(Section 2.1). This is done in the prepare stage of the rule. During the transform stage triple
patterns are reordered according to their costs in increasing order (i.e., increasing selectivity).
Thus, triple patterns that potentially yield to smaller intermediate result sets are executed first. As
we show in Section 4 this transformation is very fundamentaland yields to significant SPARQL
optimization.

4 Evaluation

In this section we describe the evaluation approach used to evaluate the SPARQL query execution
performance. We illustrate the methods, datasets, query engines, and retrieval tasks used and we
present our findings. The evaluation focuses on execution performance of SPARQL queries on a
sampled dataset. We show how the performance of retrieval tasks scales for multiple query engines.
The evaluation is based on a dataset which fits into main memory. Thus, the results presented in this
section focuses on execution performance evaluation of SPARQL query engines with in-memory
models. Although the considerations we made in Section 3 about query optimization and the
evaluations presented in this chapter are valid also for persistent triple stores, the results and charts
presented here are valid for in-memory models only.

We conduct our experiments on a two processor dual core AMD Opteron 270 2.0 GHz server
with 4 GB main memory and two 150 GB 7200rpm disks with a 32 bit version of Fedora Core 5
as operating system.
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4.1 Query Engines

We evaluate the SPARQL query performance on different queryengines, namely ARQ4, Sesame5

and KAON26. The optimized ARQ engine, calledOptARQ, is used as reference for comparison
to other engines. ARQ is a query engine for Jena. Sesame is a RDF database with support for
RDF-Schema inferencing and querying. Sesame was originally developed by Aduna7 for an EU
research project and is still maintained by Aduna in collaboration with the community and NLnet
Foundation8. Sesame supports an own query language called SeRQL9 and provides a SPARQL
engine which is developed third party by Ryan Levering10. KAON211 is an infrastructure for
managing OWL-DL, SWRL, and F-Logic ontologies.

The SwetoDblp Dataset

SwetoDblp12 is a RDF representation of the DBLP13 publication database and is published by the
Large Scale Distributed Information Systems (LSDIS) lab, University of Georgia, USA. SwetoD-
blp is a spin-off of the Semantic Web Technology Evaluation Ontology (SWETO)14 and is intended
as an infrastructure for testing the scalability of new software. The schema-vocabulary of SwetoD-
blp aggregates concepts from FOAF15, Dublin Core16 and OPUS (specific to the LSDIS library).
SwetoDblp contains approximatively 1.3 million resourceswith a size of 787 MB (November
2006). The considerable size of the ontology allows an extensive query execution performance
evaluation.

SwetoDblp Sampling

In order to evaluate the scale performance of retrieval tasks for different query engines, we create
a set of samples of the full SwetoDblp ontology. The samplinggrowth is set to approximatively
10%. Thus, we sample the complete ontology in 10 samples. Table 2 illustrates the sample sizes
in mega bytes including the number of triples and resources.Moreover we list the resulting set
size in number of resources for or retrieval task. Please note the linear growth of the result sets for
each sample. We create samples with linear growth for the returned tuples in order to avoid that
matching resources are clustered in a subset of the samples.
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Sample (%) Size (MB) Triples Resources Result Set Size
10 78.7 893’965 79’733 2
20 157.3 1’787’629 159’467 4
30 235.8 2’681’237 239’203 6
40 314.6 3’573’684 318’934 8
50 393.4 4’468’666 398’665 10
60 472.0 5’360’604 478’401 12
70 550.6 6’253’930 558’112 14
80 629.4 7’145’344 637’852 16
90 708.1 8’040’767 717’574 18
100 786.5 8’933’272 797’278 20

Table 2: SwetoDblp Samples: Sample Size, Number of Triples,Number of Resources and Result
Set Size for the Retrieval Tasks

4.2 Retrieval Task

We specify a retrieval task for SwetoDblp which reflects a common usage of the ontology. The
task (Listing 4) focuses on articles published by a journal during a specific year. It extracts all
articles published in 2004 by VLDB journal17. An article is described by its title, the researchers
that authored the publication, the journal volume and number, the publication year and the number
of pages.

4.3 Optimizations

In order to better understand the evaluation, we first describe how our optimization approach
rewrites the input query for the retrieval task. The optimized query returned is expected to be
optimal according to the statistical selectivity estimation. In addition we shortly describe the op-
timizations executed by Sesame for the SeRQL query language. SeRQL is a RDF/RDFS query
language developed by Aduna18 as a part of Sesame19.

4http://jena.sourceforge.net/ARQ/
5http://www.openrdf.org/
6http://kaon2.semanticweb.org/
7http://www.aduna-software.com/
8http://www.nlnet.nl/
9http://www.openrdf.org/doc/sesame/users/ch06.html

10http://ryan.levering.name
11http://kaon2.semanticweb.org
12http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
13http://dblp.uni-trier.de/
14http://lsdis.cs.uga.edu/projects/semdis/sweto/
15http://xmlns.com/foaf/0.1/
16http://dublincore.org/
17http://www.informatik.uni-trier.de/ ley/db/journals/vldb/index.html
18http://www.aduna-software.com/
19http://www.openrdf.org/doc/sesame/users/ch06.html
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Listing 4: Retrieval Task

1 PREFIX opus : <h t t p : / / l s d i s . cs . uga . edu / propono#>
2 PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema#>
3
4 SELECT ? l a b e l ? a u t h o r ? volume ? pages ? number
5 WHERE {
6 ? a r t i c l e opus : y ea r ? y ea r .
7 ? a r t i c l e opus : p u b l i c a t i o na u t h o r e d b y ? a u t h o r .
8 ? a r t i c l e r d f s : l a b e l ? l a b e l .
9 ? a r t i c l e opus : volume ? volume .

10 ? a r t i c l e opus : pages ? pages .
11 ? a r t i c l e opus : number ? number .
12 ? a r t i c l e opus : j o u rn a ln am e ? j o u rn a ln am e .
13
14 FILTER ( ? y ea r = 2004 && ? j o u rn a ln am e = ”VLDB J . ” )
15 }

The query of our retrieval task (Listing 4) is optimized by two different optimization rules.
First, we rewrite the FILTER expression. During the preparestage, the optimizer searches for
FILTER expressions and checks whether they can be rewritten. We may rewrite a FILTER expres-
sion when its elements are connected by a boolean AND operator and they are compared by equal
operator (=). Since both variables?year and?journal name are not read elsewhere in the
query, we can just overwrite both object variables in the corresponding triple patterns. Further, we
apply the rule ‘Reorder by Selectivity’. During prepare stage of the rule, the optimizer calculates
the estimated triple pattern execution costs as a function of the estimated selectivity (please refer
to Section 2 for further details). We get a set of [0,1]-values used in transformation stage to reorder
the triple patterns. The optimized query is listed in Listing 5. After rewriting the FILTER expres-
sion the first triple pattern (line 6) has the smallest selectivity, i.e., lowest cost and is thus placed
first. This is reasonable compared to the second triple pattern (line 7) since the articles published
by the VLDB journal are expected to be less than the articles published in 2004. The following
three patterns (lines 8 - 10) are more difficult to anticipate, but it is reasonable that there are more
triples matching the predicateopus:number than triples matching the second triple pattern (line
7) since not only the articles published in 2004 but every article will match the third pattern (line
8). Because the ontology not only contains articles but other resources too (e.g., master thesis) it is
straightforward that the sixth pattern (line 11) is placed after the pattern with theopus:volume
predicate (line 10). Only article resources match theopus:number predicate whereas each re-
source matches therdfs:label predicate (i.e., the resource title). Last but not least, wemay
explain why the seventh pattern (line 12) is placed last. Since an article features only one title but
it is often written by one or more authors, the last pattern potentially matches more triples. Thus,
it is placed to the bottom of the query.

Listing 6 presents the optimization executed by Sesame for the SeRQL query language. Sesame
applies some general optimization rules too. In fact, it rewrites expressions in SeRQL WHERE
clause as our optimization framework for FILTER expressions. Further, Sesame reorders SeRQL
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Listing 5: Optimized Query

1 PREFIX opus : <h t t p : / / l s d i s . cs . uga . edu / propono#>
2 PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema#>
3
4 SELECT ? l a b e l ? a u t h o r ? volume ? pages ? number
5 WHERE {
6 ? a r t i c l e opus : j o u rn a ln am e ”VLDB J . ” .
7 ? a r t i c l e opus : y ea r 2004 .
8 ? a r t i c l e opus : number ? number .
9 ? a r t i c l e opus : pages ? pages .

10 ? a r t i c l e opus : volume ? volume .
11 ? a r t i c l e r d f s : l a b e l ? l a b e l .
12 ? a r t i c l e opus : p u b l i c a t i o na u t h o r e d b y ? a u t h o r .
13 }

triple patterns defined in FROM clause according to the number of variables. Patterns with more
variables are considered to be less specific. Thus, they are executed later in query. This is a more
naive approach compared to ours, but it is based on the same idea of reducing the intermediate
result set sizes.

By looking at the query (Listing 6), we may notice that the triple pattern containing the pred-
icateopus:journal name should be executed first, since the number of articles published by
the VLDB journal are less than those published in 2004. Another problem of the approach used
by Sesame emerges for the following triple patterns where just the predicate is specified (Listing
6). Since an article has only one title but mostly several authors, the ordering of the patterns is ob-
viously wrong. This behavior arises because of unavailablestatistics about the selectivity of triple
patterns. Thus, Sesame is missing fundamental informationto optimize the query with a more
precise ordering of triple patterns. As we will see later in this section, the more precise reordering
of our approach makes a significant difference.

4.4 Results

In this section we present our evaluation results for the retrieval task (Listing 4) performed on the
sampled SwetoDblp ontology.

Figure 1 shows the absolute values on a logarithmic scale measured for the retrieval task (List-
ing 4). We evaluate the query for ARQ, KAON2 and Sesame, whereSesame is evaluated for both
SPARQL and SeRQL query languages. The values are measured for each sample. The approxima-
tively linear behavior is expected because of the linear distribution for the resources which matches
the retrieval task. Because of main memory limitations of our test server, the measurements for
KAON2 stop at 70%. For KAON2, the sample with 551 MB requires over 2.5 GB, which is the
maximum amount of memory we can allocate for the Java virtualmachine. Please note that the
difference between OptARQ and Sesame SeRQL is considerable. In fact, at 100% OptARQ is
31.22 times faster than Sesame SeRQL. The main difference inoptimization between OptARQ
and Sesame SeRQL consists in the selected approach for triple pattern reordering. While Sesame
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Listing 6: Sesame SeRQL Optimized Query

SELECT
T i t l e , Author , Volume , Pages , Number

FROM
{ A r t i c l e } opus : y ea r {2004} ;

opus : j o u rn a l n am e { ”VLDB J . ” } ;
opus : p u b l i c a t i o na u t h o r e d b y {Author} ;
r d f s : l a b e l { T i t l e } ;
opus : volume {Volume} ;
opus : pages{Pages} ;
opus : number{Number} ;

USING NAMESPACE
opus = <h t t p : / / l s d i s . cs . uga . edu / propono#> ,
r d f s = <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema#>
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Figure 1: Absolute Values (logarithmic scale)

SeRQL is using a more simple and general approach (i.e., no statistics are required), the model
based on statistical information about the underlying ontology used in our optimization framework
yields a more accurate reordering. Table 3 shows the measured values for each engine. All values
are listed in milliseconds and approximated to the second decimal place.

In order to quantify the performance improvement of OptARQ compared to the other engines,
we create a chart which shows how many times OptARQ is faster compared to the other engines.
We call the chart ‘OptARQ normalized’. Figure 2 shows the factor for ARQ, KAON2 and Sesame
on a logarithmic scale.

Finally, we evaluate the performance for each engine when the optimized query is used as in-
put query. Thus, instead to execute the query defined in Listing 4 we execute the optimized query
defined in Listing 5. Figure 3 shows the evaluation for the optimized query. Sesame SeRQL out-
performs the other engines. The SPARQL implementation in Sesame resulted to be less efficient.
Further, the figure shows OptARQ less efficient than ARQ whichis straightforward because of the
overhead due to the optimizer (which is executed although the query is already optimized). Table
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Sample (MB) OptARQ Sesame SeRQLKAON2 ARQ Sesame SPARQL
78 4.16 20.87 606.20 1’459.59 1’771.45
157 4.76 46.39 1’169.09 2’920.37 3’669.46
236 5.34 67.77 1’997.22 4’668.49 5’444.43
314 5.61 89.90 2’182.24 6’252.73 7’251.89
393 6.00 106.87 2’611.55 8’122.98 9’239.51
472 6.26 129.58 3’841.20 9’641.68 11’454.73
551 6.55 155.05 4’355.03 11’291.75 13’241.42
629 6.57 179.12 13’110.01 14’915.84
708 6.89 196.30 15’247.22 16’575.31
786 6.71 209.46 16’243.94 18’697.85

Table 3: Absolute Values
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Figure 2: OptARQ Normalized Values
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Figure 3: Optimized Retrieval Task

4 lists the absolute values measured for this evaluation including those for Sesame SPARQL20. All

20We think, Sesame SPARQL performs not better even if the optimized query is used because it does not drop
potential results as soon as they don’t satisfy the query pattern. I conclude this because of a separate evaluation
performed for Sesame SPARQL where the optimized query for retrieval task A listed in 5 was executed triple pattern
by triple pattern. The evaluation showed that Sesame SPARQLperformed similar to KAON2 and better than ARQ and
OptARQ for the query containing only the first triple pattern. For the query containing the first two patterns Sesame
SPARQL performed already 3.5 times inferior to OptARQ at 10%. With three triple patterns the factor is 12.6 at 10%.
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values are listed in milliseconds and approximated to the second decimal place.

Sample (MB) OptARQ ARQ Sesame SeRQLKAON2 Sesame SPARQL
78 4.07 3.80 2.02 5.50 350.41
157 4.62 4.15 2.79 6.12 1’073.65
236 5.40 5.06 3.15 6.25 1’961.03
314 5.63 5.01 3.39 6.73 2’431.63
393 5.75 5.65 3.64 7.05 3’211.96
472 6.09 5.67 3.93 7.09 4’369.13
551 6.46 6.79 4.07 7.34 4’812.85
629 6.61 6.52 4.10 6’095.34
708 7.53 6.42 4.16 6’956.67
786 6.59 6.68 4.31 8’303.01

Table 4: Optimized Retrieval Task

To the best of my understanding, I believe that the engines evaluation with the optimized query
demonstrates the correctness of our approach and the optimization techniques discussed in this
paper. Since the engines behaves very similar when the optimized query is used, I believe that the
performance improvement which is achieved by the optimization techniques is realistic.

Figure 4 shows the improvements between the original query for the retrieval task (Listing 4)
and the corresponding optimized query (Listing 5) for each engine on a logarithmic scale. Please
note the performance of Sesame SPARQL. Although the optimized query is also performing better
for Sesame SPARQL, the performance improvement becomes smaller when the sample size grows.
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Figure 4: Improvements

5 Limitations and Future Work

The proposed SPARQL optimization framework implements a basic statistical model used for se-
lectivity estimation. More research should be invested to improve the accuracy of estimations. For
example, SPARQL variables constrained by an inequality operator (e.g.,>, <) are not considered
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yet while estimating the selectivity of patterns. Moreover, our framework calculates the object
selectivity according to a specific predicate. This limitation can be avoided by generalizing the
function for the selectivity estimation of triple pattern objects. In fact, when a predicate is un-
bound, we may compute the selectivity of an object by considering the histograms describing the
object domain values for each predicate. Furthermore, the subject selectivity estimation formula
used in our framework may be determined more accurately too.In fact, the subject selectivity is
constant in our framework. A more precise statistic where the number of predicates are modeled
for each resource class inside the ontology may lead to a moreaccurate subject selectivity estima-
tion. For example, resources of a classPerson may have more predicates compared to resources
of a classAddress in an ontology. A statistical representation of the averagenumber of predi-
cates for resources according to the resource class may leadto more accurate and natural subject
selectivity estimation. Last but not least, our framework does not consider the behavior of triple
pattern selectivity for joined variables. In fact, assigning the selectivity 1.0 to variables which are
previously bound is a too rough approximation.

During the last decades, different statistical models havebeen proposed to characterize at-
tribute value distributions. Our model uses an equal-widthhistogram to represent the object value
domains. Other histogram based approaches have been proposed and are summarized in [2]. They
all aim the cost estimation of query execution plans. It has been shown that some methods are less
erroneous on selectivity estimation compared to others. Infact, the equal-width histogram based
selectivity estimation used in our optimization frameworkis a relatively simple approach which
may lead to significantly higher estimation errors (i.e., large classes result into inaccurate estima-
tion). Moreover, other selectivity estimation models havebeen proposed too, e.g., probabilistic
selectivity estimation models [8].

6 Related Work

Perzet al. [5] conduct an extensive analysis of the semantics and complexity of SPARQL, focus-
ing, as argued by the authors, on the two most complicated operators in SPARQL,UNION and
OPTIONAL. This work may be a starting point for discussions about iSPARQL optimizations es-
pecially for future optimization rules, since we do currently not consider query optimization for
queries including SPARQLOPTIONAL or UNION keywords.

Sirin [6] presents optimization techniques for OWL-DL ontologies focusing on knowledge
bases containing large number of individuals. Aduna Software21, developer and maintainer of
Sesame open source RDF framework22, introduced some general query optimization techniques
based on query rewriting rules for Sesame RDF Query Language(SeRQL).

KAON223, an infrastructure for managing OWL-DL ontologies, introduces algorithms which
allow optimization of DL reasoning by applying deductive database techniques. According to [7]
such algorithms yield to significant performance improvement compared to other available DL
reasoners.

21http://www.aduna-software.com/
22http://www.openrdf.org/
23http://kaon2.semanticweb.org/
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7 Conclusions

To the best of our knowledge, the proposed SPARQL optimization framework is a first approach for
triple pattern selectivity estimation based on statistical information about the resources contained
in the underlying ontology. As the evaluation shows, the approach seems to be reasonable and we
believe this is the way to go. Obviously, more research work is required to get even more accurate
estimations. It is remarkable that a few optimization ruleswhich all aims the common goal to
reduce the intermediate result set size of triple patterns highly affect query execution performance.

The optimization work discussed in this paper, focuses on static query reordering in order
to get an execution plan which is optimal according to the selectivity of triple patterns. Static
optimization techniques may be combined with dynamic techniques to achieve optimization also
when static techniques do not lead to any effective optimization (e.g., when the query is already
optimized according to the selectivity of triple patterns).
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