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Environmental monitoring data contribute 

to advancing our understanding of natural 

and human-made systems. Monitoring 

data are increasingly often voluminous 

sensor data. To turn data into actionable 

knowledge, software systems need to 

integrate advanced techniques in data 

processing, information acquisition, 

and knowledge representation. For case 

studies in intelligent transportation 

systems, atmospheric science, and 

agricultural science this dissertation 

proposes to model observed phenomena 

as objects in situations and discusses 

the representation and processing of 

situational knowledge acquired from 

data in situation-aware environmental 

monitoring systems.
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Abstract

Data obtained in environmental monitoring contribute to advancing our under-
standing of natural and human-made systems, and phenomena. Phenomena
can be monitored by means of various techniques. Some techniques use envi-
ronmental sensor networks to automate monitoring. Common to such networks
is the often large amount of heterogeneous data that result from their opera-
tion. The acquisition, curation, access, and processing of such data are widely
recognized research problems. Beyond data, there are also important research
questions related to the broad issue of how to interpret data, in other words how
to make sense of data.

In this dissertation, phenomena are objects in situations, i.e. objects in struc-
tured parts of reality observed by environmental monitoring systems. We sug-
gest that environmental monitoring systems can utilize computational models
to acquire knowledge about situations from data, and utilize technologies in
knowledge representation and reasoning to support the curation and processing
of acquired situational knowledge. Situational knowledge acquisition and pro-
cessing may be automated and may thus be achieved in near real-time. Automa-
tion enables the technical components of environmental monitoring systems to
obtain and maintain situation awareness.

We study theories, methods, and technologies relevant to the acquisition of
situational knowledge from data and to the representation of situational knowl-
edge. Using the identified theories, methods, and technologies we develop, im-
plement in software, and validate on case studies a software process for the ac-
quisition, curation, access, and processing of situational knowledge in situation-
aware environmental monitoring systems.

The main contributions include an architecture for a software framework
designed to support the implementation of situation-aware environmental mon-
itoring systems. Second, we propose an open source implementation for the
architecture. Third, using the implementation, we develop concrete applica-
tions and discuss the acquisition, curation, access, and processing of situational
knowledge in case studies with environmental monitoring in intelligent trans-
portation systems, atmospheric science, and agricultural science.

The software framework architecture is aligned with a reference model for
environmental research infrastructure. The reference model highlights that state
of the art environmental research infrastructures are predominantly data-based
systems. As the fourth contribution, we propose to extend the reference model
with functionality for knowledge acquisition from data, and knowledge cura-
tion, access, and processing. The resulting model advances knowledge-based
environmental research infrastructure.
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A major strength of the proposed software framework is its support for both
inductive data-driven and deductive knowledge-driven techniques in situational
knowledge acquisition and processing. The presented applications suggest that
the hybrid approach enables the development of situation-aware environmen-
tal monitoring systems with non-trivial situational knowledge acquisition prob-
lems. For applications in scientific research, e.g. in atmospheric science, the
systems are, specifically, situation-aware environmental research infrastructure.

Universal Decimal Classification: 004.41, 004.62, 004.774.2, 004.8, 502.175
Library of Congress Subject Headings: Environmental monitoring; Situational aware-
ness; Ontologies (Information retrieval); Information technology; Cyberinfrastructure;
Expert systems (Computer science); Decision support systems; Software frameworks;
Open source software; Semantic Web; Traffic monitoring; Atmospheric physics; Agricul-
ture; Plant diseases
Yleinen suomalainen asiasanasto: ympäristö; ympäristön tila; monitorointi; tilannekuva;
ontologiat; tietotekniikka; asiantuntijajärjestelmät; päätöksentukijärjestelmät; seuranta;
tietokoneohjelmat; järjestelmäarkkitehtuuri; avoin lähdekoodi; semanttinen web
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Errata

1. The disjointness axiom for personal car and truck classes in Figure 4.1 is
wrong and should be

PersonalCaru Truck v⊥

2. In Paper I, Figure 3, the band-pass filter frequency interval 80-130 Hz is
wrong and should be 100-160 Hz. The references to Figure 5(b) in text at
pp. 4 and 8 (cols. 2) are wrong and should be to Figure 6(b). The note in
Table 5 wrongly refers to Figure 6(b) instead of Table 6(b). The discussion
section (para. 1) states that we “compared [our results] with the results of
similar studies published in the literature” but this comparison is discussed
only later in the section. Finally, the publisher introduced inconsistencies in
writing style, e.g. 600 s vs. 8.192s, data set vs. dataset, or event-of-interest
vs. event of interest.

3. In Paper II (p. 1442, col. 2) the Resource Description Framework is stated
to be a knowledge representation language. This is inaccurate and the cor-
responding sentence is rephrased as: “Situational knowledge acquired from
vibration data was represented in a domain ontology, using the Web On-
tology Language (OWL) [23] knowledge representation language and the
Resource Description Framework (RDF) [24] data model.”

4. In Paper II (p. 1443, col. 2) and Paper III (p. 31, col. 2) the index i of the first
object ai in infon � R, ai, . . . , am, i � is wrong and should be 1. According
to Devlin (1991, p. 115) the infon is

� R, a1, . . . , am, i�

5. Paper III (p. 28, col. 1; p. 34, col. 2; and p. 37, col. 1) cites the manuscript
Stocker et al. “The [W]avellite modelling and software framework for situ-
ation awareness in environmental monitoring” submitted to Environmental
Monitoring and Assessment from which it was eventually withdrawn. The
manuscript was later submitted to other journals which, however, rejected
the submission, primarily on the grounds that the framework was already
published in Paper III. The manuscript was never published. Instead, we
include some of the content of the manuscript, specifically the description of
the Wavellite foundations, in this dissertation (primarily Section 3.3.2, “In-
formation Viewpoint”). Paper III (p. 29, col. 2) refers to sensing devices as
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procedures. This was inspired by the OGC O&M standard which lists sen-
sor as a type of procedure. In retrospect, it would have been better to merely
talk about SSN sensors and sensing devices. The publisher introduced the
following errors. At p. 31, col. 2, a blank space is missing between im and
‘is’ in “[...] argument places i1, . . . , imis sufficient [...]” (corr.: i1, . . . , im is);
at p. 34, col. 1, the parameter ṫ1 is missing in “[...] cloud event begins and
ends (and ṫ2) [...]” (corr.: (ṫ1 and ṫ2)); and at p. 34, col. 1, a period is missing
after “[...] and mean precipitation 6.4 mm h−1” (corr.: 6.4 mm h−1.) Finally,
at p. 33, col. 1, the motivation is three-fold (not three-folded).

6. Paper V (p. 14, col. 2; p. 15, col. 1) cites the manuscript Stocker et al. “Plant
disease pressure situation modelling in agriculture” as being in review at
Computers and Electronics in Agriculture. Unable to obtain more than one
formal review, the journal later rejected the submission. The manuscript (i.e.
Paper IV) is currently submitted to Environmental Modelling & Software.
At p. 6, col. 1, there is an excessive ‘a’ in “[...] such as a the fact that [...]”
(corr.: such as the fact that).



1 Introduction

In 2005, Gartner predicted that “[b]y 2015, wirelessly networked sensors in ev-
erything we own will form a new [w]eb” and specified that the new web “will
only be of value if the ‘terabyte torrent’ of data it generates can be collected,
analyzed and interpreted” (Raskino et al., 2005).

It is 2015 and wirelessly networked sensors are arguably not in everything we
own. Compared to 2005, sensors are, however, found in more of what we own.
Smart phones are perhaps the prime example but wirelessly networked sensors
are today part of many consumer products, including the Air Quality Egg and
the growing assortment of wearable technology used, e.g., in sports (Baca et al.,
2009) or health monitoring (Pantelopoulos and Bourbakis, 2010).

The conditional in Raskino et al.’s prediction is particularly interesting. Ob-
viously, having sensors monitoring us and our environment is of no value if
their data cannot be collected, analysed and interpreted. The observation is ar-
guably as valid and urgent in 2015 as it was in 2005. While network, storage,
and database technologies have advanced to address the collection and man-
agement of the ‘terabyte torrent’, the (automated) analysis and interpretation of
the collected data have been, and continue to be, an open challenge (Kimani
et al., 2004; Compieta et al., 2007). The “complexity of the function relating data
to description” (Herbin et al., 2012) is a critical problem beyond data collection
and management, and is a hint for why the analysis and interpretation of the
‘terabyte torrent’ largely remains an open issue.

The challenge persists also in systems for environmental monitoring. In this
dissertation, environmental monitoring systems include hardware, software, and
people, and their purpose is to provide us with data, collected using environ-
mental sensor networks (Martinez et al., 2004). The data are processed using
statistical analysis and modelling to study and hopefully advance our under-
standing of the environment (Balazinska et al., 2007; Devaraju et al., 2014). Un-
derstanding is desirable toward various ends, including research, policy, and
education.

Environmental monitoring systems continue to be designed and deployed to
monitor an increasingly large number and heterogeneous type of environmental
phenomena. To draw a few examples, sensor networks are used to monitor the
atmosphere for gas and particle concentration, often at high temporal resolution,
with resulting data serving, e.g., research and air quality information systems.
Atmospheric phenomena such as new particle formation are studied for their
impact on the climate and human health. The weather on agricultural land is
monitored to anticipate pest outbreaks and to support farmer decision making.

1
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Environmental monitoring systems also continue to increase in complexity
and spatial coverage, with modern systems, e.g. the U.S. National Ecological Ob-
servatory Network, spanning continental-scale environmental sensor networks
and other systems reaching global scale, e.g. the Global Ocean Observing System
or the Global Lake Ecological Observatory Network.

According to Cregan (2007), “[i]t is generally agreed that machines should be
doing more of the work of turning data into knowledge in a way that supports
the production of results for human benefit.” Turning data into knowledge has
been termed ‘closing the semantic gap’ and ‘sense making’, and the problem
was recognized in various domains, including robotics, context awareness, and
ambient intelligence. System architectures have been proposed to address the
problem. Methods in digital signal processing, machine learning, knowledge
representation, machine vision, and machine reasoning have been adopted in
architectures and system implementations.

Inspired by the idea of machines “doing more of the work of turning data
into knowledge,” we develop, implement, and validate on case studies a soft-
ware process for automated and near real-time acquisition of situational knowl-
edge from data, and the representation and processing of situational knowledge,
in environmental monitoring systems.

Data are for properties of environmental phenomena and are generally col-
lected from environmental sensor networks that monitor properties over time
and space. For instance, an environmental sensor network may monitor the
property of concentration of environmental phenomena such as particulate mat-
ter (PM2.5 and PM10) and gases (O3 and NO2) in a volume of ambient air and
over time.

Knowledge is about situations with phenomena as their objects, is obtained
from data, and is represented using knowledge representation languages and
technologies. Situations are structured parts of reality (Devlin, 1991). Structure is
in the relations among relevant objects of the part of reality. Situations are of the
monitored environment and are observed by environmental monitoring systems.
For instance, an episode of unhealthy exposure to ambient air is a situation.
Relevant objects include a population, particulate matter, gases, space, and time.
A population is exposed to particulate matter and gases in particular volumes
of space-time. Episodes of unhealthy exposure are observed by environmental
monitoring systems.

Computational methods in digital signal processing, data-driven modelling,
and physically-based modelling are utilized to process data and acquire situa-
tional knowledge from data. The proposed software process is implemented in
a software framework. The framework supports the development of systems for
situation assessment capable of obtaining and maintaining situation awareness
in environmental monitoring. An architecture for the software framework is pre-
sented. Building on the framework, we develop situation-aware environmental
monitoring systems for three case studies.
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The case studies are in intelligent transportation systems, atmospheric sci-
ence, and agricultural science. They discuss non-trivial situational knowledge
acquisition problems in environmental monitoring, on data acquired from envi-
ronmental sensor networks or data resulting from models.

The remaining sections in this chapter present the research question, re-
search objectives, and contributions. Chapter 2 introduces the relevant concepts,
namely environmental monitoring, situation awareness, situation theory, ontol-
ogy, and modelling. Chapter 3 presents the architecture and implementation of
the proposed software framework. Chapter 4 provides an integrated overview of
the applications we developed using the software framework. The applications
are presented in details in papers II, III, and IV. Chapter 5 discusses related
work, the strengths and limitations of the proposed approach, and future work.
Chapter 6 concludes with a summary and final remarks.

1.1 RESEARCH QUESTION

The dissertation explores the following research question. The question takes
environmental monitoring systems as the unit of analysis and suggests that it
may be possible for such systems to use a particular theory to model situations,
and a particular set of technologies to acquire and represent knowledge about
situations. The research question is phrased as follows:

Can environmental monitoring systems utilize situation theory to model ob-
served situations, and utilize ontology and related technologies to represent
situational knowledge obtained from data processed by means of computa-
tional models?

The research question is reworded as the following two claims, labelled C1
and C2. We aim at validating these claims by developing and evaluating envi-
ronmental monitoring systems for the selected case studies.

Environmental monitoring systems can utilize situation theory to model
observed situations. (C1)

Claim C1 makes two assumptions. First, it is assumed that there exist situa-
tions, i.e. structured parts of reality. Second, it is assumed that such situations
are of a monitored environment and can be observed by an environmental mon-
itoring system, i.e. a physical-socio-technical system consisting of a physical
environment and of human, hardware, and software agents. The claim then
proposes that the system can utilize situation theory (Barwise and Perry, 1981;
Devlin, 1991) to model situations.

Environmental monitoring systems can utilize ontology and related tech-
nologies to represent situational knowledge obtained from data processed by
means of computational models. (C2)
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Claim C2 makes three assumptions. First, it is assumed that knowledge
about situations can be obtained. This problem is fundamental to situation the-
ory. Second, it is assumed that it is possible to obtain situational knowledge
from data. Third, it is assumed that data can be processed by means of com-
putational models. A particular class of models are those that process data to
extract knowledge. The claim then proposes that the system can utilize ontology,
as understood in information science, and related technologies in knowledge
representation and reasoning to represent situational knowledge.

1.2 RESEARCH OBJECTIVES

Situation awareness is commonly understood as the perception, comprehension,
and projection of what is going on around us (Endsley, 1995). Over the past
two decades, the concept has found application in domains and problems where
human operators require awareness about the state of elements in certain space-
time volumes. Classical examples are applications in aviation, military, driver
assistance, marine port surveillance, airport control, emergency and rescue man-
agement. The application of situation awareness to environmental monitoring,
in particular monitoring in environmental science, is relatively uncommon—
even though citizens and researchers who consume data and information ob-
tained in environmental monitoring arguably do so because they are interested
in knowing what is going on around them, e.g. obtain air quality information to
decide whether or not to go jogging.

A first objective of this dissertation is to interpret the state of understanding
situations observed by environmental monitoring systems as situation aware-
ness, interpret the process of achieving and maintaining such understanding as
situation assessment, and leverage on existing situation awareness models in
the design of an architecture for a software framework that supports the devel-
opment of systems for situation awareness in environmental monitoring. This
objective is reflected in the following claim, labelled C3.

Environmental monitoring systems can utilize environmental sensor net-
works to perceive the properties of phenomena in situations, and utilize
computational methods to comprehend and project situations, and involved
phenomena. Such systems implement the process of situation assessment to
obtain and maintain awareness about situations of a physical environment.
(C3)

In situation theory, situations are structured parts of reality. Parts of real-
ity consist of objects. Objects stand in relations. Relations build structure. A
second objective is to model that which is observed by environmental monitor-
ing systems as structured parts of reality, i.e. situations. Objects are, generally,
environmental phenomena, including spatial and temporal locations.
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Situation theory models situation as a mathematical structured object. Situ-
ation theory thus provides a formalization of the concept of situation and infor-
mation about situations. A third objective is to utilize this mathematical object
as a model for situational knowledge objects obtained and maintained in envi-
ronmental monitoring systems.

Situational knowledge objects can be represented using ontology, and tech-
nologies such as ontology languages. Of particular interest is the situation theory
ontology (Kokar et al., 2009). This ontology provides a machine readable and in-
terpretable formalization of the concept of situation, suitable for representing
and processing situational knowledge objects in environmental monitoring sys-
tems. A forth objective is to design an ontological framework, centred around
the situation theory ontology, for the representation of knowledge about sit-
uations, including temporal and spatial locations. The ontological framework
serves in the representation of situational knowledge acquired and maintained
by environmental monitoring systems.

Situational knowledge is acquired from data processed by means of computa-
tional models. A fifth objective is to design an architecture for a software frame-
work that supports the acquisition of situational knowledge from data and the
representation of situational knowledge. The architecture is expected to build on
the ontological framework for the representation of situational knowledge, and
to extend this framework with further ontologies required by the architecture to
represent relevant raw and processed data objects. Specifically, environmental
monitoring systems need to acquire raw sensor data from environmental sen-
sor networks, represent sensor data, and curate such data using suitable data
management systems. Systems are also required to support data access inter-
faces, data processing, and the representation and curation of processed data.
A sixth objective is to propose an open source implementation for the software
framework architecture.

The acquisition, curation, access, and processing of data is functionality that
an environmental monitoring system has at least partially in common with en-
vironmental research infrastructure. A seventh objective is to extend the ENVRI
reference model (Chen et al., 2013a) for the ‘archetypical’ environmental research
infrastructure with functionality for knowledge acquisition from curated data,
and the curation, access, and processing of knowledge. An eight objective is
to ground the architecture of the proposed software framework in the extended
ENVRI reference model. This objective aligns the proposed software framework
with environmental research infrastructure. The alignment is argued to support
the following additional claim, labelled C4.

Environmental research infrastructure can support the acquisition, cura-
tion, access, and processing of (situational) knowledge. If an environmental
research infrastructure supports such functionality it is a knowledge-based
environmental research infrastructure. (C4)
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Finally, a ninth objective is to utilize the software framework implementa-
tion to develop situation-aware environmental monitoring system applications.
The applications address situational knowledge acquisition problems in intelli-
gent transportation systems, atmospheric science, and agricultural science. Their
purpose is to validate the claims C1 and C2, and to support the claims C3 and
C4. Each application is an environmental monitoring system consisting of an
observed physical environment, sensor networks and other hardware agents,
program logic and models and other software agents, and human agents, in-
cluding software engineers and scientists. Each application utilizes situation
theory to model relevant situations of the physical environment observed by the
system, and utilizes the ontological framework to represent situational knowl-
edge obtained from data processed by means of computational models. Applica-
tions may represent raw sensor data and processed data. The applications also
demonstrate situational knowledge processing, such as situational knowledge
visualization or situation projection.

1.3 CONTRIBUTIONS

State of the art environmental research infrastructures have primarily addressed
data life-cycle management, from data acquisition to data processing. The EN-
VRI reference model suggests that such infrastructures do not handle informa-
tion and knowledge obtained from processed data.

We suggest that environmental research infrastructure can address knowl-
edge life-cycle management, in particular the acquisition, curation, access, and
processing of situational knowledge. A contribution of this dissertation is the
proposal to extend the ENVRI reference model with a model for the knowledge
life-cycle in environmental research infrastructure. The result is knowledge-
based environmental research infrastructure. To the best of our knowledge, the
proposed extension to the ENVRI reference model and the resulting notion of
knowledge-based environmental research infrastructure are novel contributions.

A second contribution is the architecture of a software framework designed
for the acquisition, curation, access, and processing of environmental monitoring
data and situational knowledge. An open source implementation for the soft-
ware framework architecture is a third contribution. To the best of our knowl-
edge, the proposed approach is novel for its support of automated situational
knowledge acquisition in environmental monitoring, particularly in scientific
applications, using methods in digital signal processing, machine learning, and
knowledge representation and reasoning.

The proposed approach is evaluated and discussed for three case studies
with applications for situational knowledge acquisition and processing about (1)
road vehicles observed in data by a road-pavement vibration sensor network;
(2) atmospheric new particle formation observed in data by a differential mobil-
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ity particle sizer as well as cloud events observed in data by a present weather
sensor; and (3) disease outbreaks in agricultural crops computed using a dis-
ease pressure model and weather forecast data. The development of these case
studies with non-trivial situational knowledge acquisition problems is a fourth
contribution. The application of the proposed approach to intelligent transporta-
tion systems, atmospheric science, and agricultural science is arguably novel.





2 Concepts

We present the central concepts underlying the dissertation. Section 2.1 in-
troduces environmental monitoring. Environmental monitoring is the domain
addressed by the research question and for which we design, implement, and
evaluate software systems. The section frames the problem and motivates the
dissertation. Section 2.2 introduces situation awareness. Situation awareness is
the state which environmental monitoring systems are claimed to be capable of
obtaining and maintaining. The section draws on different models of situation
awareness. We suggest that the concept of situation awareness is useful in envi-
ronmental monitoring. We also suggest that various elements of situation aware-
ness models can guide the design of system architectures for data acquisition
and processing, as well as situational knowledge acquisition, representation, and
processing in environmental monitoring. Section 2.3 introduces situation theory.
Situation theory proposes a mathematical ontology for knowledge (information)
about situations. The theory is relevant for the modelling of the structured parts
of reality observed by environmental monitoring systems. Section 2.4 introduces
ontology, as understood in information science. Ontologies, ontology languages,
and related technologies are relevant because they support the representation
and processing of situational knowledge in environmental monitoring systems.
Finally, Section 2.5 introduces modelling and models, in particular computa-
tional models. Models, specifically empirical and physically-based models, are
relevant primarily because they enable the acquisition (or extraction) of situa-
tional knowledge from data processed in environmental monitoring systems.

2.1 ENVIRONMENTAL MONITORING

Environmental monitoring is the domain addressed by the research question and
for which we design, implement, and evaluate software systems. Meijers (1986)
defines monitoring as:

Definition 2.1.1 (Monitoring). The process of repetitive observing, for defined
purposes on one or more elements of the environment according to prearranged
schedules in space and time and using comparable methodologies for environ-
mental sensing and data collection.

Discussing modifiers used in connection with monitoring, Meijers specifies
that “environmental and ecological monitoring are concerned with the natural
environment.” Specifically, environmental monitoring focuses on physical and
chemical entities while ecological monitoring focuses on ecological entities.

9
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According to Definition 2.1.1, monitoring is the process of repetitive observ-
ing. The definition does not further specify forms of observation. Observation
may for instance be in form of a parent watching a child building a castle in a
sandbox; a scientist performing chemical analyses to estimate the concentration
of chlorophenols in soil samples; a thermometer measuring the temperature of
ambient air. In this last example, observation is made by an instrument. Instru-
mental observation is of specific interest in this work, and the instruments are
called sensing devices.

The example for a thermometer monitoring the temperature of ambient air
introduces the concept of measurement. Finkelstein (1982, p. 6) defines mea-
surement as:

Definition 2.1.2 (Measurement). The process of empirical, objective, assignment
of numbers to properties of objects or events of the real world in such a way as
to describe them.

Measurement, as defined by Finkelstein, constrains the form of observation
to the assignment of numbers to properties. The properties are of elements of
the environment and, in environmental monitoring, the properties are of phys-
ical or chemical entities. Unless stated otherwise, it is assumed here that the
process of measurement is implemented by sensing devices; that a sensing de-
vice is embedded in the environment (i.e. in situ), and measures a property (e.g.
temperature) of a phenomenon, also known as feature of interest (e.g. ambient
air); and that the numbers assigned to properties in the process of measurement
are digital and are generally referred to as sensor data or sensor observation
values.

Following the design pattern introduced by Janowicz and Compton (2010),
entities that relate sensing devices, sensor data, measured properties of features,
time and space are called observations. Janowicz and Compton classify obser-
vations as social, rather than physical, objects, i.e. as objects with setting in
communication events. A formalization of the concept is discussed in Chapter
2.4. The notion of measurement is thus different from observation. Most im-
portantly, measurement is a process while observation is an object. Moreover,
observations are not merely the numbers assigned to properties in the process of
measurement. Rather, observations are objects with a complex relational struc-
ture.

2.1.1 Sensor Networks

Following Definition 2.1.1, monitoring is for one or more elements of the en-
vironment and extends in space and time. A single sensing device typically
monitors (a specific property of) a particular element in time. To monitor sev-
eral properties of various elements in both space and time, environmental sensor
networks can be embedded in the environment.
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Environmental sensor networks are specialized sensor networks (Akyildiz
et al., 2002; Chong and Kumar, 2003) tailored for environmental applications
(Hart and Martinez, 2006). Hart and Martinez provide a brief account of the
evolution of environmental sensor networks from passive logging systems that
require manual data downloading to active sensor networks that communicate
data automatically, increasingly using wireless technology.

Hart and Martinez (2006) discuss a generic architecture for environmental
sensor networks. The architecture consists of an array of sensor nodes (i.e. de-
vices containing sensors) that gather data autonomously, and a communication
network through which data flows via one or more base stations to a server,
called sensor network server. In this generic architecture, the role of base sta-
tions is to support a group of sensor nodes and to forward the group’s data. The
sensor network server is the sink for data and its role is to make the data avail-
able, on the Internet and for visualization, integration, and analysis (Martinez
et al., 2004; Hart and Martinez, 2006). The authors underscore that, as we move
from sensor nodes to the sensor network server, the mobility of the components
decreases whereas the computational power, data storage, and power availability
increase.

Having the potential to advance our understanding of the natural world,
including the possibility of revealing so far unobserved phenomena, environ-
mental sensor networks have been argued to be invaluable research tools for
earth and environmental science (Porter et al., 2005; Hart and Martinez, 2006;
Collins et al., 2006; Lovett et al., 2007; Rundel et al., 2009; Benson et al., 2010).
Examples for environmental sensor networks, national research programs that
maintain such networks, and international organizations that form ‘networks of
networks’ are abundant. Hart and Martinez review several dozen environmen-
tal sensor networks, which they classify in three categories—large scale single
function, localised multifunction, and biosensor networks—plus the category
of heterogeneous sensor networks, which aim to integrate data of various net-
work types. Some well-known examples include the US Long Term Ecological
Research Program (Michener et al., 2011, LTER), the US National Ecological Ob-
servatory Network (Keller et al., 2008, NEON), and the Global Lake Ecological
Observatory Network (Kratz et al., 2006, GLEON).

Examples for environmental monitoring programs, including programs that
utilize environmental sensor networks, are abundant also in Finland. To name a
few, the Finnish Environment Institute (SYKE) maintains monitoring programs
related to the Baltic Sea, inland waters, and water resource management as well
as programs related to ecosystem services and biodiversity. The Finnish Meteo-
rological Institute (FMI) operates over 400 observation stations around Finland
to monitor, among other phenomena, weather, ambient air, and radioactivity.
The Natural Resources Institute Finland (LUKE) operates networked weather
stations at selected farms for research in precision agriculture (Thessler et al.,
2011).
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Since 2005, the Puijo tower in Kuopio, Finland, serves as platform for a
semi-urban measurement station to observe “several meteorological parameters,
aerosol and cloud droplet size distribution, aerosol optical properties and trace
gas concentrations” (Leskinen et al., 2009). The data obtained in monitoring
serves research in cloud formation, aerosol-cloud interaction, and atmospheric
aerosol particle formation. The measurement station at Puijo is part of the
Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) research pro-
gram. SMEAR infrastructure implements “continuous, comprehensive measure-
ments of fluxes, storages and concentrations in the land ecosystem-atmosphere
continuum” (Hari and Kulmala, 2005). SMEAR aims at understanding the cou-
pling and feedback between the atmosphere, vegetation and soil in order to
“provide more accurate projections of future atmospheric composition” (Hari
and Kulmala, 2005).

Within the Measurement, Monitoring and Environmental Efficiency Assess-
ment (MMEA) research program, Finland has recently also invested considerable
resources to develop new sensing technologies, a cloud-based software platform
for data integration and processing, and applications and services that utilise
the platform. Challenges faced by the MMEA program include the design and
implementation of a software platform that supports the connection and inte-
gration of observation and model (streamed) data from potentially hundreds of
sources, ranging from sensing devices to web services; the processing of such
data within the platform to support, e.g., quality control or complex event de-
tection; and the (streamed) distribution of integrated processed data to client
applications.

Environmental monitoring can be a source of large amounts of heteroge-
neous data. This is self-evident for monitoring that involves large-scale networks
with heterogeneous sensing devices. According to Michener et al. (2011), within
the US LTER Network data volumes in the range of 10s to 100s gigabytes are ac-
quired manually and automatically on a weekly to annual basis. Battams (2014)
reports that the Solar Dynamics Observatory “returns in excess of 1 terabyte of
data daily.” The SMEAR II station in Hyytiälä, Finland, generates approximately
1 gigabyte of data per day (personal communication). Monitoring using localised
sensor networks can lead to large amounts of, possibly heterogeneous, data, too.
In monitoring the micro climate in the canopy of a single coastal redwood over
44 days using a wireless sensor network consisting of 33 devices deployed into
the tree, Tolle et al. (2005) underscore that the upper bound data yield is 1.7 mil-
lion data points. Benson et al. (2010) note that a single instrumented lake buoy
can generate megabytes of data per day, and a flux tower exceeds these volumes.
The heterogeneity of data is largely a consequence of operating diverse sensing
device types and systems, e.g. temperature and humidity sensors, automated
weather stations, eddy-covariance flux towers, radar. Data of such systems are
encoded, formatted, and accessed in heterogeneous ways. Combined manual
and automatic measurement also increases heterogeneity.
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2.1.2 Challenges

The heterogeneous, typically voluminous and possibly real-time streamed, data
in environmental monitoring continue to pose challenges to data organization
and interpretation (Collins et al., 2006; Rundel et al., 2009; Nittel, 2009; Benson
et al., 2010; Michener and Jones, 2012). These challenges point to open issues
in environmental monitoring, in particular monitoring based on environmental
sensor networks.

In some environmental monitoring programs, such as LTER and NEON, data
acquisition can occur via on-site manual sampling, e.g. monitoring plant de-
velopment or collecting insects; in laboratories, e.g. monitoring chemical con-
centrations in soils; and automatically via environmental sensor networks, e.g.
monitoring atmospheric properties (Michener et al., 2011). In manual data ac-
quisition, paper data sheets and tape recorders are common and are examples
for techniques that require subsequent data entry (Michener et al., 2011). In con-
trast, with environmental sensor networks data acquisition can be automated.
Different techniques require different approaches to data acquisition. For in-
stance, for large data volumes automating quality assurance/quality control is
essential (Rundel et al., 2009). The acquired data are thus not just voluminous
and heterogeneous but data acquisition may rely on fundamentally different
processes.

Although widely utilized to organize environmental monitoring data, tra-
ditional relational database management systems have important shortcomings
in environmental monitoring (Carney et al., 2002; Madden and Franklin, 2002).
Sensor network characteristics, such as limited power and computational re-
sources, have motivated novel strategies for data acquisition (Madden et al.,
2003). Furthermore, environmental monitoring data are rarely updated (Mich-
ener et al., 2011) and continuous data streams require operators not supported
by traditional relational database management systems, such as windowed op-
erators (Carney et al., 2002). Resolving the syntactic and semantic heterogeneity
of environmental monitoring data is a further challenge in data organization
(Horsburgh et al., 2009).

Beyond organization, the interpretation of environmental monitoring data
is another important challenge. The value of data is arguably in the knowl-
edge about observed environmental phenomena that can be obtained from data.
Thus, the organization of environmental monitoring data is merely an interme-
diate step that serves data interpretation. The result of data interpretation is in-
formation, from which knowledge is learned (Aamodt and Nygård, 1995). Data
interpretation poses a range of additional questions. Is it performed manually
or can it be done automatically? What are suitable methods? How involved is
the process? What information do we obtain from data interpretation, and how
is information and knowledge represented?
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When aerosol scientists use data visualization techniques to detect at which
days atmospheric new particle formation occurs, classify the events according
to a classification scheme, and characterize the events for their attributes such
as event start and end times (Hamed et al., 2007), unless represented explicitly
the obtained knowledge remains implicit in the data. Aerosol scientists present
their results and conclusions in articles, in natural language text using tables and
figures. In such forms, information and knowledge is unfortunately hardly ac-
cessible to computer systems. Furthermore, the knowledge obtained from data
is generally summarized—condensed into, and presented as, summary statistics.
Claim C2 suggests that computer systems can represent knowledge about situa-
tions and involved environmental phenomena, such as atmospheric new particle
formation, obtained from monitoring data explicitly and formally, using ontolo-
gies, ontology languages, and related technologies (introduced in Section 2.4).
Furthermore, computer systems can automate the extraction and the explicit,
formal, representation of knowledge—and, therefore, automate the interpreta-
tion of environmental monitoring data.

Knowledge about the monitored environment that can be obtained from en-
vironmental sensor network data is diverse. It is thus useful to identify a uni-
fying abstraction for such knowledge. Claim C1 suggests that the concept of
situation is a suitable candidate for such a unifying abstraction in environmental
monitoring. In this dissertation, knowledge is, therefore, generally situational
knowledge, and monitored environmental phenomena are objects in situations.

Section 2.3 introduces situation theory and its formal definition of situation.
The following section first introduces situation awareness and, in particular, two
models of situation awareness that have been proposed in the literature. These
models can inspire the design of system architectures for data acquisition and
processing as well as situational knowledge acquisition, representation, and pro-
cessing in environmental monitoring.

2.2 SITUATION AWARENESS

Situation awareness has been said to be “knowing what is going on around you”
(Endsley, 2000). Knowing what is going on is arguably often the motivation at
the base of operating an environmental sensor network. Such networks support
knowing what is going on in observed environments. Endsley (1995) defines
situation awareness as:

Definition 2.2.1 (Situation Awareness). The perception of the elements in the
environment within a volume of time and space, the comprehension of their
meaning, and the projection of their status in the near future.

Situation awareness is a state of knowledge, and Endsley explicitly distin-
guishes situation awareness from situation assessment, i.e. the state from the
processes used to achieve, acquire, or maintain the state.
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Definition 2.2.1 consists of three levels, underscored by the three keywords
perception, comprehension, and projection. Accordingly, Endsley’s model is
called the three level model. The first level is concerned with perceiving the
“status, attributes, and dynamics of relevant elements in the environment” (End-
sley, 1995). Of interest to perception are the relevant characteristics of elements
located in a volume bounded by time and space. The second level is concerned
with understanding the “significance of those elements in light of pertinent op-
erator goals” (Endsley, 1995). At the first level, perception of relevant elements
results into important information (Endsley, 2000). At the second level, infor-
mation is integrated and interpreted in order to determine their relevance to
operator goals (Endsley, 2000). Operator and operator goals are key components
of the model in that the operator is the individual, holder of situation awareness,
and awareness is “fundamentally linked with [an individual’s] goals” (Endsley,
1995). It is operator goals that specify which elements in the environment, and
which element characteristics, are relevant. The third level is concerned with
projecting “the future actions of the elements in the environment” (Endsley,
1995). Projection supports the operator in deciding how to respond to future
actions of the elements such that goals can be met.

In Endsley’s model, the individual, i.e. the human operator or expert, is the
unit of analysis (Stanton et al., 2010). The model does provide for the possibility
of technical systems to mediate between the environment and the individual,
e.g. as implementers of perception. However, holders of situation awareness are
individuals, and Endsley has been critical of automation in situation awareness
(Endsley, 1996).

The three level model has been popular over decades. However, there exist
alternative models of situation awareness that address what have been argued
to be important limitations of the three level model. One such alternative, pre-
sented next, is of particular interest here.

2.2.1 Alternative Model

Discussing three viewpoints of situation awareness—the psychological, the en-
gineering, and the systems ergonomics—Stanton et al. (2010) argue that situ-
ation awareness in Endsley’s three level model is an individual psychological
phenomenon of human information processing. Hence, the model follows the
psychological approach to situation awareness. Stanton et al. and Salmon et al.
(2007) have criticized the psychological approach and the three level model, in
particular. Stanton et al. contend that the three level model inadequately ex-
plains “behaviour outside the unit of analysis.” Specifically, the authors argue
that the three level model is ill-suited for describing team behaviour, and situa-
tion awareness with teams as the unit of analysis, rather than individuals. The
critique is valid also if socio-technical systems are the unit of analysis in situa-
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tion awareness. Though Endsley agrees that there is a role for technical systems,
the three level model seems to exclude the possibility for technical systems to be
agents in situation awareness and part of the unit of analysis.

Stanton et al. (2006) propose a model for distributed situation awareness
that follows the systems ergonomics approach to situation awareness, and has
socio-technical systems as the unit of analysis. Such systems consist of both
human and non-human agents. In their model, individual agents may have their
own awareness of a situation, hold a particular view and associated knowledge,
which can be different among different agents. It is the socio-technical system
as a whole that holds all relevant knowledge, and has thus its own situation
awareness.

The Stanton et al. model for distributed situation awareness with socio-
technical systems as the unit of analysis is interesting for situation awareness in
environmental monitoring. Environmental monitoring systems can arguably be
understood as physical-socio-technical systems. System components include the
monitored environment, human agents, and non-human agents. For instance,
the coastal redwood, its canopy, and the surrounding micro climate studied by
Tolle et al. (2005) is the monitored environment and the physical subsystem of
the environmental monitoring system. The wireless sensor network with its 33
devices deployed into the tree are non-human agents and part of the technical
subsystem. Computers and software are also non-human agents and thus parts
of the technical subsystem. Finally, experts who conduct the study, analyse the
data and publish the results are human agents and part of the social subsystem.

Agents communicate and have their own goals and views on situations. For
instance, the goal of Vaisala HUMICAP© humidity and temperature probes op-
erated by LUKE at farms in Finland is to measure two properties of ambient
air at particular locations over time. Their view is on the signal obtained in
measurement of the properties. They may convert the signal into digital data
and communicate data over networks to software systems, e.g. a server with a
database system. The goal of a database system is to manage data, and its view is
on integrated data for the signals obtained in measurement of various properties,
features, and locations. The database system communicates data to a human ex-
pert, e.g. in visualizations. The goal of a human expert is to interpret integrated
data, and her view is on a particular phenomenon under study. She concludes
that the weather during the growing season was too hot and dry, which neg-
atively affected agricultural production. Another human expert may interpret
the same data with view on a different phenomenon, e.g. crop pathogens, to
conclude that pathogens respond differently to heat and drought. A human
non-expert in agricultural science could interpret the data and conclude that the
summer was ideal for sauna and swimming at a nearby lake.
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2.2.2 Remarks

We can discuss this example scenario for ambient air monitoring to highlight
some of the tenets of the distributed situation awareness model. First, both hu-
man and non-human agents hold some level of situation awareness, or at least
contextually relevant information. Second, the different agents have different
views on a volume of time and space, a structured part of reality. Third, with a
shared goal, e.g. to study the effects of temperature and humidity on farming,
the situation awareness of the two human experts can overlap. Having different
goals, their situation awareness does however not overlap with the awareness
held by the human non-expert interested in sauna and swimming. Fourth, the
relationship between agents is held together by their level of situation awareness
and goals, e.g. to study the effects of weather parameters on farming. Thus,
situation awareness holds the loosely coupled environmental monitoring system
together. The distributed situation awareness model predicts that, as a complex
problem-solving system, an environmental monitoring system has its own situa-
tion awareness which cannot be accounted for by individual situation awareness
(Stanton et al., 2006). With the distributed situation awareness model, Stanton
et al. suggest a systems approach to situation awareness and clearly depart from
the notion that situation awareness can only reside in the mind of a person.
However, in their presentation of the model the authors inherit Endsley’s three
levels—perception, comprehension, and projection—with the difference that in
distributed situation awareness non-human agents may participate in all three
levels.

The hierarchical structure of the three level model is arguably a useful ab-
straction that can inspire the architecture of software systems for situation aware-
ness in environmental monitoring. Furthermore, Endsley’s distinction between
situation assessment and situation awareness is also useful for such systems.
This is perhaps unsurprising, given that the three level model is grounded in in-
formation processing theory (Salmon et al., 2007). Roughly speaking, a software
system for situation awareness in environmental monitoring needs to acquire
and process data obtained in monitoring to perceive relevant elements in the
environment; it needs to explicitly represent and integrate information about
relevant elements to comprehend their meaning in regard to goals; and it needs
to manipulate integrated information to project the future state of relevant el-
ements. Processes implemented by software systems to obtain and maintain
situation awareness correspond to situation assessment. As a complex problem-
solving system, environmental monitoring systems can be argued to hold their
own situation awareness.

Human agents such as scientists are fundamental components of environ-
mental monitoring systems. It is arguably human agents who, traditionally,
achieve and maintain situation awareness in environmental monitoring. We ex-
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plore how non-human agents of environmental monitoring systems, specifically
software systems, can autonomously obtain and maintain situation awareness,
and how situation awareness held individually can be shared among the social
and technical components of an environmental monitoring system. To maintain
and share situation awareness, it is necessary for software systems to implement
situational knowledge representation.

2.3 SITUATION THEORY

This section introduces situation theory and its formal definition of situation.
The concept is at the base of a knowledge object that serves as unifying abstrac-
tion for knowledge in situation-aware environmental monitoring systems.

Situation theory was developed by Jon Barwise and John Perry in the 1980s.
Devlin (2004) recounts its development between 1980 and the early 1990s, as
published by Jon Barwise, in part with John Perry. The theory has its founda-
tions in situation semantics, a mathematically based theory of natural language
semantics introduced by Jon Barwise in 1980 and developed by Barwise and
John Perry. According to Devlin (2006), during the course of the 1980s, situation
semantics became the “analysis of semantic issues of natural language based on
situation theory,” and situation theory served as the mathematical ontology of
situation semantics. Devlin quotes Barwise and Perry (1980) who wrote:

The world consists not just of objects, or of objects, properties and relations,
but of objects having properties and standing in relations to one another.
And there are parts of the world, clearly recognized (although not precisely
individuated) in common sense and human language. These parts of the
world are called situations.

In his book entitled Logic and Information, Devlin (1991) informally defines
situation as:

Definition 2.3.1 (Situation, informal). A situation is a structured part of reality
that [an agent] somehow manages to [individuate].

Barwise and Perry’s emphasis on the relations among world objects is ar-
guably reflected in Devlin qualifying parts as being structured. Situations are
“real, actual parts of the world” (Devlin, 2004, 2006). They are “basic and ubiq-
uitous [and humans] are always in some situation or other” (Barwise and Perry,
1981). Situations are recognized, individuated, and Devlin (1991) attributes
recognition to agents with “sophisticated cognitive abilities.” As noted by Devlin
(2006), the word parts is significant because a situation is limited to the objects
at a location, i.e. a connected region of space-time (Barwise and Perry, 1981),
and the information that an agent can obtain about a situation is limited. Devlin
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(2006) highlights that situation semantics is an information based theory, as it
studies the information exchanged when agents “in limited parts of the world
[...] talk about [...] other limited parts of the world.”

Example 2.3.1 (Situation). The following scene is an example situation. A mother
and her 5-year old boy are at a playground. The boy is building a castle in
a sandbox. The mother is sitting on a bench and she watches her son while
holding a book in her hands. I, the agent, am walking by and observe the scene.
Clearly, the scene is a part of reality and the agent manages to individuate the
situation by observation but he holds only a limited part of the information
that is theoretically available. The part consists of objects, e.g. the boy and the
book, having properties, e.g. the age of the boy. Objects stand in relation to one
another, e.g. the parent is the mother of the boy and the castle is made of sand.
Thus, the part is structured. The objects are located in space-time. The agent is
using language to convey information he holds about the situation.

2.3.1 Main Primitives

This section briefly presents some of the main primitives of the mathematical
ontology of situation theory, following the notation by Devlin (1991). The math-
ematical ontology provides us with a formal definition of situation. The illus-
trative examples are drawn from the domain of crop disease pressure situation
modelling.

Infon As described above, situations are the limited parts of the world about
which agents exchange information. It is informational items, called infons, that
form such information.

Definition 2.3.2 (Infon). An infon σ is formally defined as the (m + 2)-tuple

� R, a1, . . . , am, i�
where R is an n-place relation; a1, . . . , am (m ≤ n) are objects appropriate for

the argument places i1, . . . , im of R; and i = 0, 1 is the polarity of the infon, i.e. its
truth value. The objects a1, . . . , am represent the basic informational unit of the
infon. They stand in relation R if i = 1 and do not stand in relation R if i = 0.
The infon is unsaturated if m < n and saturated if m = n. An infon of a situation
that actually occurred in the world is called a fact.

Example 2.3.2 (Infon). The outbreak-relation infon

� outbreak, Pyrenophora teres, Barley, August 2014, Pelto, 1�
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is the informational item for an outbreak of Pyrenophora teres (the pathogen)
in barley (the crop) occurred during the entire month of August 2014 (the tem-
poral location) at the Pelto agricultural parcel (the spatial location). The ob-
jects Pyrenophora teres, Barley, August 2014, and Pelto represent the infor-
mational unit of the infon. They stand in the outbreak relation. As the outbreak
did occur in the world, the infon is called a fact.

Situation Situations are members of the mathematical ontology of situation
theory, just like infons.

Definition 2.3.3 (Situation, formal). Let s be a situation. Given an infon σ, the
relation

s |= σ

is read s supports σ, and expresses that the infon σ is made factual by the
situation s. In other words, σ is an item of information that is true of s. A
situation s |= Σ supports a set of infons Σ if s supports every infon σ ∈ Σ.

Minimality Condition The relation R is an abstract object. Among other ele-
ments, its structure holds a collection of minimality conditions. Minimality con-
ditions “determine which particular groups of argument roles need to be filled
in order to produce an infon.” An infon that satisfies the minimality conditions
is a well-defined infon.

Example 2.3.3 (Well-defined infon). In our example, the fact that an agricultural
parcel covers a single crop group could motivate a minimality condition that
specifies that a well-defined infon with outbreak relation must have objects for
pathogen, temporal location, and spatial location. An object for the crop is thus
not required. The infon

� outbreak, Pyrenophora teres, August 2014, Pelto, 1�
satisfies the minimality conditions of the outbreak relation. The infon is thus

well-defined.

Argument Role In addition to a collection of minimality conditions, the struc-
ture of the abstract object R also holds a fixed collection of argument roles of R.
Each argument role has an associated type that determines “the type of object
that may legitimately fill that argument role.” The expression x : T is used to
state that the object x is of type T. Situation theory provides for various basic
types, e.g. the type SIT for situations and the type RELn for n-place relations.
The expression role ; a states that a particular object a fills the argument role
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role. An infon with argument roles filled with objects of appropriate type is a
well-formed infon.

Example 2.3.4 (Argument roles). For our outbreak relation, the fixed collection of
argument roles can be specified as

〈outbreak | pathogen, crop, duration, parcel〉
where pathogen, crop, duration, and parcel are the argument roles of the out-

break relation. We may specify argument role type as

〈outbreak | pathogen:P, crop:C, duration:TIM, parcel:LOC〉
where P is the type of all pathogens, C is the type of all crops, TIM is the

type of all temporal locations, and LOC is the type of all spatial locations. The
infon in Example 2.3.3 may also be written with the following, or any other
rearrangement of, filled argument roles

� outbreak, pathogen ; Pyrenophora teres, crop ; Barley,

duration ; August 2014, parcel ; Pelto, 1�

where Pyrenophora teres : P, Barley : C, August 2014 : TIM, and Pelto :
LOC. The infon is saturated.

Parameter In addition to objects of appropriate type, an argument role can also
be filled with a parameter that makes reference to arbitrary objects of appropriate
type. The notation ȧ is used to denote parameters and contrast the parameter
from the object a. As parameters make reference to arbitrary objects of a given
type, a mechanism, called anchor, is introduced to assign objects to parameters.
The specific character used for a parameter can reflect the type of anchored
objects. For instance, the parameters ṫ and l̇ generally anchor objects of type
TIM and LOC, respectively.

Example 2.3.5 (Parameter). The outbreak-relation infon

� outbreak, ṗ, August 2014, Pelto, 1�
with filled argument roles and different arrangement written as

� outbreak, duration ; August 2014, pathogen ; ṗ, parcel ; Pelto, 1�

includes the parameter ṗ. It stands for an arbitrary pathogen. The parameter
ṗ may anchor an object p : P, such as Pyrenophora teres : P.
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In addition to the parameter for arbitrary pathogens, the outbreak-relation
infon

� outbreak, ṗ, ṫ, l̇, 1�
includes parameters ṫ and l̇ to make reference to arbitrary objects of type

temporal location and spatial location, respectively.

The presented primitives of the mathematical ontology of situation theory
provide us with an understanding for how information about situations is mod-
elled in situation theory. This section introduced only a fraction of situation
theory as it is presented in full length by Devlin (1991), and summarized by
Devlin (2006). However, the presentation covers the aspects required in this
dissertation. Indeed, of primary interest are the relation between situation and
infon, the infon itself, parameters, and the anchor mechanism.

2.3.2 Situation in Environmental Monitoring

The notion of situation, as defined in situation theory, is arguably of interest to
the modelling of information about environments monitored by systems. As-
sume the environmental monitoring system to be the agent. The monitored
environment is a part of reality. It contains objects, in particular environmental
phenomena. The objects stand in relation to one another. The part of reality is
thus structured. The agent has a narrow view on reality, largely delimited by the
scope of monitoring which determines, e.g., what precisely is monitored where
and when, and for what purpose. The scope of monitoring also practically limits
the information such agent has about the monitored environment.

Example 2.3.6. Assume the agent to be an environmental monitoring system
for the prediction of crop disease pressure in agriculture. Concretely, the sys-
tem includes an environmental sensor network that monitors certain weather
parameters, such as ambient air temperature, and computes the outbreak risk
for certain pathogens in the crop of an agricultural parcel, located where the
weather parameters are observed by the environmental sensor network. The
agricultural parcel and the local weather form the individuated structured part
of reality. The view on reality is spatially delimited by the polygon boundary
of the agricultural parcel and a limited volume of the atmosphere. The goal
of monitoring determines which weather parameters are monitored as well as
what information the agent obtains and maintains about the objects and rela-
tions among them. Objects include the crop and pathogens, such as barley and
Pyrenophora teres, respectively. They may stand in relation as a pathogen can, for
instance, affect a crop.
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We suggest that environmental monitoring systems observe situations, and
that the concept can serve as unifying abstraction for knowledge about the moni-
tored environment that such agents can obtain, maintain, and share. An environ-
mental monitoring system is different from, and should not be confused with,
environmental sensor networks, which typically observe the signal of properties
of environmental phenomena in space-time, rather than situations.

The following section introduces the concept of ontology, as understood in in-
formation science. Ontology and related technologies enable the explicit, formal,
representation of situational knowledge in environmental monitoring systems.
In systems, situation is thus a knowledge object. The section also introduces the
core ontologies and related technologies adopted in this work.

2.4 ONTOLOGY

Borrowed from philosophy, the term ontology has recently received considerable
attention in various computational fields of study (Gruber, 1993; Guarino and
Giaretta, 1995; Studer et al., 1998). Gruber (1993) defines ontology as:

Definition 2.4.1 (Ontology, Gruber). Ontology is an explicit specification of a
conceptualization.

For two decades, this definition, and variants thereof, has been prevalent in
the literature. Of particular focus in this section is the analysis of Gruber’s defi-
nition developed by Guarino et al. (2009). The following paragraphs first briefly
summarize Guarino et al.’s analysis of the notions of conceptualization and ex-
plicit specification, and then discuss definitions that extend Gruber’s definition
before presenting some alternative definitions.

2.4.1 Definition Analysis

We briefly discuss the notions of conceptualization and explicit specification.

Conceptualization The notion of conceptualization dates back to Genesereth
and Nilsson (1987) who formally define conceptualization as:

Definition 2.4.2 (Conceptualization, Genesereth and Nilsson). A conceptualiza-
tion is the triple consisting of a universe of discourse, a functional basis set for
that universe of discourse, and a relational basis set.

Genesereth and Nilsson explicate that a universe of discourse is the “set of
objects about which knowledge is being expressed.” Furthermore, the authors
state that “an object can be anything about which we want to say something.”
Functions and relations are two kinds of “interrelationship among the objects in
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a universe of discourse.” A functional (relational) basis set includes the func-
tions (relations) that are “emphasized in a conceptualization,” of all those that
are possible. Importantly, the entities of a conceptualization according to Gene-
sereth and Nilsson are extensional. Therefore, the objects of a conceptualization
are enumerated, and interrelationships are sets of objects. It follows that a con-
ceptualization describes a particular state of affairs, a particular world (Guarino
and Giaretta, 1995).

Guarino et al. (2009) reformulates and simplifies Genesereth and Nilsson’s
mathematical representation of a conceptualization as:

Definition 2.4.3 (Conceptualization, Guarino et al.). A conceptualization is the
tuple (D, R) consisting of a universe of discourse D and a set R of relations on
D.

The tuple is an extensional relational structure and is equivalent to Gene-
sereth and Nilsson’s notion of conceptualization. The universe of discourse D is
a set of objects and R is a set of extensional relations on D (i.e. sets of ordered
tuples of elements of D). Thus, both Genesereth and Nilsson’s conceptualiza-
tion and Guarino et al.’s extensional relational structure reflect a specific state of
affairs.

Example 2.4.1 (Extensional relational structure). Farmers grow cereal crops at
agricultural parcels. The crops may be affected by fungal pathogens. Our uni-
verse of discourse D contains the parcels, crops, pathogens, each identified by a
code. The set R contains the unary relations Parcel, Crop, and Pathogen, as well
as the binary relations grown-at and affected-by. The corresponding extensional
relational structure (D, R) is:

• D = {ap01, ap02, . . . , cc01, . . . , fp01, . . . }

• R = {Parcel, Crop, Pathogen, grown-at, affected-by}

Relation extensions reflect a specific state of affairs, a specific world. The
universe D consists of all parcels, crops, and pathogens. The binary relations
grown-at and affected-by are sets of tuples. In our world, the crop cc01 is grown-
at the parcel ap02 and is affected by the pathogen fp01.

• Parcel ∪ Crop ∪ Pathogen = D

• Parcel = {ap01, ap02, . . . }

• Crop = {cc01, . . . }

• Pathogen = {fp01, . . . }

• grown-at = {. . . , (cc01, ap02), . . . }

• affected-by = {. . . , (cc01, fp01), . . . }



ONTOLOGY 25

Guarino et al. highlight that the extensional notion of conceptualization is
problematic in a definition for ontology, “mainly because it depends too much on
a specific state of the world.” Arguably, adding a tuple to an extensional relation
of a conceptualization should not result into a different conceptualization. As
Guarino et al. argue, a conceptualization “is about concepts” and “should not
change when the world changes.”

Based on this observation, Guarino et al. propose the intensional relational
structure (D,W ,R) as mathematical representation of a conceptualization. W
is a set of possible worlds and R is a set of intensional relations on < D,W >.
An intensional relation of arity n on < D,W > is a total function from the setW
into the set of all n-ary extensional relations on D. In contrast to the extensional
relational structure, the intensional relational structure allows for different state
of affairs (worlds) to be described by a single conceptualization. As Guarino
et al. argue, it is thus more adequate for a definition of ontology.

Example 2.4.2 (Intensional relational structure). We demonstrate how the inten-
sional relational structure supports the description of different state of affairs
using our example for agricultural parcels at which farmers grow cereal crops,
which may be affected by fungal pathogens. The intensional relational structure
(D,W ,R) is:

• D = {ap01, ap02, . . . , cc01, . . . , fp01, . . . }

• W = {w1, w2, . . . }

• R = {Parcel1, Crop1, Pathogen1, grown-at2, affected-by2}

The intensional relations may thus map to different extensions in different
worlds, as shown for the two binary relations:

• for all worlds w inW : Parcel1(w) ∪ Crop1(w) ∪ Pathogen1(w) = D

• for all worlds w inW : Parcel1(w) = {ap01, ap02, . . . }

• for all worlds w inW : Crop1(w) = {cc01, . . . }

• for all worlds w inW : Pathogen1(w) = {fp01, . . . }

• grown-at2(w1) = {. . . , (cc01, ap02), . . . }

• grown-at2(w2) = {. . . , (cc02, ap02), . . . }

• grown-at2(w3) = . . .

• affected-by2(w1) = {. . . , (cc01, fp01), . . . }

• affected-by2(w2) = . . .
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Explicit Specification Having discussed the notion of conceptualization, we
now return to Gruber’s definition of ontology. The explicit specification of a con-
ceptualization rests on a language, one that enables reference to the elements of
a conceptualization—in other words, one that enables us to talk about a concep-
tualization.

Of particular interest are logical languages, with vocabulary consisting of
a set of constant and predicate symbols. The symbols in the vocabulary of a
language obtain meaning through interpretations. Each symbol has both ex-
tensional and intensional interpretations. Thus, explicit specification can occur
extensionally or intensionally.

However, extensional specification is impossible in most cases, and otherwise
impractical because it requires listing the extensions of every relation for all
possible worlds. More effective is intensional specification, which occurs by
means of axioms that constrain the possible interpretations for the symbols.

An ontology is a set of axioms. Guarino et al. (2009) underscore that an on-
tology is, strictly speaking, an approximate specification of a conceptualization, in
other words a partial account of a conceptualization. This is because the degree
of specification depends on various factors, e.g. the purpose of the specification
(Guarino and Giaretta, 1995).

2.4.2 Alternative Definitions

Building on Gruber’s definition, Borst (1997) defines ontology as a “formal spec-
ification of a shared conceptualization.” In this definition, the specification must
be formal, i.e. machine readable (Guarino et al., 2009). Formal languages such as
logical languages meet this requirement, while natural language does not. Fur-
thermore, the conceptualization must be shared, i.e. it must reflect a consensus
among ontology stakeholders. Indeed, specifications of a conceptualization that
lack consensus are arguably hard to reuse and are thus considered useless (Borst,
1997; Guarino et al., 2009). Studer et al. (1998) merge these definitions and define
ontology as a “formal, explicit specification of a shared conceptualization.”

Alternative definitions of ontology have been proposed in the literature by
various authors. According to Neches et al. (1991) “an ontology defines the basic
terms and relations comprising the vocabulary of a topic area as well as the rules
for combining terms and relations to define extensions to the vocabulary.” Ac-
cording to Swartout et al. (1996), an ontology is “a hierarchically structured set
of terms for describing a domain that can be used as a skeletal foundation for a
knowledge base.” Thus, Swartout et al. explicate, “an ontology provides a skele-
tal structure for a knowledge base.” According to Hendler (2001), an ontology is
“a set of knowledge terms, including the vocabulary, the semantic interconnec-
tions, and some simple rules of inference and logic for some particular topic.”
Hendler notes that this definition reflects (or reflected, at the time of his writing)
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how the term ontology is used within the semantic web community. Berners-Lee
et al. (2001), and co-author Hendler, note that to artificial intelligence and web
researchers “an ontology is a document or file that formally defines the relations
among terms.”

Some elements of these alternative definitions—such as term, vocabulary, in-
terconnection, and domain—are reminiscent of Gruber’s definition, while others
are new. Swartout et al. introduce the notion of knowledge base as an entity
distinct from ontology. Swartout and Tate (1999) clarify that a knowledge base
uses the set of terms provided by an ontology “to represent what is true about
some real or hypothetical world.” By introducing the notion of rule, Hendler’s
definition acquires reasoning as additional characteristic.

2.4.3 Semantic Web Technologies

The recent popularity of ontology in information science can arguably be at-
tributed to the activities within the semantic web initiative of the World Wide
Web Consortium (W3C). Berners-Lee et al. (2001) had already considered ontol-
ogy to be a basic component of the semantic web, and envisioned that ontolo-
gies would enable computers to “manipulate [...] terms much more effectively
in ways that are useful and meaningful to the human user.”

The idea underlying the semantic web, namely to evolve “objects from be-
ing principally human-readable documents to contain more machine-oriented
semantic information” (Berners-Lee et al., 1994), had already been formulated in
the early days of the web. The ideas gained momentum with the web’s growth
rate during the first decade of its existence. The amount of data made it “increas-
ingly difficult to locate, organize, and integrate the available information” and
increasingly obvious that computers needed to do better at these tasks (Heflin
and Hendler, 2001). As computers had not succeeded in processing natural lan-
guage, researchers sought to make the web more understandable to computers
by giving data well-defined meaning (Berners-Lee et al., 2001).

Reaching what has been called the web’s ‘full potential’ required, however,
the development of several new technologies, including standards and tools.
Specifically, the standardization of the syntactic form of data achieved with the
Extensible Markup Language (Bray et al., 1998, XML) was to be attained also for
the semantic content of data (Decker et al., 2000).

The following paragraphs briefly present the standards, more accurately
W3C recommendations, that are of particular interest in this dissertation, namely
the Resource Description Framework, RDF Schema, the Web Ontology Lan-
guage, and the SPARQL Protocol and RDF Query Language.

Resource Description Framework (RDF) The Resource Description Frame-
work (Lassila and Swick, 1999; Klyne and Carroll, 2004; Cyganiak et al., 2014b)
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is a model of metadata, specifically a model of data about web resources (Las-
sila and Swick, 1999). Following Lassila and Swick (1999), the model consists
of three object types, namely resources, properties, and statements. A resource
is primarily a web resource, such as a web page or an image linked to a web
page. However, resources do not need to be accessible on the web. A resource
may thus be a physical object, such as a sensing device, or an abstract con-
cept. Generally, any entity that can be named by a Uniform Resource Identifier
(Berners-Lee et al., 2005, URI) is a resource and a member of the set of RDF
resources. A property is a specific “relation used to describe a resource” and is a
member of the set rdf:Property, which is a subset of the set of RDF resources.
A statement is a triple consisting of a resource, a property, and the value for the
property of the resource. Statements are members of the set rdf:Statement. The
three elements of the triple are called, respectively, the subject, the predicate, and
the object of the RDF statement. The object of a statement can be a resource or
a literal. A literal is a value of primitive data type, in particular XML data type,
and is a member of the set of RDF literals.

Typically, an RDF statement is represented graphically as two nodes and a
directed arc. The two nodes are for the subject and the object of the statement,
respectively. The arc is for the property, and is directed from the subject to
the object. Text representations of a statement include <s, p, o> and p(s, o),
whereby s, p, o stand for subject, predicate, and object, respectively. To exchange
RDF statements, in particular between computers, Lassila and Swick (1999) had
proposed an XML syntax for RDF, which Beckett (2004) later on revised. Various
other RDF syntaxes have been developed, such as Turtle (Prud’hommeaux and
Carothers, 2014) and N-TRIPLES (Carothers and Seaborne, 2014).

RDF specifies three additional important features. First, RDF defines the
property rdf:type, member of rdf:Property. The rdf:type property enables
primitive typing in RDF. RDF requires that the subject and the object in a state-
ment with rdf:type predicate are members of the set of RDF resources. Sec-
ond, RDF defines three types of container objects, namely bag, sequence, and
alternative. RDF containers refer to collections of resources or literals. Third,
RDF supports a mechanism, called reification, that enables making statements
about other RDF statements. Given the statement <s, p, o> , the reified state-
ment is a resource with the following four properties: rdf:subject with value s,
rdf:predicate with value p, rdf:object with value o, and rdf:type with value
rdf:Statement. This resource may have further properties.

RDF Schema (RDFS) In RDF, the property of a statement represents a relation-
ship between two resources. RDF does not provide a mechanism to describe such
relationships, for instance describe the particular groups of resources a property
relates. This is addressed by RDF Schema (Brickley and Guha, 2004, 2014). RDFS
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is a data-modelling vocabulary for RDF data. The RDFS vocabulary consists of
particular sets of resources.

Any entity described in RDF is a resource, and instance of rdfs:Resource.
Thus, rdfs:Resource includes “everything.” Resources may be divided into
groups, i.e. classes. All classes are therefore subclasses of rdfs:Resource.
Among classes, rdfs:Class is the class of resources that are RDF classes. Clearly,
rdfs:Class is a subclass of rdfs:Resource. A class, including rdfs:Resource, is
an instance of rdfs:Class. Being the class of all RDF properties, rdf:Property
is an instance of rdfs:Class. RDFS defines rdfs:Literal, the class of all RDF
literals. Being a class, rdfs:Literal is an instance of rdfs:Class and a subclass
of rdfs:Resource.

In addition to classes, RDFS defines a particular set of properties, which are
instances of the class rdf:Property. Specifically, the property rdfs:subClassOf

enables the construction of class hierarchies. The statement

<C, rdfs:subClassOf, D>

states that all instances of C are instances of D, and that C, D are instances
of rdfs:Class. On a similar line, the property rdfs:subPropertyOf enables the
construction of property hierarchies. Given the statement

<P, rdfs:subPropertyOf, Q>

pairs of resources related by P are also related by Q. The statement also
implies that P, Q are instances of rdf:Property.

Two further properties defined by RDFS are of particular interest, namely
rdfs:domain and rdfs:range. The statements

<P, rdfs:domain, C> <P, rdfs:range, D>

state that for statements <r, P, s> the resources r and s are instances of the
classes C and D, respectively, that P is an instance of rdf:Property, and that C,
D are instances of rdfs:Class.

Web Ontology Language (OWL) RDFS supports the construction of basic on-
tologies. The construction of ontologies with richer semantics is supported by
the Web Ontology Language (Bechhofer et al., 2004; Motik et al., 2012). A Web
Ontology Language (OWL) ontology consists of a set of axioms and, typically,
a set of assertions (i.e. “facts about individuals”). The set of axioms consists of
class axioms and property axioms. The set of assertions consists of concept and
role assertions, i.e. class membership and property values of individuals. The
following paragraphs describe the core features of OWL, in particular how the
language supports the definition of axioms and assertions.
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OWL supports the description of classes by means of six types of so-called
class descriptions. An owl:Class, which is defined as a subclass of rdfs:Class,
can be described through (1) a class name (as in RDFS); (2) an exhaustive enu-
meration of individuals, instances of the described class; (3) a property restric-
tion; the (4) intersection or (5) union of two or more class descriptions; or (6)
the complement of a class description. A property restriction describes the class
of all individuals that satisfy the restriction. There exist two types of property
restrictions: value constraints and cardinality constraints. A value constraint re-
stricts the range of the property when applied to the particular class description
(which is thus different from rdfs:range). This type of property restriction in-
cludes constraints analogous to universal and existential quantifiers of Predicate
logic. A cardinality constraint restricts the number of values a property can take
in the context of the particular class description. An instance of a class may
have an arbitrary number of values for a particular property. Cardinality con-
straints can make a property required, allow only a specific number of values
for a property, or specify that a property must not occur.

In addition to rdfs:subClassOf, inherited from RDFS, OWL introduces two
further constructs for the definition of class axioms, i.e. owl:equivalentClass

and owl:disjointWith. The building blocks of class axioms are class descrip-
tions. It is a class description that is a subclass of another class description. Sub-
class axioms represent necessary conditions for establishing class membership
of an individual. In contrast, equivalent class axioms represent necessary and
sufficient conditions.

OWL distinguishes between object and data type properties. An object prop-
erty is an instance of the class owl:ObjectProperty and relates two individuals.
A data type property is an instance of the class owl:DatatypeProperty and re-
lates an individual and a literal. Both are subclasses of rdf:Property. OWL
defines several constructs for property axioms in addition to those inherited
from RDFS, such owl:equivalentProperty and owl:TransitiveProperty.

Facts about individuals are defined in OWL with axioms about individuals
(assertions). Of particular interest are axioms that specify the class membership
of an individual (concept assertions) and axioms that specify the property values
of individuals (role assertions). For instance, given the class description C and
the individual a, C(a) is the concept assertion for stating that a is an individual
instance of C. Given the property P, P(a, b) is the role assertion for stating that
the individuals a and b are related by P. Additionally, OWL also supports stating
that two individuals are same or are different.

SPARQL Protocol and RDF Query Language (SPARQL) Having provided
an overview of RDF, RDFS, and OWL we now turn to the SPARQL Protocol
and RDF Query Language (Prud’hommeaux and Seaborne, 2008; Harris and
Seaborne, 2013). SPARQL is of interest here as query language for RDF.
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The core SPARQL construct is arguably the triple pattern. A triple pattern is
like an RDF triple except that the subject, predicate, and object may each be a
variable. A triple pattern matches RDF triples when variables can be substituted.
For instance, given a set of RDF triples, upon which SPARQL queries are eval-
uated, a triple pattern with variables in the subject, predict, and object position
matches all triples in the set. In SPARQL, a set of triple patterns is called a basic
graph pattern. As RDF statements span a directed graph, a basic graph pattern
matches an RDF sub graph.

SPARQL is reminiscent of the Structured Query Language (Chamberlin and
Boyce, 1974, SQL). In fact, the declarative query language reuses several of the
well-known SQL clauses, including SELECT, WHERE, and ORDER BY. A (group)
graph pattern specifies the WHERE clause. Filters can be declared in order to
restrict the solutions of a graph pattern according to a filter expression. Parts of
the graph pattern may be optional, which is useful when sub graphs have irreg-
ular structure. SPARQL supports query forms other than SELECT. Of particular
interest is the CONSTRUCT query form. The SELECT query form returns variables
and their bindings. In contrast, the CONSTRUCT query form returns an RDF graph
specified by a graph template. The CONSTRUCT query form is often useful in ap-
plications because the returned RDF graph can be further processed with RDF
tools, including a SPARQL query engine.

2.4.4 Relevant Ontologies

This section introduces the core ontologies we adopt in this work. These are
the Semantic Sensor Network ontology (Compton et al., 2012), the RDF Data
Cube Vocabulary (Cyganiak et al., 2014a), the Situation Theory Ontology (Kokar
et al., 2009), GeoSPARQL (Perry and Herring, 2012), OWL-Time (Hobbs and
Pan, 2006), and the PROV ontology (Lebo et al., 2013). They form an ontological
framework for situation-aware environmental monitoring systems.

Semantic Sensor Network Ontology (SSN) The semantic sensor network on-
tology is designed to “describe the capabilities and properties of sensors, the act
of sensing and the resulting observations” (Compton et al., 2012). The SSN ontol-
ogy aims at providing semantic interoperability of sensor data, on top of syntac-
tic interoperability addressed in particular also by Open Geospatial Consortium
(OGC) standards such as SensorML (Botts and Robin, 2007) and Observations
and Measurements (Cox, 2011, O&M).

Though descriptions about the capabilities and properties of sensors are use-
ful in applications, of most interest here are the observations resulting in the act
of sensing, i.e. the observation perspective of the SSN ontology. To model obser-
vations, the SSN ontology defines the class ssn:Observation. Closely aligned
with OGC standards and modelling of observations, an SSN observation is for
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Figure 2.1: Relations between SSN observation and the sensor that made the observation, the

observed property of the feature, the sensor output and observation value, and the time at which

the observation was made.

a particular property of a feature and is observed by a sensor that implements
some sensing method. Sensor is understood broadly to include physical de-
vices as well as other entities that can implement a sensing method to observe
a property, such as computational methods or laboratory set-ups. Naturally, in
addition to descriptions for what was sensed, what made the observation and
how it was made, SSN observations also describe the sensor output, which is of-
ten a numerical observation value. Finally, SSN observations can describe other
metadata, in particular spatio-temporal data for where and when the observa-
tion was made. Ontological modelling of time and space are, however, not part
of the SSN ontology. Figure 2.1 provides a graphical overview of the main rela-
tions between SSN observation and sensor, property, feature, observation value,
and time.

RDF Data Cube Vocabulary (QB) The RDF data cube vocabulary is designed
to represent multi-dimensional data in RDF. Fundamental to multi-dimensional
data “is a set of observed values organized along a group of dimensions, to-
gether with associated metadata” (Cyganiak et al., 2014a). Observed values are
modelled as qb:Observation. A QB observation relates to a qb:DataSet, which
is thus a collection of observations. Datasets are generally structured. Accord-
ingly, QB supports the definition of structures as qb:DataStructureDefinition.
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Figure 2.2: Relation between QB observation and the dataset with its data structure definition con-

sisting of a set of component specifications. Component properties are RDF properties available

to observations to relate property values.

One or more datasets may relate to the same data structure definition. A struc-
ture is described by a set of qb:ComponentSpecification. A component speci-
fication determines the qb:ComponentProperty as well as other metadata about
the component, such as whether or not it is required and its order within the
structure. QB supports three types of component properties, namely dimension,
measure, and attribute properties. Component properties are RDF properties
and are used to relate observations with values. Figure 2.2 provides a graphical
overview of the relation between QB observation and dataset with data structure
definition.

As an example, consider a typical comma-separated values file consisting of
n labels on the first line and m lines with n numbers starting on the second line
and ending on line m+ 1 of the file. The first line of the file can be translated into
a QB data structure definition. Each of the n labels is translated to a component
specification. The label itself maps to a component property while the position of
the label in the list determines the value of the order property in the component
specification. The m lines of the file form a m× n multi-dimensional dataset. This
dataset relates to the described data structure definition. Each of the 2 . . . m + 1
lines in the file can be translated into a QB observation. Each line consists of n
numbers. The QB observation relates thus to the dataset and to the n numbers
via the component properties as defined by the data structure definition.
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Figure 2.3: Relations between STO situation and supported infons with relation, objects, and

polarity. Objects may be specialized as individuals, attributes, or values. Situations may also be

objects in situations.

Situation Theory Ontology (STO) The situation theory ontology captures the
situation theory of Barwise and Perry and Devlin “in terms of an OWL ontol-
ogy [to allow] one to express situations in a commonly supported language with
computer processable semantics” (Kokar et al., 2009). We have presented situ-
ation theory in Section 2.3. Naturally, the central STO class is sto:Situation.
Individual situations occurring in the world are its instances. As STO follows
situation theory, a situation supports one or more sto:ElementaryInfon. An ele-
mentary infon is a tuple consisting of a sto:Relation, a set of sto:Object, and a
sto:Polarity. Objects may be, for instance, sto:Individual or sto:Attribute.
Individuals participate in situations and attributes, such as temporal and spatial
locations, may be of individuals or infons. Objects are anchored to elementary
infons. Note that situations are objects and may thus be anchored to elementary
infons. Figure 2.3 provides a graphical overview of the relations between STO
situation and infon with relation, object, and polarity.

OWL-Time and GeoSPARQL SSN, QB and STO do not support the represen-
tation of time and space. However, they provide for possible relations to the
vocabulary of specialized ontologies for the modelling of time and space, such
as OWL-Time and GeoSPARQL, respectively. For instance, STO defines the class
sto:Time as attribute. By aligning this class with a corresponding class of a spe-
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(a) Relations between OWL-Time temporal

entity with beginning and end instant with

XSD textual representation.

(b) Relations between GeoSPARQL feature

and geometry with WKT textual represen-

tation.

Figure 2.4: Relevant OWL-Time and GeoSPARQL concepts and relations. These specialized on-

tologies provide terms for the representation of time and space in SSN observations, QB observa-

tions, and STO situations.

cialized ontology for the modelling of time, such as OWL-Time, individuals of
sto:Time inherit the vocabulary and ontological modelling of the specialized on-
tology. The following paragraphs briefly present OWL-Time and GeoSPARQL as
two possible specialized ontologies adopted in this work for the representation
of time and space, respectively, in OWL.

OWL-Time defines the class time:TemporalEntity, as well as its subclasses
time:Instant and time:Interval. It also defines the two object properties
time:hasBeginning and time:hasEnd used to relate a temporal entity with an
instant. Finally, it defines the data type property time:inXSDDateTime used to
relate an instant with a literal of type xsd:dateTime. Beyond these basic classes
and properties, OWL-Time allows for the explicit representation of temporal de-
scriptions (e.g. durations) and topological relations (e.g. before). Figure 2.4(a)
provides a graphical overview of the relations between OWL-Time temporal en-
tity and the XSD textual representation of instants.

GeoSPARQL defines the class geo:SpatialObject, as well as its subclasses
geo:Feature and geo:Geometry. It defines the object property geo:hasGeometry

used to relate a feature with a geometry. Finally, it defines the data type property
geo:asWKT used to relate a geometry with a literal of type geo:wktLiteral (a
GeoSPARQL data type) to allow for text representation of geometries. Beyond
these most relevant classes and properties, GeoSPARQL supports the explicit
representation of topological relations, in particular also those of the Region
Connection Calculus (Randell et al., 1992). Figure 2.4(b) provides a graphical
overview of the relations between GeoSPARQL feature and geometry with WKT
textual representation.
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Figure 2.5: Relations between PROV entity, activity, and agent. The PROV ontology supports

the representation of information about the provenance of SSN observations, QB datasets and

observations, and STO objects in environmental monitoring systems, as well as information about

the involved (software) agents and (algorithmic) activities.

Stocker et al. (2014) describe an ontology with a preliminary alignment of
SSN, QB, STO, OWL-Time, and GeoSPARQL. The alignment consists primar-
ily of axioms that relate key classes and properties of the ontologies. The re-
sulting ontological framework is also extended with a few additional classes.
Of primary interest is the introduction of the classes SensorObservation and
DatasetObservation, which are defined to be equivalent to ssn:Observation

and qb:Observation, respectively. The distinction is useful for human agents
because the term ‘observation’ is used in both the SSN ontology and the QB
vocabulary, and is thus ambiguous.

PROV Ontology (PROV-O) PROV is a specification for provenance designed
for the representation of the origins of digital objects in form of descriptions
about “the entities and activities involved in producing and delivering or other-
wise influencing a given object” (Gil and Miles, 2013). In PROV, provenance is,
generally, of entities, which can be physical, digital, or conceptual. Entities can
be derived from other entities and they are generated by activities. Activities are
the processes through which entities come into existence. Associated with activ-
ities are agents, which can be, e.g., persons or, of most interest here, software.
Figure 2.5 provides a graphical overview of the relations between PROV entity,
activity, and agent.

Stocker et al. (2015b) describe a preliminary alignment of PROV-O with the
alignment presented in Stocker et al. (2014). The alignment consists primarily of
axioms that model sensor observations, dataset observations and STO objects, in-
cluding situations, as PROV-O entities; SSN sensors and software agents used in
data processing and knowledge acquisition as PROV-O agents; and SSN stimuli
and operations such as aggregation and classification as PROV-O activities.
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2.5 MODELLING

This last section of Chapter 2 introduces models, specifically computational
models. Modelling, in particular environmental modelling, is the “process of
designing, building and using an environmental model” (Barnsley, 2007). Mod-
els play an important role in this dissertation because they enable the extraction
of situational knowledge from data, as well as the processing of data, in envi-
ronmental monitoring systems. Mulligan and Wainwright (2004) define model
as:

Definition 2.5.1 (Model). A model is an abstraction of a real system, it is a
simplification in which only those components which are seen to be significant
to the problem at hand are represented in the model.

Of particular interest here are (real) environmental systems, e.g. an agricul-
tural field, and thus environmental models. Mulligan and Wainwright stress
that a model is a simplification and has a purpose; it is expected to represent
“a complex reality in the simplest way that is adequate for the purpose of the
modelling.” In other words, models ought to follow the principle of parsimony,
which dictates that good models are those with good explanation or predictive
power while having low parameter or process complexity.

Mulligan and Wainwright outline typical purposes of environmental mod-
els. For example, the purpose of a model may be to simulate and predict the
behaviour of a system and thus to assist system understanding. Such a model
can support research activities. Models can also be research products, “partic-
ularly when they can be used by others and thus either provide the basis for
further research or act as a tool in practical environmental problem solving or
consultancy.” Especially when used by others, models can serve in communicat-
ing science or assisting decision-making processes.

2.5.1 Typology

A cursory read of the literature suggests that there is no agreement on a classifi-
cation of models, a conclusion supported by Mulligan and Wainwright who state
that “[t]here are no universally accepted typologies of models.” The classifica-
tion proposed by Mulligan and Wainwright first separates mathematical models
from hardware models—a somewhat atypical distinction, yet arguably useful in
environmental science.

Hardware, or physical, models are scaled-down versions of real systems and
“give a degree of control on the systems under investigation.” The advantage of
hardware models rests in their ability to “couple the scientific rigour of obser-
vation with the controllability of mathematical modelling.” However, hardware
models can be expensive, are difficult to replicate, and are relatively uncom-
mon. Furthermore, hardware models can represent a process only to the extent
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to which it is understood and can be replicated. Finally, the model hardware
can interfere with processes occurring in the system under investigation. An
example given by Mulligan and Wainwright is the apparatus for free-air CO2
enrichment experiments, which has been used for other atmospheric gases as
well, such as O3 (Uddling et al., 2010). Mulligan and Wainwright also consider
smaller instruments to be hardware models, such as the Parkinson leaf chamber
(Parkinson et al., 1980) used to measure the photosynthesis and transpiration in
leaves.

In contrast to hardware models, mathematical models “represent states and
rates of change according to formally expressed mathematical rules.” Mulligan
and Wainwright suggest five dimensions according to which mathematical mod-
els may be classified, namely the conceptual, integration, mathematical, spatial,
and temporal. Each dimension distinguishes two or more categories, and the
category for mixtures.

The conceptual dimension distinguishes three model classes, namely em-
pirical, conceptual, and physically-based models. Empirical models “describe
observed behaviour between variables on the basis of observations alone and
say nothing of process.” Typically, empirical models are mathematical functions
that fit the observed relationship between variables. Empirical models “have
high predictive power but low explanatory depth,” meaning that they often
agree with observations but cannot explain the process underneath an outcome.
Conceptual models are empirical models that additionally describe observed be-
haviour “on the basis of preconceived notions of how the system works.” Com-
pared to pure empirical models, conceptual models have thus somewhat greater
explanatory depth. Referring to Beven (2002), Mulligan and Wainwright state
that physically-based models “should be derived deductively from established
physical principles and produce results that are consistent with observations.”
However, Mulligan and Wainwright note that in reality “there is a continuum of
models that falls broadly under the heading of physically-based, but that might
include some level of empirical generalization.” In contrast to empirical and
thus conceptual models, physically-based models “tend to have good explana-
tory depth [but] are characterized by low predictive power.”

The integration dimension distinguishes model equation integration, namely
models with analytical solutions obtained by solving differential equations or
models with numerical solutions obtained by solving difference equations. The
mathematical dimension distinguishes deterministic and stochastic models. For
a given input, models with deterministic equations always produce the same
output. In contrast, in stochastic models a given input can produce different
outputs. The spatial dimension distinguishes spatial types. In so-called lumped
models a potentially spatially heterogeneous environment is modelled as a sin-
gle value. Semi-distributed models may have multiple lumps. Distributed mod-
els break space into discrete regular or irregular units. The spatial dimension
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also distinguishes one-/two-/tree-dimensional models. Finally, the temporal di-
mension distinguishes static models, which do not handle time, and dynamic
models, which handle time explicitly.

Different classification schemes have been proposed to categorize environ-
mental models. Robson (2014) argues that a “reasonably intuitive categoriza-
tion is into two classes,” i.e. mechanistic and statistical models. Robson cites
Sharpe (1990) who proposes the additional class of theoretical mathematical
models. Guisan and Zimmermann (2000) discuss the three model classes ana-
lytical, mechanistic, and empirical. How model classes are named varies among
classification schemes. Analytical models are also called mathematical; mecha-
nistic models are also called process-based, deterministic, physics-based, physio-
logical, or causal; empirical models are also called statistical, phenomenological,
or data based (Guisan and Zimmermann, 2000; Robson, 2014).

2.5.2 Relevant Models

Following the classification by Mulligan and Wainwright, of particular inter-
est in this dissertation are mathematical models, rather than hardware mod-
els, specifically empirical models as well as physically-based empirical mixed
models. Among the empirical models, this dissertation utilizes computational
models in machine learning (Mitchell, 1997), in particular Multilayer Perceptron
(MLP) artificial neural networks (Haykin, 1998).

An artificial neural network is a non-linear regression supervised learning
model, “developed by training the network to represent the relationships and
processes that are inherent within the data” (Solomatine et al., 2008). An MLP
artificial neural network consists of a set of neurons that form the so-called input
layer, one or more hidden layers, and the output layer of the network. MLP is
trained in a supervised manner, i.e. by means of a labelled training dataset,
using error back-propagation learning, which consists of a forward pass and
a backward pass through the layers. In the forward pass, the signal resulting
from the application of an input vector is propagated through the network in
a forward direction and the actual response of the network at the output layer
is recorded. In the backward pass, the recorded response of the network at the
output layer is subtracted from a desired response (the label) to produce an error
signal, which is propagated through the network in a backward direction. In the
backward pass the network is adjusted in order to align the actual response
with the desired response. An example for the application of MLP to a concrete
problem can be found in Paper II. A summary of this application is provided
next in order to elucidate how such models are utilized and thus clarify their
primary role in this dissertation, namely to extract information from data.

Paper II describes the utilization of MLP artificial neural networks for the
detection and classification of road vehicles. Vehicles are detected in road-
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pavement vibration data obtained in measurement implemented by several ac-
celerometer sensing devices installed at approximately 45 m relative distance on
one side of a road section. Accelerometer sensing devices are said to “observe
the vibration of the road pavement.” Vehicles are sources of vibration and such
vibration is detectable in data resulting from sensor measurement. Data in time
domain is processed to vibration patterns in frequency domain. Vibration pat-
terns are sampled and mapped to labels. Vibration patterns and corresponding
labels form datasets used to train and validate MLP artificial neural networks for
two classification tasks: vehicle detection and vehicle characterization. The aim
in vehicle detection is to distinguish samples that include vehicle vibration from
those that do not. Given detected vehicles, the aim in vehicle characterization
is to distinguish samples for light vehicles from samples for heavy vehicles. For
each classification task a distinct MLP artificial neural network is trained. Vibra-
tion patterns form the input and labels form the output of MLP artificial neural
networks. In training, labelled samples are used to construct MLP artificial neu-
ral networks that support the automated mapping of vibration patterns to labels.
In validation, trained networks are evaluated on (different) labelled samples to
assess their classification performance. Validated MLP artificial neural networks
are employed as models in a software system that classifies vibration patterns
automatically and extracts information from road-pavement vibration data about
vehicles that travel the monitored road section.

In addition to empirical models, of interest are also physically-based empir-
ical mixed models. An example for the application of such model type to a
concrete problem can be found in Paper IV. A summary of this application is
provided next.

The assessment of disease pressure in agricultural crops is an important task
in pest management. The application described in Paper IV utilizes a disease
pressure model to compute daily risk values for pathogen and crop pairs. The
model supports the computation of accumulated risks over space-time, and the
assessment of (acute) outbreaks of pathogens in crops. Model input consists of
static information about the crop and agricultural parcel, e.g. crop susceptibil-
ity and tillage, and dynamic weather data, e.g. temperature and wind speed.
The core of the model is an equation for the computation of daily risk values.
The equation combines estimates for the seasonal base risk and daily disease
progress in the plant, spore development, spreading of disease, and infection
probability. The ecological model is thus mechanistic and broadly falls into the
class of physically-based models. We can further characterize the model as de-
terministic because a particular input will always produce the same output. Fur-
thermore, the model is static as it does not explicitly handle time. However, the
model is arguably not purely physically-based. Equation estimates, such as for
spore development, are obtained via “table lookup,” in other words by match-
ing daily values for one or more dimensions against value ranges defined for
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each dimension. For instance, spore development depends on temperature, in
degrees Celsius, and the daily duration of leaf wetness, in hours. For both tem-
perature and duration, the model defines value ranges, e.g. [10:15[ and [8:10[
for temperature and duration, respectively. Tables are pathogen specific and the
values are obtained empirically. Therefore, the model is mixed physically-based
empirical.

The two discussed models and applications are obviously different. However,
they share the purpose, namely to enable the extraction of information from data.
In the former case, data are for road-pavement vibration and information is for
vehicles. In the latter case, data are for weather, crops and agricultural parcels,
and information is for disease outbreaks in crops. In environmental monitoring
systems, computational models can be the software agents that extract informa-
tion from data, software agents that process data in order to enable information
extraction, or software agents that process data and extract information.

2.6 SUMMARY

We have presented the central concepts underlying the dissertation. Environ-
mental monitoring is the domain addressed by the research question: it is for
environmental monitoring that we develop, implement in software, and validate
on case studies a software process for the representation of situational knowl-
edge acquired from data, in particular sensor data. The heterogeneous, often
voluminous, and possibly real-time streamed data pose distinct challenges to
automated data organization and interpretation in environmental monitoring.
Furthermore, the complexity of data processing and knowledge acquisition, the
heterogeneity of computational methods relevant to such processes, and the dif-
ficulty of integrating methods in machine learning and knowledge representa-
tion and reasoning pose additional challenges to automated data interpretation
in environmental monitoring. The ‘semantic gap’ between data and knowledge
is evidently a critical problem in environmental monitoring, and the need for
suitable solutions only increases with increasing data volumes.

Situation awareness can inspire the modelling of situation-aware environ-
mental monitoring systems as physical-socio-technical systems, whereby the
monitored environment, the hardware and software, and people form the physi-
cal, technical, and social subsystems, respectively. As environmental monitoring
systems are concerned (at least in this dissertation) with the perception, compre-
hension, and projection of environmental phenomena in space-time volumes,
situation awareness—and the three levels model, in particular—can inspire the
design of architectures for such systems.

In environmental monitoring systems, the notion of situation is a useful ab-
straction for information and knowledge relevant to comprehension, obtained
from data acquired in perception, as well as knowledge resulting in projection.
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Situation theory provides a formal definition of situation, and a structured ob-
ject useful for the representation of situational knowledge in technical systems.
Situational knowledge is obtained from data, and physically-based and data-
driven models can support the automation of situational knowledge extraction
from data. Ontology and related semantic technologies support the technical
subsystems in the explicit representation of situational knowledge, and enable
automated situational knowledge processing. We thus pursue a hybrid approach
that attempts to make sense of data in environmental monitoring using both in-
ductive and deductive techniques (Janowicz et al., 2015).

The following chapter presents the architecture and implementation of the
proposed software framework for situation awareness in environmental moni-
toring. The framework is designed to support the implementation of software
systems for the acquisition of situational knowledge from processed data ac-
quired from environmental sensor networks, and the curation, access, and pro-
cessing of situational knowledge.



3 Implementation

We present the architecture and implementation of the Wavellite software frame-
work for situation awareness in environmental monitoring. Building on concepts
presented in Chapter 2, Wavellite implements functionality common to applica-
tions presented in Chapter 4. The framework supports the development of envi-
ronmental monitoring software systems that acquire situational knowledge from
processed data collected from environmental sensor networks, as well as curate
and process situational knowledge. The architectural description of Wavellite is
aligned with the ENVRI Reference Model (ENVRI, 2013), which we extend with
a model for knowledge acquisition from processed data, and the curation, access,
and processing of knowledge. Section 3.1 briefly summarizes the ENVRI Refer-
ence Model. Section 3.2 summarizes the proposed reference model extension.
The presentation is concise and only provides an overview. Both the ENVRI
Reference Model and the extension are described in greater detail in Paper V.
Having introduced the ENVRI Reference Model and the extension, Section 3.3
presents the Wavellite implementation.

3.1 REFERENCE MODEL

This section provides a brief overview of the ENVRI Reference Model. We sum-
marize the model subsystems and discuss how the model is described from the
science, information, and computational viewpoints.

The Common Operations of Environmental Research Infrastructures EU FP7
project (ENVRI) developed data and software components and services that are
common to six environmental research infrastructures of the European Strategy
Forum on Research Infrastructures (EU ESFRI) (Chen et al., 2013a,b), such as the
Integrated Carbon Observation System (ICOS). Environmental research infras-
tructure are complex distributed systems that collect environmental (monitor-
ing) data and manage such data for research. ENVRI aims at identifying com-
mon computational characteristics, develop an understanding of requirements,
support and accelerate the construction of infrastructure, secure interoperabil-
ity between infrastructures, avoid duplication of effort, and enable the reuse of
resources and experiences.

The ENVRI Reference Model (ENVRI, 2013), hereafter ENVRI-RM, is ar-
guably the primary result of the ENVRI project. ENVRI-RM is “a common
ontological framework and standard for the description and characterisation of
computational and storage infrastructures in order to achieve seamless interop-
erability between the heterogeneous resources of different infrastructures” (Chen
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Figure 3.1: The five ENVRI-RM subsystems of environmental research infrastructure.

et al., 2013b). It provides “a universal reference framework for discussing many
common technical challenges facing all of the ESFRI environmental research in-
frastructures” (Chen et al., 2013b). ENVRI-RM is publicly available and its latest
version is V1.1 of August 30, 2013. Unless stated otherwise, this chapter quotes
ENVRI-RM.

In analysing the six EU ESFRI environmental research infrastructures, the
ENVRI project identified five key physical resources around which environmen-
tal research infrastructure “applications, services and software tools are designed
and implemented” (Chen et al., 2013b). These are the sensor network, the stor-
age, the (internet) communication network, application servers, and client de-
vices.

Accordingly, ENVRI-RM divides the ‘archetypical’ environmental research
infrastructure into five subsystems: data acquisition, data curation, data access,
data processing, and community support. Figure 3.1 is a graphical overview of
the five subsystems. A subsystem is “a set of capabilities that collectively are de-
fined by a set of interfaces with corresponding operations that can be invoked by
other subsystems” (Chen et al., 2013b). Functionality common to environmental
research infrastructure is partitioned amongst the five subsystems. ENVRI-RM
specifies a minimal model consisting of “fundamental functionality necessary to
describe a functional environmental research infrastructure” (Chen et al., 2013b).

ENVRI-RM specifies environmental research infrastructure from three differ-
ent viewpoints: science, information, and computational. Figure 3.2 is a graphical
overview of the three viewpoints on environmental research infrastructure. A
viewpoint on a system “is an abstraction that yields a specification of the whole
system related to a particular set of concerns.”

The science viewpoint “intends to capture the requirements for an environ-
mental research infrastructure from the perspective of the people who perform
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Figure 3.2: The three viewpoints from which ENVRI-RM specifies environmental research infras-

tructure.

their tasks and achieve their goals as mediated by the infrastructure.” The view-
point defines communities. Communities interact with the five subsystems to
conduct scientific research. Each community is described for sets of relevant
community roles and behaviours. A role in a community “is a prescribing be-
haviour that can be performed any number of times concurrently or succes-
sively.” Roles can be active or passive. Active roles are associated with human
actors. Passive roles are associated with non-human actors. A behaviour of a
community “is a composition of actions performed by roles normally address-
ing separate [research activity] requirements.” Behaviours are performed by
roles and roles can address one or more requirements.

The information viewpoint provides “an abstract model for the shared in-
formation handled by the infrastructure.” The viewpoint specifies the types of
information objects and their relations. Furthermore, it “describes how the state
of the data evolves as [a result] of computational operations” and “defines the
constraints on the data and the rules governing the processing of such data.”
Information action types model how information is processed in the system, i.e.
how a system manipulates information objects. Actions cause state changes in
participating objects. Dynamic schemata “specify how the information evolves
as the system operates, describing the allowable state changes of one or more in-
formation objects.” In contrast, static schemata specify “instantaneous views of
the information objects at a certain stage of the data life cycle.” With subsystem
schemata, the model also partitions information objects and information action
types to subsystems.

The computational viewpoint specifies “the major computational objects ex-
pected within an [environmental] research infrastructure and the interfaces by
which they can be interacted with.” The archetypical environmental research
infrastructure has a brokered service-oriented architecture. Functionality is thus
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encapsulated by service objects, and access to service objects is managed by
brokers. Access management includes, for instance, request validation. Service
objects control resources. Interaction can be among computational objects within
a subsystem or between subsystems.

3.2 REFERENCE MODEL EXTENSION

The ENVRI-RM focuses on data, their acquisition, curation, access, and process-
ing. To model functionality for the acquisition of knowledge from data—and
the curation, access, and processing of knowledge—we extend ENVRI-RM. The
reference model extension is itself a model, and is called +K, which stands for
‘plus knowledge’. The extension is inspired by ENVRI-RM, in the sense that
it reuses some of the modelling choices made for ENVRI-RM. Furthermore, it
can be superimposed on ENVRI-RM. The result of such superimposition is the
ENVRI-RM+K model. This section summarizes the +K extension. It is presented
in greater detail in Paper V.

3.2.1 Extension Subsystems

The +K extension introduces four subsystems: knowledge acquisition, knowl-
edge curation, knowledge access, and knowledge processing. Unless stated oth-
erwise, in this dissertation it is situational knowledge that is acquired, curated,
accessed, and processed. In contrast to Paper V, the description here thus di-
rectly adopts the more narrow concept of situational knowledge.

The knowledge acquisition subsystem acquires situational knowledge from
data. Acquiring situational knowledge is a process and consists of three sub
processes: information attainment, information mapping, and knowledge com-
position. Information is attained from data, is mapped to atomic entities of a
conceptual model, and is composed to structured entities of a conceptual model,
i.e. situation knowledge objects or simply situations.

Similarly to the ENVRI-RM data curation subsystem, the knowledge cura-
tion subsystem facilitates quality control and preservation of situational knowl-
edge. It also handles the representation of situational knowledge. The subsys-
tem is however not limited to managing situational knowledge. It also manages
domain knowledge, such as infon relations or domain rules, and foundational
knowledge, such as a the fact that sensing devices are sensors and thus physical
objects.

The knowledge access subsystem is concerned with the presentation and
delivery of knowledge products, in particular situational knowledge products.
Retrieval of knowledge is enabled by query and search tools. Such tools also
support human or software agents in knowledge discovery, enabled by inspect-
ing domain knowledge or by following semantic relations. For instance, domain
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Figure 3.3: The functionality of the +K extension, and functionality partitioning amongst the four

+K subsystems for the acquisition, curation, access, and processing of (situational) knowledge.

knowledge can be inspected for infon relations; infons with a certain relation can
thus be discovered. Infons relate to objects, which may be situations. Thus, by
following semantic relations it is possible to discover situations that are related,
e.g. a situation in which an agent refers to another situation.

Classical reasoning (inference) services are part of the knowledge process-
ing subsystem and include conceptual and rule-based reasoning. However, the
subsystem is not limited to such type of knowledge processing. It can include
spatio-temporal reasoning and specialized services for statistical analysis or vi-
sualization of situational knowledge. For instance, a knowledge processing
subsystem may provide a service that computes how frequently people drive
through storms. In addition, the knowledge processing subsystem can provide
specialized services for situation reasoning.

Extension Functionality

Each of the four +K subsystems for the acquisition, curation, access, and pro-
cessing of situational knowledge addresses a range of concerns and implements
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specific functionality. Figure 3.3 visualizes how the functionality of the extension
is partitioned amongst the four +K subsystems.

The knowledge acquisition subsystem is primarily concerned with attain-
ing information from data, mapping attained information to atomic entities of
a conceptual model, and composing mapped information to structured entities
of a conceptual model, i.e. situations. For instance, the label returned in ma-
chine learning classification is a result of information attainment. A relevant
individual, object in an infon, is a result of information mapping. An individ-
ual instance of the class STO Situation with relations to infons is a result of
knowledge composition and is a situational knowledge object.

The primary concerns of the knowledge curation subsystem are knowledge
quality checking, knowledge storage and preservation, knowledge representa-
tion, and knowledge identification. Knowledge quality checking may be im-
plemented by software agents, human agents, or collaboratively. Knowledge
storage and preservation is supported by a knowledge store, most obviously a
knowledge base or an RDF database. Knowledge representation is conforming
with the ontological framework centred around the STO. Knowledge identifi-
cation is enabled by Internationalized Resource Identifiers (Dürst and Suignard,
2005, IRI), used to identify RDF resources. Situational knowledge is thus globally
identified.

The primary concerns of the knowledge access subsystem are knowledge dis-
covery and retrieval as well as knowledge publication. Functionality for knowl-
edge discovery and retrieval operates on, and retrieves situational knowledge
from, knowledge resources. The knowledge resource is, generally, the system as-
sociated with the knowledge storage and preservation functionality, and can be
a distributed system of knowledge stores. The knowledge publication function-
ality addresses the publication of situational knowledge according to publication
policies. A publication policy may specify situational knowledge to be publicly
accessible or restricted. Situational knowledge may be published for download,
typically over the web. Access may also be supported via (web) Application
Programming Interface (API).

The knowledge processing subsystem is concerned with various forms of
knowledge processing, in particular knowledge visualization and analysis and
different forms of reasoning. Situational knowledge is generally located in time
and space. Knowledge can thus be visualized along these two dimensions. Time
lines and maps can support such visualization. Knowledge analysis depends on
the domain and problem, which thus define the particular methods of interest
in knowledge analysis. For instance, given situations involving classified vehi-
cles travelling on a road section, and situational knowledge with information
for vehicle speed, statistical analysis can be used to compute summary statistics,
such as mean vehicle speed and standard deviation. Given a set S of situations,
situation reasoning can support the inference of situations implied by S . For
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instance, given a set S of situations with information for the spatio-temporal lo-
cation of storms and situations with information for the spatio-temporal location
of drivers, situation reasoning can infer situations in which drivers are at higher
risk, implied by situations in which storms and drivers overlap in space-time.

Ontology reasoning tasks are those typically supported by standard RDFS
and OWL reasoners, such as Pellet (Sirin et al., 2007). In practice, implemen-
tations utilize ontology reasoning supported (if any) by the system associated
with the knowledge storage and preservation functionality. The knowledge cu-
ration subsystem may materialize entailed knowledge. For instance, in addition
to stating that a situation is an entity of a concept defined by STO, knowledge
representation may also explicitly state that the situation is an entity of a con-
cept defined by PROV-O. Similarly to ontology reasoning, rule-based reasoning
is typically supported by RDFS and OWL reasoners. In practice, it is largely the
system associated with the knowledge storage and preservation functionality
that determines rule-based reasoning support. However, in specific applications
rule-based reasoning can also be implemented in SPARQL or with domain pro-
gram logic.

3.2.2 Extension Viewpoints

The +K extension specifies knowledge-based environmental research infrastruc-
ture from the science, information, and computational viewpoints.

Science Viewpoint

The science viewpoint intends to capture the requirements for the +K extension
from the perspective of people, in particular researchers and citizens more gener-
ally. The extension defines five communities: knowledge acquisition, knowledge
curation, knowledge publication, knowledge service provision, and knowledge
usage. Each community is described for its roles and behaviours.

The knowledge acquisition community is who attains information from data,
maps attained information to atomic entities of a conceptual model, and com-
poses mapped information to structured entities of a conceptual model. Key roles
include the attainer, mapper, and composer. Information is attained from data
by an attainer, which is an active or a passive role. Of primary interest here is
the passive role of attainer, i.e. the extractor. The mapper and the composer are
generally passive roles. Key behaviours include knowledge acquisition, concep-
tual model extension, and software extension. Knowledge acquisition consists
of three behaviours: information attainment, information mapping, and knowl-
edge composition. These behaviours are performed by the three roles attainer,
mapper, and composer, respectively. Conceptual model extension and software
extension are behaviours performed by computer experts. An example of con-
ceptual model extension is the instantiation of infon relations that are relevant
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to situations in a knowledge acquisition problem. Software extension includes
the implementation of software agents required for knowledge acquisition.

The knowledge curation community is who curates, maintains and archives
knowledge. Key roles include the knowledge curator, knowledge representer,
knowledge identifier, and the knowledge store. Of primary concern to the
knowledge curator is the verification of situational knowledge resulting in the
knowledge acquisition subsystem. In addition, the knowledge curator maintains
domain knowledge managed by the knowledge curation subsystem. The knowl-
edge representer is a passive role. Unless stated otherwise, the knowledge cu-
ration community represents situational knowledge according to the ontological
framework centred around the STO. Knowledge identification occurs by means
of IRI. It is software agents that create and assign IRIs to situational knowledge.
The knowledge store is most obviously implemented by a knowledge base or an
RDF database. However, the extension is not restricted to such knowledge store
types. Key behaviours include knowledge quality checking, knowledge repre-
sentation, knowledge identification, knowledge persistence, knowledge preser-
vation. Quality checking is typically performed by an active role. However, as
for data quality checking, software agents may quality check situational knowl-
edge to some degree. The required degree of quality control largely depends on
the performance of knowledge acquisition. The confidence in quality situational
knowledge increases with greater knowledge acquisition performance. Knowl-
edge representation, identification, and persistence are behaviours of distinct
roles. In practice, these behaviours may be performed by one or more agents,
in particular software agents. In addition to domain and situational knowledge,
knowledge preservation is also concerned with the preservation of provenance
information, and thus the agents and methods involved in knowledge acquisi-
tion and processing.

The knowledge publication community is who assists knowledge publication,
discovery and access. Key roles include the knowledge publication repository
and the knowledge consumer. Situational knowledge can be published in vari-
ous forms. Publishing situational knowledge as RDF files for download is per-
haps the most straightforward form. In alternative to RDF files for download,
situational knowledge may also be published via a SPARQL endpoint. Knowl-
edge consumers are either active or passive roles that receive and use situational
knowledge published by the knowledge publication repository. Key behaviours
include knowledge publication and knowledge discovery and access.

The knowledge service provision community is who provides various services,
applications and software tools used to process knowledge. Key roles include
the knowledge provider and the software engineer. Situational knowledge pro-
cessing, e.g. visualization or analysis, can require domain program logic; hence
the role of software engineers. Software implementation is a behaviour of the
knowledge service provision community.
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The knowledge usage community is who makes use of knowledge and ser-
vice products, and transfers knowledge into understanding. The roles and be-
haviours are same as those of the ENVRI-RM data usage community.

Information Viewpoint

The information viewpoint intends to provide an abstract model for the shared
information objects that are relevant to the +K extension by specifying their types
and relations between types. The information viewpoint discusses the follow-
ing aspects of the extension: components, dynamic schemata, static schemata,
subsystem schemata. This section summarizes the components aspect. Paper V
discusses the other aspects as well.

The components aspect of the information viewpoint organises the model
elements that are relevant to the extension into four groups: information objects,
information action types, information object instances, and knowledge states.

Information objects are defined to capture three types of information rele-
vant to the extension. The first type of information includes specifications for
knowledge acquisition, knowledge curation, knowledge access, and knowledge
processing. Specifications are documents, created by experts, and describe the
objects and methods involved in behaviours, e.g. knowledge acquisition. The
second type of information captured by information objects includes the types
of data, information, and knowledge objects, specifically attained information,
mapped information, and composed knowledge. Attained information objects
are the result of information attainment, which executes on data objects. At-
tained information objects are generally values of some primitive data type. For
instance, the label returned in machine learning classification is an attained in-
formation object. Attained information objects are mapped to atomic entities of
a conceptual model. The result are mapped information objects. For instance,
an attained information object can be mapped to a relevant individual, object
in an infon of a situation. Finally, mapped information objects are composed to
structured entities of a conceptual model, i.e. situations. Situational knowledge
consists of information attained by one or more extractors, and mapped to one
or more atomic entities of a conceptual model. Situational knowledge is thus
a composition of information objects. It is the input and output to knowledge
curation, access, and processing. In the information viewpoint, data objects,
attained and mapped information objects, and knowledge objects (situations)
are specializations of information objects. We may thus speak of information
objects without further qualifying the specific type. The third type of informa-
tion captured by information objects includes information for knowledge prove-
nance used to record state changes of information objects, in particular the state
changes of attained information objects, mapped information objects, and com-
posed knowledge objects.
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Information action types model how data, information, and knowledge are
processed in the system. The most fundamental information action type is to
perform knowledge acquisition. Additional important information action types
are for representing, managing, and processing situational knowledge. Knowl-
edge representation involves one or more knowledge representation languages,
related technologies, and the ontological framework centred around the STO.
Management includes, in particular, storing, checking the quality, and querying
situational knowledge. Information objects may exist as multiple instances. One
purpose of instances is to record knowledge state changes as effects of actions.
For instance, a knowledge object resulting in knowledge acquisition is in state
acquired. As effect of the process knowledge action the knowledge object is in
state processed.

Computational Viewpoint

The computational viewpoint describes the computational objects of the +K ex-
tension, and computational object interfaces.

The knowledge acquisition subsystem provides functionality for attaining in-
formation from data, mapping attained information to atomic entities of a con-
ceptual model, and composing mapped information to structured entities of a
conceptual model. Computationally, knowledge acquisition is described as sets
of information attainers, information mappers, and knowledge composers as-
sociated with knowledge acquisition controllers. A knowledge acquisition con-
troller receives and directs data to attainers, attained information to mappers,
and mapped information to composers. A knowledge acquisition controller re-
turns composed knowledge. A knowledge attainer receives data and attains
information. Its output are attained information objects. Generally, information
is attained by means of computational models, e.g. data-driven or physically-
based models. However, a human agent may also attain information. An infor-
mation mapper receives attained information and maps information. Its output
are mapped information objects. A knowledge composer receives mapped infor-
mation and composes knowledge. Its output are composed knowledge objects,
i.e. situations.

The knowledge curation subsystem provides functionality to persist and pre-
serve situational knowledge. Computationally, knowledge curation is handled
by a set of knowledge store controllers monitored and managed by a set of
knowledge curation services, specifically knowledge annotation services and
knowledge transfer services. A knowledge annotation service implements the
functionality required to annotate situational knowledge. The service is primar-
ily intended for use in knowledge quality checking to update inconsistent or
inaccurate situational knowledge. A knowledge transfer service supports the
registration, deregistration, and execution of knowledge transporters, such as
knowledge collectors, importers, and exporters.
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The knowledge access subsystem provides knowledge brokers that act as in-
termediaries for access to situational knowledge managed by the knowledge cu-
ration subsystem. Knowledge brokers intercede between the knowledge access
subsystem and the knowledge curation subsystem. They implement the func-
tionality required to negotiate data transfer and requests directed at knowledge
curation services on behalf of agents.

The knowledge processing subsystem is computationally described as a set
of knowledge processing controllers monitored and managed by a knowledge
processing coordination service. The coordination service delegates processing
tasks obtained by the knowledge processing subsystem to particular execution
resources. A knowledge processing controller “encapsulates the functions re-
quired for using an execution resource.” An execution resource is “any comput-
ing platform that can host some process.”

3.3 FRAMEWORK IMPLEMENTATION

The Wavellite software framework was developed to support the implementation
of environmental monitoring software systems that aim at the acquisition of
situational knowledge from environmental sensor network data, as well as the
curation, access, and processing of situational knowledge.

ENVRI-RM+K is used to present the Wavellite software architecture and im-
plementation. Wavellite borrows elements of both ENVRI-RM and the +K exten-
sion. This section follows the structure introduced by ENVRI-RM, and adopted
by the +K extension, to discuss Wavellite subsystems, and Wavellite from science,
information, and computational viewpoints.

It is important to underscore that Wavellite is not an environmental research
infrastructure and, specifically, it is not an implementation of ENVRI-RM or
the +K extension. Wavellite was designed to support core functionality required
in systems for situation awareness in environmental monitoring. Much of the
functionality ENVRI-RM defines as the minimal model for an environmental
research infrastructure is indeed not supported by Wavellite. Moreover, in con-
trast to ENVRI-RM, Wavellite is not built on service-oriented principles. Similar
to ENVRI-RM, Wavellite supports the acquisition of data collected from sensor
networks as well as the curation, access, and processing of data. However, such
functionality is primarily intended to support knowledge acquisition whereas
ENVRI-RM emphasises different data processing functionality, such as data vi-
sualization. Furthermore, Wavellite is tailored for the acquisition of a particu-
lar kind of knowledge: situational knowledge. In contrast, an environmental
research infrastructure may want to support the acquisition of other kinds of
knowledge. Still, for the presentation of the Wavellite software architecture,
ENVRI-RM and the +K extension are useful reference models because of con-
siderable shared functionality, the explicit inclusion of sensors and the science
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Figure 3.4: The Wavellite layers, their structure and mapping to ENVRI-RM+K subsystems. The

layers of measurement, observation, derivation, and situation build on each other and are respon-

sible for the acquisition of data from environmental sensor networks, the processing of data, and

the acquisition of situational knowledge. The persistence and access layers support the storage

and retrieval of data and knowledge. The processing layer is responsible for situational knowledge

processing and builds on the persistence and access layers.

community in ENVRI-RM, and because it enables an alignment of Wavellite with
environmental research infrastructure.

The Wavellite software framework is structured in seven layers: measure-
ment, observation, derivation, situation, persistence, access, and processing. The
four layers of measurement, observation, derivation, and situation build on each
other, from measurement to situation. The persistence and access layers are ver-
tical and serve the other five layers. The processing layer builds on the access and
persistence layers. Layers consist of components. Components execute and emit
data, information, and knowledge objects. Components make use of modules.
Modules implement functionality.
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3.3.1 Implementation Subsystems

Wavellite layers can be mapped to ENVRI-RM+K subsystems, i.e. data and
knowledge acquisition, curation, access, and processing. Figure 3.4 is a graphical
overview of the seven Wavellite layers, their structure and interaction, and their
mapping to ENVRI-RM+K subsystems.

The measurement layer maps to the data acquisition subsystem. It is con-
cerned with the data collection and data transmission functionality of the data
acquisition subsystem. Data collection is a “functionality that obtains digital
values from a sensor instrument, associating consistent timestamps and neces-
sary metadata.” Data transmission is a “functionality that transfers data over a
communication channel using specified network protocols.” The measurement
layer acts as interface between sensor networks and Wavellite. It abstracts from
the heterogeneity of sensors, communication channels and network protocols,
and data encoding. It ensures that collected data are translated into measure-
ment results. Measurement results are data objects and are communicated to the
observation layer.

The observation layer and derivation layer map to the data processing subsys-
tem. They are concerned with data processing, in particular the data analysis
and scientific workflow enactment functionality of the data processing subsys-
tem. Data analysis is a “functionality that inspects, cleans, transforms data.”
Scientific workflow enactment “supports [the] composition and execution [of] a
series of computational or data manipulation steps.” The observation layer ab-
stracts from the heterogeneity of sensor data by mapping measurement results
to sensor observations. The term SensorObservation is aligned with the term
Observation of the SSN ontology. Sensor observations are data objects and are
communicated to the derivation and persistence layers.

The derivation layer maps sensor observations to dataset observations. It ab-
stracts the sensor aspect of sensor data. The term DatasetObservation is aligned
with the term Observation of the QB vocabulary. In addition, the derivation
layer supports the composition and execution of data manipulation steps—for
inspection, cleaning, and transformation of data, in particular. This feature of
the derivation layer is implemented as series of derivation steps, whereby at each
step an input set of dataset observations is processed to an output set of dataset
observations. Dataset observations are data objects and are communicated to
components of the derivation layer as well as to the situation and persistence
layers.

The situation layer maps to the knowledge acquisition subsystem. It is con-
cerned with the information attainment, information mapping, and knowledge
composition functionality of the knowledge acquisition subsystem. Information
is attained from dataset observations and is composed to situational knowledge,
i.e. individual situations instances of STO Situation. Situations are knowledge
objects and are communicated to the persistence layer.
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The persistence layer maps to the data and knowledge curation subsystems. It
is primarily concerned with identification and storage of data and knowledge.
Identification is a functionality that assigns global unique identifiers to informa-
tion objects. Storage and preservation is a functionality that persists information
objects and provides access to them upon request.

The access layer maps to the data and knowledge access subsystems. It is
primarily concerned with access control as well as publication and discovery
of, and access to, data and knowledge. Access control is a “functionality that
approves or disapproves of access requests based on specified access policies.”
Publication is a “functionality that provides clean, well-annotated, anonymity-
preserving [data and knowledge sets] in a suitable format.” Discovery and access
is a “functionality that retrieves requested [data or knowledge] from a [data and
knowledge] resource by using suitable search technology.”

The processing layer maps to the knowledge processing subsystem. It is con-
cerned with processing situational knowledge. The layer includes generic and
application-specific software agents that process situational knowledge. For ex-
ample, a generic tool that visualizes situational knowledge in space-time is a
software agent of the processing layer.

3.3.2 Implementation Viewpoints

This section presents Wavellite from the three ENVRI-RM+K viewpoints, namely
the science, information, and computational viewpoints. Being a software frame-
work, of particular interest are the information and computational viewpoints.
However, the section first presents the science viewpoint and discusses the com-
munities, roles, and behaviours that are relevant to Wavellite applications.

Science Viewpoint

In Wavellite applications, all ENVRI-RM+K communities are relevant, albeit to
a varying extent. Given that the primary purpose of Wavellite applications is
situational knowledge acquisition and processing, the most important commu-
nities are those involved in the preparation and execution of tasks related to
these processes.

The most relevant roles in the data acquisition community are the sensor, sensor
network, and the measurement layer. A sensor “measures a physical quantity
and converts it into a signal which can be read by an observer or by an (elec-
tronic) instrument.” A sensor network “is a network consisting of distributed au-
tonomous sensors to monitor physical or environmental conditions.” In Wavel-
lite applications, sensor and sensor network are both passive roles. The measure-
ment layer collects sensor data transmitted over a communication channel, and
is a passive role in the data acquisition community. In Wavellite applications, the
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communication between the measurement layer and sensors is, generally, direct.
It is components of the measurement layer that connect to sensors and collect
data.

Other roles in the data acquisition community are relevant, albeit to a lesser
extent. The technician, a “person who develops and deploys sensor instruments
[...],” is relevant to Wavellite applications. However, in general sensor instru-
ments are deployed prior to application development, and from the perspective
of the application their set-up is determined. In addition to technicians, the en-
vironmental scientist is an important role of the data acquisition community for
Wavellite applications because such persons hold domain knowledge, such as
knowledge about the properties observed by sensors or about the environmen-
tal phenomena involved in situations.

Among the behaviours of the data acquisition community, the most impor-
tant is data collection. ENVRI-RM states that data collection is a “behaviour per-
formed by a data collector that obtains digital values from a sensor instrument
[or a human sensor], associating consistent timestamps and necessary meta-
data.” Data collector is an active role. In Wavellite applications, data collection
is generally performed by a passive role—a software agent and, specifically, a
component of the measurement layer.

The most relevant roles in the data curation community are the data curator and
the persistence layer. The data curator—an “active role, which is a person who
verifies the quality of the data, preserves and maintains the data as a resource,
and prepares various required data products”—is an important role because it
is critical to verify that data processing computations required for knowledge
acquisition are implemented correctly. The persistence layer stores, manages
and ensures access to information objects produced in Wavellite applications. It
is a passive role in the data curation community.

The storage—a “passive role, which includes memory, components, devices
and media that retain digital computer data used for computing for some in-
terval of time”—is a relevant role as well. In practical applications, the storage
is typically provided by a workstation or server, perhaps the one that executes
the application. Similarly, the storage administrator—an “active role, which is
a person who has the responsibilities to design data storage, tune queries, per-
form backup and recovery operations [...]”—is a relevant role but in practical
applications arguably not as relevant as the persistence layer.

Among the behaviours of the data curation community, the most important
are data quality checking and data preservation. According to ENVRI-RM, both
behaviours are performed by a data curator, which is an active role. Data quality
checking “detects and corrects (or removes) corrupt, inconsistent or inaccurate
records from data sets.” Data preservation “deposits (over long-term) the data
and metadata or other supplementary data and methods according to specified
policies, and makes them accessible on request.” In Wavellite applications, data



58 IMPLEMENTATION

are deposited by software agents, and data preservation is thus more accurately
described as a behaviour of a passive role—a component of the persistence layer.

Because the primary aim of Wavellite applications is knowledge acquisition,
and its curation, access, and processing, data publication is not a primary con-
cern. Therefore, the data publication community holds a relatively minor role in
Wavellite applications. The access layer is the most important role of the data
publication community. It is a passive role and enables the discovery and re-
trieval of (scientific) data. A second role with some importance in concrete ap-
plications is the data consumer. A data consumer receives and uses data. The
most relevant behaviour of the data publication community is data discovery
and access, which “retrieves requested data from a data resource by using suit-
able search technology.”

The data service provision community is critical in environmental research in-
frastructure as it “provides various services, applications and software/tools to
link and recombine data and information in order to derive knowledge” for a
wide range of services, including data assimilation, analysis, mining, and ex-
traction. Wavellite applications also rely on software agents that ‘recombine’
data. However, the type of software agents is constrained to meet the purpose
of Wavellite applications, i.e. situational knowledge acquisition. Data processing
occurs within the observation layer and, in particular, the derivation layer. These
two layers are passive roles of the data service provision community. The most
important behaviours of the data service provision community are the trans-
lation of measurement results into sensor observations, performed within the
observation layer; the translation of sensor observations into dataset observa-
tions, performed within the derivation layer; and the derivation of input sets of
dataset observations into output sets of dataset observations, performed within
the derivation layer.

Akin to the data publication community, the data usage community holds a
relatively minor role in Wavellite applications. This is because it is situational
knowledge, rather than data, that is of primary interest. Nevertheless, a relevant
role is the technologist or engineer—an “active role, which is a person who de-
velops and maintains the research infrastructure.” In Wavellite applications, the
technologist is responsible for the implementation and maintenance of the appli-
cation, and is thus a primary user of data. Other roles are potentially relevant,
in particular the scientist or researcher.

The passive roles involved in knowledge acquisition, namely the extractor,
mapper, and composer are key roles in the knowledge acquisition community.
These are software agents that operate within the situation layer. The situa-
tion layer is an additional important passive role of the knowledge acquisition
community. In Wavellite applications, extractors, mappers, and composers are
responsible for the acquisition of situational knowledge from dataset observa-
tions. The result are situations. Relevant active roles in the knowledge acqui-
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sition community include computer and domain experts. Experts design and
implement software agents for knowledge acquisition. Thus, experts are partic-
ularly important in the design and implementation phases of Wavellite appli-
cations. During runtime, it is primarily passive roles that perform knowledge
acquisition, which thus operate autonomously.

Being the core goal of the Wavellite software framework, knowledge acqui-
sition is arguably the most important behaviour of the knowledge acquisition
community. It consists of the information attainment, information mapping,
and knowledge composition behaviours. Such behaviours are performed by at-
tainers, mappers, and composers, respectively. However, applications generally
need to extend the Wavellite software framework with domain program logic to
implement specific knowledge acquisition tasks. Software extension, performed
by computer experts, is thus an important behaviour.

A role of particular interest in the knowledge curation community is the knowl-
edge representer. It is a passive role, a software agent of the persistence layer that
represents sensor observations, dataset observations, and situations according to
the syntax and semantics of data models, knowledge representation languages,
and ontologies. In Wavellite applications, RDF is the data model, RDFS and
OWL are the knowledge representation languages, and the SSN ontology, QB
vocabulary, STO, OWL-Time, GeoSPARQL, and PROV-O are the ontologies. In
addition to being a passive role of the data curation community, the persistence
layer is also a passive role of the knowledge curation community.

Knowledge identification is a behaviour of the knowledge curation commu-
nity by which situational knowledge is identified. By building on RDF, knowl-
edge identification in Wavellite is by means of IRI. Therefore, situations are re-
sources identified by IRI. Infons, relations, objects, attributes, and values related
to situations are also resources identified by IRI. Knowledge persistence is an-
other relevant behaviour of the knowledge curation community, performed by
knowledge stores. In Wavellite applications, the knowledge store is generally a
knowledge base (Baader et al., 2007) and is a software agent of the persistence
layer. At a minimum, the knowledge store must support the persistence and
retrieval of RDF.

The key role in the knowledge publication community is the access layer. It is
a passive role and enables the retrieval and discovery of knowledge. In Wavel-
lite applications, retrieval and discovery is generally by means of SPARQL. As
for data, the publication of knowledge is not of primary concern in Wavellite
applications, especially those discussed in Chapter 4. Thus, roles such as the
knowledge publication repository or the knowledge consumer, as well as the
knowledge publication behaviour, are not particularly relevant.

The knowledge provider is an important role of the knowledge service provi-
sion community. In Wavellite applications, the knowledge provider is generally
a passive role, a software agent that provides situational knowledge to service
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providers. The service provider is an active or passive role in the ENVRI-RM
data service provision community, “an entity providing the services to be used.”
In Wavellite applications, service providers are generally passive roles and en-
tities of the processing layer. For instance, a service that visualizes situational
knowledge is a service provider of the processing layer. The processing layer
itself is a passive role of the knowledge service provision community. The soft-
ware engineer is a further role of the knowledge service provision community,
relevant to Wavellite applications. It is an active role, a person who implements
domain specific services, applications, and software tools, such as for situational
knowledge visualization, analysis, and reasoning.

Roles in the knowledge usage community are equal to those of the ENVRI-RM
data usage community. All roles are potentially interesting, including educators,
decision makers, consultants, and the general public. However, of most rele-
vance to Wavellite applications are the technologist or engineer and the scientist
or researcher, for instance aerosol scientists and agricultural advisers.

Information Viewpoint

The Wavellite information viewpoint is discussed for the aspects introduced by
ENVRI-RM, namely components, dynamic schemata, static schemata, and sub-
system schemata.

Components Wavellite introduces a number of information objects. They can be
grouped into the three ENVRI-RM categories, which are extended with knowl-
edge: the meta information of data and knowledge collections, the data and
knowledge processed by the system, and the information used for the manage-
ment of data and knowledge. The most important category is the data and
knowledge processed by the system.

Information objects of the first category, i.e. meta information of data and
knowledge collections, include specifications for data processing and for knowl-
edge acquisition, as well as the ENVRI-RM specification of observation and de-
scription of the measurement procedure. An important information object of
this category is the DataStructureDefinition, a term of the QB vocabulary. A
data structure definition is meta information for one or more data collections,
called datasets. Information objects of interest of the third category, i.e. informa-
tion used for the management of data and knowledge, are data and knowledge
provenance objects. Instances of data and knowledge provenance objects are
individuals of PROV-O Entity.

Information objects of the second category, i.e. data and knowledge pro-
cessed by the system, are of primary interest here and are discussed in details.
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(a) The sensing device, property, and feature of interest related to the sensor observation.
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(b) The temporal location and observation value related to the sensor observation.

Figure 3.5: A represented sensor observation for air temperature observed at a particular point

in time. For better readability, the sensor observation is split into two graphs. The graphs can be

joined via node ex:44b.

The pair

Mr = (vm, c(vm)) (3.1)

is a MeasurementResult and is a data object. It consists of a measurement
value, vm, and the context of vm, c(vm). A measurement value is a number as-
signed in measurement (Finkelstein, 1982). It is generally a number of primitive
type double. The tuple c(vm) = (s, p, f , lt, ls, q) consists of objects for a sensor,
s, a property, p, a feature, f , a temporal location, lt, a spatial location, ls, and a
quality, q.

The SensorObservation is a data object with semantics aligned with the term
SSN Observation. Formally it is the tuple

Os = (so, s, p, f , lt, ls, q) (3.2)

consisting of a sensor output, so, and a sensor, a property, a feature, a tempo-
ral location, a spatial location, and a quality. A sensor observation relates to the
sensor that made the observation, the observed property, the monitored feature,
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Figure 3.6: A represented dataset observation of dataset ex:d1 with component property values

for temporal location, temperature, and humidity.

the sensor output and observation value, the time and place where the obser-
vation was made, and the quality of observation. Figure 3.5 is an example of a
represented sensor observation for air temperature observed at a particular point
in time. The sensor observation is represented in RDF according to the SSN
ontology. The sensing device, namely the thermometer ex:tm1, is considered to
be at a fixed point in space. The spatial location is thus preferably modelled as
metadata of the sensing device, rather than of the sensor observation.

The DatasetObservation is a data object with semantics aligned with the
term QB Observation. It is the object from which knowledge is attained. For-
mally it is the pair

Od = (d, C) (3.3)

consisting of a dataset, d, and a set, C, of dataset observation components.
A dataset observation component, c ∈ C, is a pair c = (cp, pv) consisting of a
component property, cp, and a component property value, pv. The component
properties of a dataset observation must be distinct. Considered are two com-
ponent property types, namely dimension component property, cd

p, and measure
component property, cm

p . Figure 3.6 is an example of a represented dataset obser-
vation. It relates to dataset ex:d1 and holds a set of component property values
for temporal location, temperature, and humidity. The dataset observation is
represented in RDF according to the QB vocabulary.

Attained information objects are of some primitive data type, such as String
or Double. For instance, the result of classifying a DatasetObservation using,
e.g., a trained MLP artificial neural network is a label for the class, and the label is
of primitive data type String. Mapped information objects are instances of STO
Object. Concrete examples include RelevantIndividual, Attribute, Value, or
Situation. STO objects may be OWL-Time or GeoSPARQL entities.

Situation is a knowledge object with semantics aligned with the term STO
Situation. In Wavellite, Situation is a composed knowledge object. A situa-
tion, S, is said to support a set of infons I . An infon i ∈ I is a tuple i = (r, t,O)
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Figure 3.7: A represented situation for a storm at a particular point in time and space. For better

readability, the polygon coordinates are omitted.

consisting of a relation, r, a polarity, t, and a set of relevant objects, O. A relevant
object, o ∈ O, is any object that is relevant to the infon i, e.g. an object repre-
senting a particular manifestation of an environmental phenomenon, a temporal
location, a spatial location, a sensor. Relevant objects O stand in relation r if
t = 1 and do not stand in r if t = 0.

Figure 3.7 is an example of a represented situation for a storm at a particular
point in time and space. The situation supports an infon with storm-at-relation
and three objects: a relevant individual representing the storm (ex:640), a tem-
poral location, and a spatial location. The relevant individual can be annotated
with attributes, such as the area of the storm. The situation is represented in
RDF according to the STO.

Wavellite introduces a number of information action types. There exist three
fundamental types: translation, processing, and acquisition. The translation of
measurement result Mr into sensor observation Os

Tm : Mr 7→ Os (3.4)

is a mapping of elements of the pair (vm, c(vm)) to elements of the sensor ob-
servation Os, specifically vm 7→ so and the mapping of the elements s, p, f , lt, ls, q
onto themselves. The translator Tm is used at the observation layer.

The translation of sensor observation Os into dataset observation Od

To(d, Cp) : Os 7→ Od (3.5)

is a mapping of elements of the sensor observation Os to components c ∈ C of
the dataset observation Od = (d, C), element of dataset d. The translator To(d, Cp)

accepts two parameters, namely a dataset d and a set Cp of component properties.
For sensor observations with constant spatial location, the Os elements lt and so
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are mapped to a dimension component property, cd
p, and a measure component

property, cm
p , respectively, whereby cd

p, cm
p ∈ Cp. In this case, dataset observations

form a time series that can be graphed with cd
p as domain (x-axis) and cm

p as range
(y-axis). For sensor observations with variable spatial location, the Os entity lp

is mapped to an additional dimension component property. The translator To is
used at the derivation layer.

The processing of a source set of dataset observations (′) into a target set of
dataset observations (′′), elements of dataset d

Po(d) : {Oi
d}′ 7→ {O

j
d}′′ (3.6)

whereby i = 1, . . . , p and j = 1, . . . , q, is a formalization of the ENVRI-RM
process data information action type. It is used at the derivation layer to process
dataset observations.

Several concrete Po(d) implementations are of interest. Merge(d) : {Oi
d}′ 7→

{O1
d}′′ processes a set of dataset observations (′) into a singleton (′′). The sin-

gleton consists of a dataset observation Od = (d, C) element of dataset d with
set C for the union of components c = (cp, pv) of dataset observations {Oi

d}′. It
is assumed that component properties common to multiple dataset observations
in {Oi

d}′ have the same component property value, pv. Otherwise, the single-
ton {O1

d}′′ will non-deterministically include one component, c, with component
property common to multiple dataset observations in {Oi

d}′. For instance, if cp

is a dimension component property and the related pv a temporal location then
pv should be same for all dataset observations in {Oi

d}′ that have cp in common.
Aggregate(d, cd

p, F, P) : {Oi
d}′ 7→ {O

j
d}′′ applies, for each applicable component

property cp of components c = (cp, pv) of dataset observations {Oi
d}′ within

time period P, the function F to the corresponding component property values
pv. It is assumed that the temporal location dimension component property cd

p is

common to all dataset observations in {Oi
d}′. The resulting set {Oj

d}′′ consists of
dataset observations with set C including the component with dimension com-
ponent property cd

p and related temporal location pv rounded to the time period
P as well as, for each applicable component property cp, the related component
property value pv for the result of the function F. Examples for functions F in-
clude mean, max, or min. Examples of time periods P include minute, hour,
or day. In addition to Merge and Aggregate, Po(d) : {Oi

d}′ 7→ {O
j
d}′′ imple-

mentations may be for interpolation, filtering, Fourier transform, and other data
processing techniques.

The acquisition of situational knowledge from a source set {Oi
d} of dataset

observations into a target set {Sj} of situations

As : {Oi
d} 7→ {Sj} (3.7)
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whereby i = 1, . . . , p and j = 1, . . . , q, is a formalization of the perform knowl-
edge acquisition information action type, and is used at the situation layer. The
As information action type performs the information attainment, information
mapping, and knowledge composition information action types. Computational
models of interest to As implementations include data-driven models, such as
machine learning classification or complex event processing (Luckham, 2002,
CEP), and physically-based models. For instance, ML(C, T) : {Oi

d} 7→ {Sj} is for
machine learning and uses the classifier C and the training dataset T to classify
dataset observations {Oi

d} and acquire situational knowledge {Sj}. An example
classifier C is the MLP artificial neural network.

Other ENVRI-RM+K information action types are relevant to Wavellite. For
instance, the ENVRI-RM perform measurement observation information action
type produces measurement results, and is used at the measurement layer; the
store data and store knowledge information action types are used at the persis-
tence layer; the query data and query knowledge information action types are
used at the access layer.

In Wavellite applications, information objects exist as information object in-
stances. They are input to and output of information action types. It is instances
that are translated, processed, acquired, stored, queried, represented. Of par-
ticular interest within the framework are measurement result, sensor observa-
tion, dataset observation, and situation instances. These are objects, instances
of corresponding classes of the Wavellite software framework. As a result of
representation, sensor observations, dataset observations, and situations are in-
dividuals instances of the concepts SSN Observation, QB Observation, and STO
Situation, respectively.

Various ENVRI-RM data states and knowledge states of the +K extension are
relevant to Wavellite. Of particular interest are the data states raw, mapped,
and processed and the knowledge states acquired and processed. Measurement
results are in raw data state. Sensor observations are in mapped data state.
Dataset observations are in processed data state. Situations are either in acquired
or processed knowledge state, depending on whether a situation is the output of
the perform knowledge acquisition or the process knowledge information action
types, respectively.

Dynamic Schemata The design and deployment of sensor networks for mea-
surement is generally completed before a Wavellite application is designed, im-
plemented, and deployed. The sensor network is in operation, and it is known
what data can be obtained via which communication channel. The Wavellite ap-
plication is then developed in order to implement situational knowledge acquisi-
tion problems. The specifics of a Wavellite application depend on the addressed
problem. However, at a minimum, a Wavellite application acquires and stores
situational knowledge.
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Situational knowledge acquisition tasks need to be first specified. The result
is an information object, namely a specification for knowledge acquisition. It
is a description of knowledge acquisition in the system and includes informa-
tion about the Wavellite components as well as the information objects involved
in information attainment, information mapping, and knowledge composition.
Additionally, it must be specified how acquired situational knowledge is per-
sisted. The result is an information object, namely a specification for knowledge
curation. Given the specifications, the Wavellite application can be developed.
The application needs to extend the Wavellite framework in order to implement
domain knowledge and program logic according to the specifications. An im-
plemented and tested Wavellite application can be executed.

A Wavellite application may not need to implement functionality of the mea-
surement, observation, and derivation layers. This is the case when there exist
dataset observations that do not need processing in order to serve knowledge ac-
quisition. In other words, the Wavellite application is presented with dataset ob-
servations that serve as input to knowledge acquisition. In such applications, the
situation layer performs knowledge acquisition, which entails performing infor-
mation attainment, information mapping, and knowledge composition. Dataset
observations serve as input to information attainment, which results in attained
information objects. Attained informations objects serve as input to information
mapping, which results in mapped informations objects. Mapped information
objects serve as input to knowledge composition, which results in composed
knowledge objects, i.e. situations. Situations are then represented and stored.

A Wavellite application may need to implement functionality of the measure-
ment, observation, and derivation layers. It may only need to implement func-
tionality of the derivation layer or it may also need to implement functionality
of the observation and measurement layers. All layers are involved in applica-
tions that collect data from sensors. In such applications, the measurement layer
performs data collection from sensors, associates consistent timestamps and nec-
essary metadata to the obtained digital values, and returns measurement results.
Measurement results are then translated into sensor observations by the obser-
vation layer. The system may represent and store sensor observations. Sensor
observations are then translated into dataset observations by the derivation layer.
The system may represent and store dataset observations. Generally, dataset ob-
servations need to be processed prior to knowledge acquisition. Such processing
typically consists of several processing steps, as detailed by the specification for
data processing information object. Dataset observation processing is executed
by the derivation layer.

Beyond knowledge acquisition, a Wavellite application may need to process
situational knowledge. In such applications, the processing layer uses the ac-
cess layer to query situational knowledge and performs a process knowledge
information action type. Examples for knowledge processing include visualiza-
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tion, analysis, or reasoning. Wavellite applications may record the provenance of
sensor observations, dataset observations, and situations during their life-cycle.
The result of the track provenance information action type are data provenance
or knowledge provenance information objects. Such objects can be represented,
stored, queried, and potentially processed.

Static Schemata ENVRI-RM provides a set of constraints for data collection.
The model underscores the importance of recording information about the mea-
surement set-up, including information about involved sensing devices. Such in-
formation is important also in Wavellite applications. At the measurement layer,
a measurement result must have a measurement value. While it arguably de-
pends on the application, in general the context of the measurement value must
be complete with information about the sensing device, the observed property
and feature, and temporal location. Such information is thus associated with the
measurement value. Spatial location must be included if the sensing device is
attached to a mobile platform. Otherwise it is optional. Quality is optional.

At the observation layer, it is required that all obtained measurement results
are translated into sensor observations. Measurement result elements must be
correctly mapped to sensor observation elements. Sensor observations and their
elements must have associated identifiers. At the derivation layer, it is required
that all obtained sensor observations are translated into dataset observations.
Sensor observation elements, such as temporal location and sensor output, must
be correctly mapped to dataset observation elements, i.e. component property
values. Resulting dataset observations must relate to a dataset. Dataset observa-
tions and their elements must have associated identifiers. At the situation layer,
it is required that all attained information is appropriately mapped to atomic
entities of a conceptual model and composed to situations. Situations and their
elements must have associated identifiers.

At the persistence layer, sensor observations, dataset observations, and situa-
tions must be represented according to the SSN ontology, the QB vocabulary, and
the STO, respectively. Temporal and spatial information associated with sensor
observations, dataset observations, and situations must be represented accord-
ing to OWL-Time and GeoSPARQL, respectively. Provenance information about
sensor observations, dataset observations, and situations must be represented
according to PROV-O. Representation is required to associate IRIs to resources
so that resources are identified. All RDF statements resulting from the represen-
tation of sensor observations, dataset observations, and situations obtained by
the persistence layer must be persisted by the data and knowledge stores.

Subsystem Schemata Subsystem schemata regroup Wavellite information ob-
jects and information action types into Wavellite layers. Discussed are the mea-
surement, observation, derivation, and situation layers.
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Figure 3.8: The Wavellite computational objects partitioned into its layers.

At the measurement layer, the relevant information object is the measure-
ment result. The relevant information action type is to perform measurement.
In Wavellite, measurement results are not stored. Instead, they are necessarily
forwarded to the observation layer of the Wavellite application.

At the observation layer, the relevant information objects are the measure-
ment result and the sensor observation. The relevant information action type is
the translation of measurement results into sensor observations (Function 3.4).
The action type is performed on obtained measurement results. The result of the
action are sensor observations.

At the derivation layer, the relevant information objects are the sensor ob-
servation and the dataset observation. There are two relevant information ac-
tion types. First, the translation of sensor observations into dataset observations
(Function 3.5). This action type is performed on obtained sensor observations.
The result are dataset observations. The second information action type is the
processing of dataset observations (Function 3.6). This action type is performed
on dataset observations. The result are dataset observations.

At the situation layer, the relevant information objects are the dataset obser-
vation and the situation. The relevant information action type is the acquisition
of situations from dataset observations (Function 3.7). The action type is per-
formed on obtained dataset observations. The result are situations.
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Computational Viewpoint

The computational viewpoint accounts for the main computational objects in
the Wavellite software framework and applications, as well as object interfaces.
Computational objects are organized according to Wavellite layers. Figure 3.8 is
a schematic overview of the computational objects partitioned into layers, and
computational object interactions.

Within the measurement layer, the measurement reader is the component
that implements data collection. A measurement reader obtains digital numer-
ical values from one or more sensors. Such data are transmitted from sensors
to the measurement reader over a communication channel. Typically it is the
measurement reader that collects data from sensors. The measurement reader is
thus configured so that it can connect to the sensor and request data. However,
sensors may also stream data to the measurement reader. Sensors are generally
devices, i.e. instruments. They are sources of digital numerical values resulting
from measurement, implemented by devices. The measurement reader asso-
ciates timestamps and metadata to obtained digital numerical values. Values,
timestamps and metadata form measurement results Mr. Measurement results
are not persisted; they are forwarded to the observation layer.

Within the observation layer, the observation engine is the component that
obtains measurement results and translates measurement results into sensor ob-
servations, Os. The translation of measurement results is implemented by a
translation module. The module implements the operator Tm (Function 3.4).
Measurement results are generally streamed to the observation engine by the
measurement reader. Sensor observations may be persisted by forwarding them
to the persistence layer. Sensor observations are forwarded to the derivation
layer.

Within the derivation layer, the dataset engine is the component that obtains
sensor observations and translates sensor observations into dataset observations,
Od. The translation of sensor observations is implemented by a translation mod-
ule. The module implements the operator To(d, Cp) (Function 3.5). Sensor obser-
vations are generally streamed to the dataset engine by the observation engine
or by the observation reader of the access layer. Dataset observations may be
persisted by forwarding them to the persistence layer. Dataset observations may
be processed by (chains of) derivation engines and are (eventually) forwarded to
the situation layer. The derivation engine is the component that obtains dataset
observations and processes source sets of dataset observations into target sets
of dataset observations. The processing of dataset observations is implemented
by processing modules. A processing module implements an operator Po(d)
(Function 3.6) and is typically backed by a computational library, such as Apache
Commons Math or JScience.
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Within the situation layer, the situation engine is the component that acquires
situations from dataset observations. A situation engine orchestrates knowledge
acquisition and may associate with one or more acquisition modules. The ac-
quisition of situations is implemented by acquisition modules. An acquisition
module implements an operator As (Function 3.7). The acquisition of situations
requires the attainment of information objects from dataset observations, the
mapping of attained information objects to entities of a conceptual model, and
the composition of mapped information objects to situations. An acquisition
module is typically backed by a computational model for knowledge acquisition
from data. Such models may be data-driven or physically-based and employ
third party libraries such as WEKA (Hall et al., 2009) or Esper. Dataset obser-
vations are generally streamed to the situation engine by the derivation layer,
either by a dataset engine or a derivation engine, or by the derivation reader of
the access layer. Situations are persisted by forwarding them to the persistence
layer.

Within the persistence layer, the observation writer, derivation writer, and
situation writer are the components that obtain sensor observations, dataset ob-
servations, and situations, respectively, and associate with a store module to
persist the objects. It is possible for writers to associate with multiple store mod-
ules. A store module associates with a representation module and a store. The
store implements the storage and preservation functionality for data and knowl-
edge. The representation module implements the identification and representa-
tion functionality for data and knowledge. In Wavellite applications discussed
in Chapter 4 the store is, specifically, a knowledge base or RDF database, and
the representation module is for RDF and the ontological framework.

Within the access layer, the observation reader is the component that collects
sensor observations from the store or external sources. The derivation reader
is the component that collects dataset observations from the store or external
sources. The observation and derivation readers import data into a Wavellite
application. The Wavellite server implements a RESTful web service API (Field-
ing, 2000) and is the component primarily intended for the retrieval of situations,
subsequently processed, e.g. for visualization. However, the Wavellite server can
support the retrieval of sensor observations and dataset observations as well.

Within the process layer, the Wavellite JavaScript browser is a generic client
application for the visualization of situational knowledge in time and space. The
Wavellite browser retrieves situations via the Wavellite server, and processes sit-
uations to extract temporal and spatial locations and visualize situational knowl-
edge in space-time. The process layer also includes domain specific applications
for situational knowledge processing developed by the science community of a
Wavellite application.
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3.4 SUMMARY

We have described the architecture and implementation of the Wavellite software
framework for situation awareness in environmental monitoring.

The description builds on the ENVRI-RM+K reference model for knowledge-
based environmental research infrastructure. The reference model is arguably
a useful foundation for an architectural description of the Wavellite software
framework because the model explicitly includes sensors and the science com-
munity; is expressive enough to support the modelling of Wavellite data and
knowledge life-cycles, data and knowledge information objects and action types,
Wavellite layers, components, and modules, as well as agents involved in the
specification, development, and execution of Wavellite applications; and enables
an alignment of the Wavellite software framework with knowledge-based envi-
ronmental research infrastructure.

The alignment is interesting because it suggests that it may be possible for
exiting environmental research infrastructure to adopt ideas developed in this
dissertation in order to evolve from predominantly data-based systems into
knowledge-based systems, and possibly situation-aware systems.

The main features of the Wavellite software framework can be summarized
as follows:

• It supports the implementation of problems with complex data processing
and knowledge acquisition tasks that begin with the digital numbers ob-
tained in environmental monitoring and end with represented knowledge
about observed situations.

• It supports the explicit representation, using semantic web technologies, of
data, information, and knowledge objects as well as provenance informa-
tion for these objects, including information about the agents and activities
involved in object processing.

• It supports the preservation of data, including original sensor data and
datasets generated at each processing step. This feature is critical in envi-
ronmental research infrastructure because scientists need to retain original
sensor data, and generated datasets can be valuable data products.

• It distinguishes data and knowledge. Jajaga et al. (2013) describe a sensor
deployment in a river, used to collect values about water quality parame-
ters. Depending on the obtained values, the authors classify sensors as clean
or polluted. This approach highlights the problem of modelling knowledge
about the monitored environment at the sensor layer. It is not the sensor
that is clean or polluted but the monitored environment, in this case the
river, i.e. a spatial feature and object in situations. Hence the separated
modelling of observations and situations in Wavellite.
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• It distinguishes sensor data and processed data. Applications often require
complex data processing chains on sensor data before data can be utilized
in knowledge acquisition. The distinct modelling of sensor observations
and dataset observations in Wavellite acknowledges that processed data
are different from sensor data. Furthermore, compared to an ontology for
sensor data, an ontology for datasets is better suited for the representation
of multivariate data. It makes thus arguably sense to adopt different on-
tologies for the representation of sensor and dataset observations. Hence
the distinct modelling of sensor observations and dataset observations in
Wavellite.

• It allows for arbitrary data processing and knowledge acquisition. This
feature is arguably important in environmental monitoring, and research
applications, because of the generally large problem spaces, the numerous
available methods in data processing and knowledge acquisition, and the
heterogeneity of data and situational knowledge.

• It adopts a hybrid approach to situational knowledge acquisition and pro-
cessing. According to Ye et al. (2012) “a combination of specification- [de-
ductive] and learning-based [inductive] approaches is required to support
successful situation identification in a variety of environments and scenar-
ios.” Ye et al. note that “specification-based approaches provide the ability
to represent situations and incorporate the rich knowledge and semantics
required to reason about them.” In contrast, “learning approaches [...] have
the ability to analyse raw data, and can thus extract patterns and deal with
uncertainty.” Janowicz et al. (2015) also underscore “that making sense
of data and gaining new insights works best if inductive and deductive
techniques go hand-in-hand instead of competing over the prerogative of
interpretation.”

• It uses the concept of situation as abstraction for knowledge acquired from
data. Situations “provide a simple, human understandable representation
of sensor data to applications, whilst shielding applications from the com-
plexities of sensor readings, sensor data noise, and inferences activities”
(Ye et al., 2012).

• It enables the development of environmental monitoring systems that per-
form automated and near real-time situational knowledge acquisition and
processing.

• It supports the implementation of environmental monitoring systems that
perceive, comprehend, and project situations. Such systems are thus situa-
tion aware.
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Having presented the architecture and implementation of the Wavellite soft-
ware framework, we now turn to concrete case studies that demonstrate the ap-
plication of the framework in the development of situation-aware environmental
monitoring systems.





4 Applications

We provide an overview of the case studies selected to validate the proposed
software process for situational knowledge acquisition from environmental mon-
itoring data, and to demonstrate the generality of the framework. At the core of
each case study is the development and evaluation of situation-aware environ-
mental monitoring system applications. Each application builds on the Wavel-
lite software framework. The case studies address problems in three distinct
domains, namely intelligent transportation systems in Paper II; atmospheric sci-
ence in Paper III; and agricultural science in Paper IV. Paper I builds the foun-
dations for Paper II. Paper V describes the ENVRI-RM extension and is thus not
an application. The three applications presented in papers II-IV were developed
using evolving versions of the framework. They are presented here in chronolog-
ical order. Hence, the application in intelligent transportation systems builds on
the oldest version of the framework while the application in agricultural science
builds on the most recent. The papers II-IV present the applications with the
framework version at the time of individual application development whereas
this chapter discusses the applications using the framework version presented
in Chapter 3. Furthermore, the papers present the case studies in greater de-
tail whereas this chapter only provides an overview, and draws a line through
framework and application development over time.

4.1 ROAD TRAFFIC

Road traffic situation modelling is the case study in intelligent transportation
systems and is the subject of Paper II. The case study builds on earlier related
work published in Paper I and Stocker et al. (2012b), which we briefly present
first.

Paper I describes an approach for the detection and classification of vehicles
in road-pavement vibration data using supervised machine learning methods.
The work was conducted during 2010-2011 as part of a project that aimed at
systems for situation awareness in an operational environment monitored us-
ing a heterogeneous sensor network including video, acoustic, chemical, and
vibration sensors. Paper I presents the workflow that was developed to continu-
ously collect road-pavement vibration data from one vibration sensor as well as
a stream of video camera images; process the collected data using digital signal
processing methods to filter and transform vibration signals in time domain into
vibration patterns in frequency domain; build training datasets and study the
viability of supervised machine learning methods for the detection and classifi-
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Figure 4.1: Image of the white board showing the sketches for the ideas that formed the founda-

tions of the Wavellite software framework. The approach presented in Paper I for vehicle-induced

vibration pattern classification served as foundation for the approach to road-traffic situational

knowledge acquisition, representation, and processing presented in Paper II.

cation of road vehicles by evaluating their performance in classifying vibration
patterns. Data was collected for approximately 710 hours, during measurement
sessions each lasting roughly a 9-5 workday. The total amount of stored data
was approximately 1.7 TB and included 5 billion vibration measurement values.
A dataset was created with 1911 labelled vibration patterns, including those for
13 vehicle classes. Vibration pattern classification performance was over 94% for
the detection of vehicles, and between 43% and 86% for the classification of vehi-
cles. The emphasis in Paper I is on high volume data acquisition and processing,
the evaluation of supervised machine learning methods for vehicle detection and
classification, and the comparison of our results with those published in related
studies. The Wavellite software framework had so far not been conceived.

Stocker et al. (2012b) builds on Paper I and utilizes ontology and related tech-
nologies to explicitly represent the result of machine learning classification. The
approach is interesting in a real-time context for a system that monitors a road
section and obtains symbolic knowledge about observed vehicles. The results
of road vehicle detection and classification were thus ontology assertions for the
class membership of individuals representing vehicles travelling the monitored
road section. Stocker et al. (2012b) extended the SSN ontology with domain
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knowledge. Observed vehicles were modelled as features, and vehicle prop-
erties, such as speed, were modelled as feature properties. The emphasis in
Stocker et al. (2012b) is on the explicit representation of knowledge, obtained
using data-driven methods from processed sensor data, about physical entities
in an environment monitored by a sensor network, and the processing of such
knowledge to infer properties of observed entities. We had not utilized the con-
cept of situation. The work so far, however, did pave the road for the develop-
ment of the Wavellite software framework. As anecdotal side note, Figure 4.1 is
a picture dated Saturday, August 27, 2011 of the white board at my office at the
University of Eastern Finland, Kuopio campus. The picture shows the sketches
drawn on that day for the ideas that formed the foundations of the Wavellite
software framework, and the applications discussed next.

In Paper II, situations are for observed vehicles travelling a monitored road
section. Road-pavement vibration is monitored using three accelerometer sens-
ing devices. Vehicles are detected and classified in road-pavement vibration
data using machine learning classification. Specifically, MLP feed-forward arti-
ficial neural networks are trained and validated using labelled data. At regular
time intervals and for each of the three sensing devices, trained artificial neural
networks assess whether a vehicle is observed and whether the observed vehicle
is light or heavy. In situations, observed vehicles are said to be near a particular
sensing device at a certain time. Situations are processed to derive information
about vehicle driving side and speed.

The approach proposed in Stocker et al. (2012b), also elaborated for residen-
tial building monitoring in Stocker et al. (2012a), has at least two shortcomings.
First, in practice sensing devices do not observe vehicles: they observe road-
pavement vibration. Second, a system that uses the SSN ontology to represent
knowledge about vehicles should not use the same ontology to represent sensor
observations for road-pavement vibration. Doing so is hardly elegant as it mixes
different levels of abstraction. It soon became thus clear that knowledge about
the monitored environment ought to be represented using a different ontology.

Paper II addresses these shortcomings. It utilizes the concept of situation, as
developed in situation theory, and the STO to represent situational knowledge
about the monitored road section. By adopting the STO for the representation
of knowledge about structured parts of monitored reality, the approach pursued
in Paper II permits using the SSN ontology to represent sensor observations. As
a consequence, in Paper II the feature of interest is the road pavement, and no
longer the vehicle, and vibration is the observed property. Sensors thus observe
pavement vibration, which reflects the reality on the ground more accurately.
As the main contribution, Paper II introduces the situation layer, and proposes
a first architecture of the Wavellite software framework.

In order to implement the application, the framework is extended with do-
main knowledge and program logic. Domain knowledge includes the type of
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sensing device, i.e. accelerometer; the vehicle types, i.e. light and heavy; the
disjointness of light and heavy vehicles; and assertions for infon relations, mea-
sured feature and property, and individuals for the three accelerometer sensing
devices.

At the measurement layer, three measurement readers (one for each of the
three sensing devices) retrieve road-pavement vibration data via HTTP from as-
sociated sensing devices. Collected data are binary encoded in Waveform Audio
File Format. Binary encoded data are processed to measurement values vm,
timestamps and metadata are composed to contexts c(vm) of measurement val-
ues, and the resulting measurement results Mr are forwarded to the observation
layer. At the observation layer, measurement results are translated into sensor
observations Os by an observation engine. Sensor observations are not persisted;
they are forwarded to the derivation layer.

At the derivation layer, a dataset engine translates sensor observations into
dataset observations Od of three distinct datasets, di, one for each sensing de-
vice, i = 1, 2, 3. Dataset observations are ordered in time and can be plotted as
time series. Datasets are processed using filtering and Fourier transform to en-
hance the vibration signal induced by vehicles, and to transform signals in time
domain into patterns in frequency domain. This transformation is performed
every second for a window of length 16 384 of the most recent dataset obser-
vations (roughly the past 8 s) by a chain of three derivation engines. The first
derivation engine splits datasets di into datasets dj

i of size 16 384, j = 1, . . . , k,
where k is the runtime of the experiment in seconds. For datasets dj

i , the sec-
ond derivation engine performs a bandpass filter between 100 Hz and 160 Hz to
enhance the vibration signal induced by vehicles. The third derivation engine
transforms filtered datasets dj

i from time domain into frequency domain using
Fourier transform. The resulting dataset observations are finally forwarded to
the situation layer. Dataset observations are not persisted.

At the situation layer, a situation engine obtains Fourier transformed dataset
observations, and associates with an acquisition module that classifies dataset
observations to assess whether a vehicle is observed by sensing device i within
the 8 s interval. Vehicle detection returns class labels, either ‘vehicle’ or ‘no-
vehicle’. Such labels are attained information objects. Attained information
objects for ‘vehicle’ are mapped to an individual, ψ, instance of the ontology
class Vehicle. The result are mapped information objects Vehicle(ψ). For de-
tected vehicles Vehicle(ψ), vehicle classification returns additional class labels,
either ‘light vehicle’ or ‘heavy vehicle’. Such labels are attained information ob-
jects. They are mapped to ontology classes, either the ontology class for light
vehicle or the one for heavy vehicle. The result are mapped information ob-
jects LightVehicle(ψ) or HeavyVehicle(ψ). Situations result from composing
mapped information, in particular composing individuals ψ, the near-relation,
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and individuals for sensing devices, temporal locations and spatial locations to
infons of situations. Situations are forwarded to the persistence layer.

At the persistence layer, a situation writer obtains situations and instructs
the associated store module to persist situations. The store module uses an RDF
representation module to represent situations as sets of RDF statements, and
implements persistence using the Stardog RDF database (knowledge base).

Given situations for vehicles being near sensors at certain time points, the
application infers infons for the driving side and driving speed of vehicles. This
is performed by domain program logic implemented as software agent of the
processing layer. The software agent periodically retrieves (recent) situations
and performs reasoning. First, it infers the equivalence of vehicles in different
situations. Vehicles are inferred to be the same physical object if they were
observed by multiple sensors within a short time interval. For such vehicles, the
software then checks the consistency of the vehicle type, independently assessed
by the three classification processes associated with the three sensing devices.
An inconsistency occurs for vehicles inferred to be same but assessed to be of
different type. Inconsistencies can be manually reviewed. Finally, for vehicles
with consistent vehicle type the software infers infons for vehicle driving speed
and driving side.

This first application demonstrates the basic principles for how an environ-
mental monitoring system—consisting of a monitored physical environment,
hardware, software, and human agents—can utilize situation theory to model
observed situations, and utilize ontology and related technologies to represent
situational knowledge obtained from data processed by means of computational
models, specifically data-driven models and data acquired from an environmen-
tal sensor network.

Though the application relies on several data processing steps, the system
architecture presented in Paper II does not include the derivation layer. As a
result, the system is unable to represent (and curate) intermediate results in data
processing, such as filtered and Fourier transformed dataset observations.

The curation of sensor observations and intermediate results in data process-
ing, as dataset observations, is not of primary interest in this case study, for
two reasons. First, as the three accelerometer sensing devices each operate at
2000 Hz sampling frequency, the volumes of data are relatively large. Second,
sensor observations and dataset observations are arguably of little interest to an
application that aims at providing a near real-time picture of situations occur-
ring at a monitored road section. In this case it is situational knowledge that is of
greatest interest and worthwhile curating. Data collected in real-time is directly
processed and discarded.

In addition to introducing the situation layer, and present its role with an
application, a key aspect of Paper II is to demonstrate reasoning functionality
on situational knowledge curated by the system. Compared to the original data
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from which it is acquired, situational knowledge in symbolic form is relatively
straightforward to manipulate at the processing layer.

The road traffic case study falls into civil engineering more than environ-
mental science. The two case studies described next are closer to environmen-
tal science, and research infrastructure. However, the road traffic case study
underscores that the focus of this dissertation is not to develop environmental
research infrastructure but to develop a method for situational knowledge ac-
quisition from processed data using computational models, the representation
and processing of situational knowledge, and to validate the method for hetero-
geneous applications. Approaches for situational knowledge acquisition, and its
representation, are arguably of interest also to domains other than environmen-
tal science but similarly utilize sensor networks to monitor structured parts of
reality.

4.2 PARTICLE FORMATION

Atmospheric new particle formation is the case study in aerosol science and is
the subject of Paper III. The case study builds on earlier related work published
in Stocker et al. (2013).

Situations are for events of new particle formation and for cloud events occur-
ring at the Puijo hill in Kuopio, Finland. The application introduces the deriva-
tion layer, and thus the support for the representation of intermediate results
in data processing. It also demonstrates the application of the software process
for the representation of situational knowledge acquired from data to a field of
research in science. In addition to software engineers, the application includes
a science community consisting of researchers who study atmospheric events
such as new particle formation to advance our understanding of the physics
underlying the events, and their impact on the climate and human health.

The data are by two sensing devices, namely a Differential Mobility Particle
Sizer (DMPS) and a Present Weather Sensor (PWS), and for three properties.
The DMPS observes particle size distribution of poly-disperse aerosols and the
PWS observes visibility and precipitation, for a volume of ambient air and over
time. Situational knowledge for new particle formation events is acquired from
DMPS data using machine learning classification. For each day, DMPS data are
processed and classified, using trained artificial neural networks, to determine
the presence and strength of new particle formation during the day. Situations
for new particle formation (npf) events support a npf-relation infon with objects
for event strength and temporal location. Situational knowledge for (rainy) cloud
events is acquired from PWS data. A situation for cloud event occurs when
average hourly visibility drops below 200 m, and a cloud event is rainy if average
hourly precipitation exceeds 0.2 mm h−1. Situational knowledge for (rainy) cloud
events is acquired from data using complex event processing. Situations for
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cloud events support a cloud-event-relation infon with objects for the start and
end times of the event, and mean visibility. Situations for rainy cloud events
support a rainy-cloud-event-relation infon with an additional object for mean
precipitation.

The application processes historical data, available in text files, between May
2007 and December 2011, of which 2007-2010 is used to train data-driven mod-
els for classification. PWS data are available as generated by the sensing device.
Thus, the application processes PWS data at the measurement layer, translates
measurement results into sensor observations at the observation layer, and per-
sists sensor observations. In contrast, DMPS data are available preprocessed and
are thus processed directly at the derivation layer.

At the derivation layer, sensor observations for visibility and sensor observa-
tions for precipitation are translated into dataset observations of corresponding
datasets. A derivation engine merges the two datasets by processing dataset ob-
servations for visibility and dataset observations for precipitation with matching
temporal location to dataset observations with three component properties for
temporal location, visibility, and precipitation. Furthermore, a derivation reader
imports daily DMPS data from text files to daily datasets m× n, whereby m is
the number of daily samples in time and n = 41 is the number of dimensions,
including temporal location and 40 discrete particle diameter sizes. A derivation
engine processes the observations of daily datasets between 6 AM and 6 PM to a
(single) dataset observation using Singular Value Decomposition (SVD). Dataset
observations generated at the derivation layer are persisted.

At the situation layer, a situation engine obtains dataset observations for vis-
ibility and precipitation, and associates with an acquisition module for complex
event processing to identify time intervals [t1, t2] during which visibility is con-
tinuously below 200 m. Mean visibility, v, and mean precipitation, p, during
[t1, t2] are computed. The values t1, t2, v, and p are attained informations objects.
The objects t1 and t2 are mapped to individuals (OWL-Time) Instant(t1) and
Instant(t2), and the objects v and p are mapped to individuals (STO) Value(v)
and Value(p). Mapped informations objects are finally composed to situations.
If p ≤ 0.2 mm h−1, situations support a cloud-event-relation infon with objects
Instant(t1), Instant(t2), and Value(v). If p > 0.2 mm h−1, situations support
a rainy-cloud-event-relation infon with the additional object Value(p).

A second situation engine obtains dataset observations with SVD-processed
daily particle size distribution data, and associates with an acquisition module
that classifies dataset observations using MLP artificial neural networks to assess
the presence of a new particle formation event during the day and, if present,
the strength of the event. The class label for event strength, c, is an attained
information object. It is mapped to an individual Value(c). Mapped information
is composed to situations that support a npf-relation infon with objects Value(c)
and Interval(t) for the day t at which new particle formation is identified.
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Situations are forwarded to the persistence layer where a situation writer
requests the associated store module to represent situations in RDF and per-
sist RDF statements to the knowledge base. For the year 2011, the application
acquired 45 situations for new particle formation events and 126 situations for
cloud events, of which 52 were rainy.

Paper III introduces the derivation layer and the use of the QB vocabulary to
differentiate sensor observations from dataset observations, i.e. raw sensor data
from processed (sensor) data. It is therefore possible to model data derivation
and to represent and curate derived data products. The architecture presented in
Paper III has been stable over time and other applications. In fact, it is reflected
in Figure 3.8 which, compared to the architecture in Paper III, encapsulates
certain components into the access and persistence layers but leaves the core of
the architecture unchanged.

The case study discusses several products obtained in situational knowledge
processing. Situations of new particle formation for 2011 are plotted to show
when the events occur during the year and how strong they are. The total num-
ber of events per event strength class is calculated. Situations of (rainy) cloud
events for December 2011 are plotted to show when the events occur during the
month, how long they last, and indicate mean visibility and precipitation (if ap-
plicable). The longest cloud event, the cloud event with lowest mean visibility,
the rainy cloud event with maximum mean precipitation during 2011 and De-
cember 2011, in particular, are calculated. The analysis of situations on curated
situational knowledge is often trivially achieved with little more than a SPARQL
query, and generally more straightforward than on data.

The products resulting from situation analysis, such as plots, are intended
for human consumption. Plotting is indeed widely used to present data and
information to humans, and researchers in particular. Presented with a figure
during a talk, a group of experts can with little effort obtain information which
the speaker intends to convey to the audience. For instance, experts can easily
tell that in 2011 most new particle formation events were weak. This is possible
for experts because they combine relevant contextual information with visual-
ized data to obtain implicit knowledge. Relevant contextual information in this
case includes that the speaker is presenting data for the strength of new particle
formation events during 2011, and that the strength of new particle formation
events is classified into strong, intermediate, and weak by the numbers 1, 2,
3, respectively. However, implicit information in figures is hardly accessible to
machines. With Wavellite, situational knowledge is explicit, represented using
machine readable and interpretable statements, and thus accessible to computer
systems.

Situational knowledge for new particle formation automatically assessed by a
computer system is useful to aerosol scientists of the science community. Aerosol
scientists, who collaborated with software engineers in this case study, indi-
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viduate and assess the strength of new particle formation in daily DMPS data
manually. Matlab scripts are used to plot the data, and new particle forma-
tion is analysed visually. The results of such analysis, including the strength of
new particle formation, is recorded in Excel. Clearly, the automated assessment
by a computer system can support the science community and streamline the
workflow, which is simplified to a mere review of the automated assessment.
Furthermore, knowledge about situations of new particle formation is recorded
in a knowledge base that supports rich semantic descriptions, and the retrieval
and discovery of knowledge.

4.3 PLANT DISEASE PRESSURE

Plant disease pressure situation modelling in agriculture is the case study in
agricultural science and is the subject of Paper IV. During growing seasons,
agricultural advisers to farmers assess and monitor crop disease pressure in
agricultural parcels. Disease is caused by pathogens. Agricultural parcels are
land areas on which farmers grow crops.

Situations of primary interest are forecast outbreaks or acute outbreaks of
pathogens in crops. Hence, situations support an outbreak or acute-outbreak-
relation infon with objects for the pathogen, temporal location, and spatial lo-
cation. The time intervals during which situations occur are temporal locations.
The agricultural parcels are spatial locations. The case study considers 3 fungal
pathogens, 2 cereal crops, and 17 agricultural parcels. The agricultural parcels
are located in Finland.

The application uses a disease pressure model to assess (acute) outbreak sit-
uations. The model computes the (daily) accumulated risk of disease in the crop
of an agricultural parcel using weather forecast data for temperature, relative hu-
midity, wind speed, and precipitation amount. The 2-day forecast weather data
are obtained from the Finnish Meteorological Institute (FMI) for a region that
spatially overlaps the agricultural parcels. The weather data are retrieved using
the FMI Open Data web service. FMI weather forecast data are modelled data
resulting from a computational model, not observational data resulting from
sensor measurement. Thus, in this application weather data for temperature,
relative humidity, wind speed, and precipitation amount are dataset observa-
tions.

The science community in this case study consists of agricultural advisers
and software engineers. Agricultural advisers are domain experts and provide
contextual information about the fungal pathogens, cereal crops, and agricul-
tural parcels. They also developed the disease pressure model. The model is
implemented by software engineers, who also extend the Wavellite framework
with domain knowledge and program logic in order to implement the applica-
tion. The application is executed for the 2014 growing season.
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At the derivation layer, each day a derivation reader retrieves forecast data
from FMI and processes the NetCDF (Rew and Davis, 1990) encoded data re-
turned by FMI to dataset observations. Dataset observations for weather fore-
cast data are forwarded to a derivation engine, which uses the disease pres-
sure model implementation to compute the accumulated risk for each agricul-
tural parcel and (applicable) pathogen. The result of the computation by the
derivation engine are dataset observations with information for time, agricul-
tural parcel, pathogen, and accumulated risk. Such dataset observations are
elements of the disease pressure dataset. Disease pressure dataset observations
are forwarded to the situation layer. Dataset observations are also forwarded
to a derivation writer of the persistence layer, which requests a store module
to represent dataset observations in RDF and persist the RDF statements to the
knowledge base.

At the situation layer, a situation engine acquires situational knowledge for
(acute) outbreak situations from disease pressure dataset observations. A situ-
ation of outbreak for a pathogen in an agricultural parcel occurs (or persists)
when the accumulated risk is within the interval ]50, 75]. A situation of acute
outbreak for a pathogen in an agricultural parcel occurs (or persists) when the
accumulated risk is > 75. Thus, situational knowledge acquisition from dataset
observations is relatively trivial in this application as it merely amounts to testing
the computed accumulated risk for two thresholds. Which threshold the accu-
mulated risk exceeds specifies the infon relation used in situations. Composed
are also the pathogen, temporal location, and spatial location; they are mapped
information objects related to disease pressure dataset observations. Situations
are forwarded to a situation writer of the persistence layer, which requests a
store module to represent situations in RDF and persist the RDF statements to
the knowledge base.

The Wavellite server and the Wavellite browser are introduced in this case
study to support agricultural advisers at the Natural Resources Institute Fin-
land in the monitoring of situations of (acute) outbreaks as projected by the
system during the growing season. The Wavellite server is an Apache Tomcat
web application and implements a RESTful API. It is a component of the access
layer. The version developed for this application supports the retrieval of situ-
ational knowledge encoded in plain text, RDF, or JSON. The Wavellite browser
is a generic JavaScript client application for situational knowledge visualization.
Given that situational knowledge is generally located in space-time, the Wavel-
lite browser uses time line and map visualization for situational knowledge. In
other words, situational knowledge is visualized in time using a time line and
in space using maps. The Wavellite browser interacts with the Wavellite server
and is a component of the processing layer.

In this application, situations for (acute) outbreak are visualized for their
duration on the time line, using different colours for outbreak (orange) and for
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acute outbreak (red). Such colour customization can be configured by mapping
infon relations to colours. The spatial locations at which situations occur (at any
time) are highlighted on the map. Elements on time line and map can be selected
to obtain more information about situations. Additional information includes
the pathogen name, time period, agricultural parcel name, and whether it is a
situation of outbreak or acute outbreak.

The Wavellite browser is designed to be generic. Given a set of situations,
the browser visualizes situational knowledge along temporal and spatial dimen-
sions. This is arguably straightforward situational knowledge processing. How-
ever, the ease is partially due to situations sharing a common vocabulary, i.e.
the one specified by the ontological framework centred around the STO. The
browser is implemented against this ontological framework, which specifies the
syntax and semantics of situational knowledge. Given a set of situations, the
browser can thus expand on situations, infons, infon relation and objects to ob-
tain temporal and spatial locations of situations, used to visualize situations on
the time line and map of the Wavellite browser. The ontological framework thus
serves as a specification for the information objects shared between the Wavellite
server and the Wavellite browser.

The data and information used in this application are sourced from hetero-
geneous digital documents, including Excel and ArcGIS files as well as web
services. Excel files describe the characteristics of agricultural parcels, e.g. in-
formation about crops. ArcGIS files contain the polygon data of agricultural
parcels. Web services provide weather forecast data. The application integrates
the heterogeneous data so that it conforms to the syntax and semantics of the
ontological framework. For instance, the polygon data of agricultural parcels
provided by ArcGIS files are translated into Well-Known Text for the textual
representation of GeoSPARQL geometries, associated with GeoSPARQL features
(i.e. the agricultural parcels). These features are used as values of dataset ob-
servation component properties and objects of infons in situations. Similarly,
forecast weather data obtained via the FMI Open Data web service are trans-
lated into values of dataset observation component properties. As a result of the
integration, data, information, and knowledge is encoded in RDF, and SPARQL
can be used to, for instance, query for the pathogens involved in outbreak situ-
ations lasting at least three weeks at agricultural parcels of a given area where
farmers grow wheat.

The application employs a disease pressure model to compute the accumu-
lated risk of disease from forecast weather data. It is an environmental (ecolog-
ical) physically-based model and it stands in contrast with the computational
models used in the other applications. First, the road traffic and particle for-
mation applications rely on data-driven models, predominantly artificial neural
networks. Second, the disease pressure model is used by a processing module at
the derivation layer whereas the artificial neural networks are used by an acqui-
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sition module at the situation layer. Heterogeneous computational models can
thus be utilized for various purposes and can play a role at different layers of the
architecture. Furthermore, computational models utilized in applications can be
of various type, in particular data-driven and physically-based.

Finally, Paper IV grounds the Wavellite software framework in situation
awareness. The acquisition—from processed environmental monitoring data—
and the representation and projection of situational knowledge for (acute) out-
breaks of pathogens in agricultural crop is argued to be a process of situation
assessment performed in order to obtain and maintain situation awareness. Situ-
ation awareness is distributed among the technical components of the situation-
aware environmental monitoring system and the social components of the sys-
tem, specifically agricultural advisers and farmers.

4.4 REMARKS

We have presented the three main applications developed as part of the dis-
sertation to validate the proposed software process for situational knowledge
acquisition from environmental monitoring data, and the architecture and im-
plementation of the Wavellite software framework, for different case studies. The
chapter has briefly summarized the three situation-aware environmental moni-
toring system applications in case studies for road traffic, particle formation and
cloud events, and plant disease pressure situation awareness.

The three case studies are distinct in the environmental phenomena, objects
in situations; in the utilized data, including observation data and model data; in
the methods used for data processing and knowledge acquisition, encompass-
ing digital signal processing, complex event processing, machine learning and
physically-based modelling; and in the role layers, components, and modules
of the architecture play in different applications, as they only utilize required
functionality. However, the three applications share the problem of situational
knowledge acquisition from data and the representation of situational knowl-
edge. Data results in environmental monitoring and knowledge is for situations
with environmental phenomena as their objects.

Situation-aware environmental monitoring systems consist, in general, of
various agents: hardware, software, and people. The systems presented here
utilize situation theory to model observed situations, and utilize ontology and
related technologies to represent situational knowledge obtained from data pro-
cessed by means of computational models. The three applications thus validate
the claims C1 and C2, and thus provide positive evidence for the research ques-
tion.

In order to briefly discuss forms of reasoning other than classical ontology
reasoning discussed in Paper II, we highlight a fourth application for its use
of spatial reasoning in situational knowledge processing. Discussed in detail
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in Stocker et al. (2015a), the application demonstrates how situational knowl-
edge for the location of storms and the location of drivers in space-time can be
utilized to discover situations in which drivers may be at higher risk because
they are (forecast to be) located within storms. Situational knowledge for storms
and their spatial extent is obtained from radar data for the reflectivity of rainfall
intensity. Storms are objects in situations. Similarly, drivers and their spatial
location in time along routes are objects in situations. Driver locations are com-
puted from data for the origin, destination, and departure time provided by
drivers. The system uses the Google Directions API to obtain a route and the
expected arrival time. The application uses the Profium Sense RDF database
which, in contrast to the Stardog RDF database, at the time of writing sup-
ports quantitative and qualitative spatial reasoning. This feature is utilized in
SPARQL queries to discover situations in which drivers may be at higher risk
as they are located within storms. Discovered situations can be represented
explicitly. Other than for its use of spatial reasoning in situational knowledge
processing, this application is also different from the other applications because
it employs two distinct systems that independently acquire situational knowl-
edge: one based on radar data provided by FMI and the other based on user
input and the Google Directions API. Due to their commitment to represent sit-
uational knowledge conforming to the ontological framework centred around
the STO, it is straightforward for a system to integrate situational knowledge for
storms and situational knowledge for drivers, and formulate the discovery of
new situations as a SPARQL query.

The proposed approach to situation-aware environmental monitoring sys-
tems is arguably interesting also to domains and problems other than those
presented. For instance, intelligent systems in smart homes and smart cities can
communicate knowledge about current and projected situations rather than pre-
senting users with measurement values of one or more sensors. Stocker et al.
(2012a) discussed the problem for a smart home and situations of unhealthy
exposure to carbon monoxide in indoor air, a composite concept for situations
in which inhabitants of a residential home are exposed to a dangerous gas for
durations and concentrations exceeding defined thresholds.

The discussed applications have in common that knowledge acquired from
data is mapped to knowledge base assertions. This is because situations involve
individual environmental phenomena and are generally located in space-time.
Situational knowledge is therefore assertional knowledge, as it states the con-
cept and role assertions of individuals. In other words, the described situation-
aware environmental monitoring systems populate the ABox (assertional box) of
knowledge bases.

An environmental monitoring system can also obtain terminological knowl-
edge from data. This is exemplified in Stocker et al. (2011) where the authors
learn from data the threshold value t of a rule atom a that requires the variable v
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to exceed the threshold, i.e. v > t, whereby the atom a is part of the antecedent
a ∧ b of a rule a ∧ b → c. Rules are terminological knowledge and part of the
TBox (terminological box) of a knowledge base. In Stocker et al. (2011) the data
are for the measured nutrient concentration in lakes. Clustering is used to sep-
arate lakes rich in nutrients from those poor in nutrients. The two centroids
resulting from clustering represent a central tendency for the concentration of
nutrient rich lakes and the concentration of nutrient poor lakes. The method
thus computes the mean of the centroids. The mean is the threshold value t.
If the threshold is exceeded then a lake is nutrient rich; otherwise the lake is
nutrient poor. Given an individual lake with measured nutrient concentration,
the rule determines whether the individual lake is nutrient rich or poor.

Together with related work, the presented applications draw a line through
the evolution of the Wavellite architecture, from early applications in which
knowledge about observed environmental phenomena is mapped to entities of
the SSN ontology, to first applications that model observed environmental phe-
nomena as objects in situations and thus adopt the STO, and following applica-
tions that include the explicit representation of datasets using the QB vocabulary.
The Wavellite architecture was thus gradually refined and improved with new
features as the development of applications brought to light new requirements.
The evolution underscores a departure from building Wavellite applications on
top of the Apache Storm real-time computation system, an approach that was
pursued in early applications. The development of applications has relied on
interactive workflow, as data are retrieved from the store in order to develop
data processing and knowledge acquisition modules. For real-time applications,
Apache Storm or similar computation systems are arguably interesting. How-
ever, not all applications execute exclusively in real-time. In particular, environ-
mental research infrastructure also relies on interactive workflow. Thus, systems
may want to support both the interactive and the streamed operation modes.
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Having presented the Wavellite software framework implementation and the ap-
plications we developed using the framework, this chapter discusses the work.
Section 5.1 quotes various authors who have highlighted the ‘semantic gap’ be-
tween low-level sensor data and high-level knowledge, and the difficulty of clos-
ing this gap. The section also presents various existing software architectures
that aim at addressing this issue. We highlight the main distinguishing fea-
tures between Wavellite and the presented related software architectures. Sec-
tion 5.2 discusses alternative theories for the concept of situation and systems
that utilize situation as abstraction for high-level knowledge. Section 5.3 dis-
cusses theories for the concept of event and systems that utilize event as abstrac-
tion for high-level knowledge. We note that, never mind the chosen abstraction,
the surveyed systems share the goal of ‘closing the semantic gap’ with Wavel-
lite. Section 5.4 presents systems for situation awareness. We underscore the
applicability of situation awareness to environmental monitoring and the key
differences between situation-aware environmental monitoring systems devel-
oped with Wavellite and situation awareness systems in more traditional do-
mains, such as aviation. Section 5.5 discusses sensor data management, related
issues and systems. We highlight that situational knowledge acquisition, cura-
tion, and processing are characteristics that distinguish Wavellite from the re-
viewed informatics platforms for sensor data management. Section 5.6 provides
an overview of various domains, such as autonomous robotic systems and ambi-
ent intelligence, in which obtaining symbolic descriptions about an environment
perceived using sensors is a challenge, too. The purpose of this section is to
highlight that the fundamental problem addressed by this dissertation is shared
with other domains in which systems employ sensing devices to perceive an
environment. Sections 5.7 and 5.8 discuss the main strengths and limitations of
our work, respectively. We conclude with remarks on future work in Section 5.9.

5.1 SENSE MAKING

The problem of ‘making sense’ of data acquired from sensor networks—and
environmental sensor networks used in environmental monitoring for scientific
applications, in particular—is a widely recognized research problem, and moti-
vated this dissertation.

Underscoring the growing need to analyse sensor data, Cook (2007) high-
lights that to make “sense of sensor data is a complex task” and notes that the
large volumes of multidimensional streamed sensor data can hardly be analysed
manually. Ganguly et al. (2007) note that it is critical for scientific applications

89
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“to generate insights or new knowledge from sensor data.” Balazinska et al.
(2007) argue that the ‘worldwide sensor web’ “must incorporate logical data ab-
stractions and visualizations that can shield users from the complexities of the
underlying sensing infrastructure.” Looking “at the flood of collected and inte-
grated real-time sensor data,” it is clear to Nittel et al. (2008) “that the cognitive
aspects of users must be addressed and that higher-level, semantically rich data
representation models and query languages are necessary.” Discussing mobile
and pervasive computing scenarios, Castelli et al. (2009) highlight that “there is
a huge gap between low-level sensor readings and high-level situation aware-
ness.” Writing about NEON, Tollefson (2011) quotes Sandy Andelman, an ecolo-
gist with Conservation International, who predicts that “to manage and process
and make sense of [NEON] data is going to be a huge challenge.” Conroy et al.
(2011b) highlight the ‘semantic gap’ between sensor data and expert information
needs in the context of athletes monitoring during training activities. Heintz
et al. (2010) state that the “gap between sensing and reasoning is quite wide,
and cannot in general be bridged in a single step.” Barnaghi et al. (2012) concur
by stating that the “[e]fficient use of [...] sensor data involves making sense of
massive amounts of data in order to convert it into information and knowledge
from which humans can gain insights and base decision.” Fiorini et al. (2013)
comment that the “huge amount of acquired [sensor] data [...] requires more
robust approaches to filter and organize the information in order to support
decision making,” and note that “it is difficult to conciliate the low abstrac-
tion level of the raw data with the information structure needed by intelligent
agents in order to make decisions and interpretations.” Referring to the Internet
of Things, Alirezaie and Loutfi (2014) note that “[a]s more sensors of varying
modality become connected, it will be of importance to provide automated in-
terpretation of the sensor data.” Discussing the problem for mobile users and
devices, Sarma et al. (2014) state that the “[e]ffective use of the sensed data re-
lies on effective ‘sensemaking’ that transforms the gathered data to meaningful
information for improved situational awareness, decision making and control.”
Sarma et al. underscore that making sense of sensor data is a challenging task
and new architectures that address the issue are needed. Referring to large vol-
umes of data from wireless sensor networks, Roda and Musulin (2014) state that
“the need for computer-aided systems that extract useful knowledge [from such
data] becomes evident.” Reviewing situation identification techniques in per-
vasive computing, Ye et al. (2012) conclude that a pervasive computing system
should interpret sensor data into domain-relevant concepts. In their example,
data for heart rate or blood pressure should be interpreted so that the pervasive
computing system ‘knows’ “whether the user is suffering a heart attack or ex-
ercising.” Despite rapid increase of (streamed) data available on the web, such
as for weather forecasts or traffic directions, Pongpaichet et al. (2013) note that
“comprehensive development [of] tools and computational frameworks for ef-
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fectively combining and processing these available heterogeneous streams are
lacking.” Reviewing the state of the art of automated scene interpretation from
aerospace sensors, Herbin et al. (2012) state that “[t]he role of scene understand-
ing [...] is to generate a formal description that can be communicated, stored or
enhanced by various agents, either artificial or human.” Herbin et al. continue
noting that “[h]umans have no difficulty in describing what they see in an image
[...] and in reasoning about the cause,” a capability not found in computers.
The authors refer to the expression ‘semantic gap’ which “expresses the fact that
the information encoded in computers does not spontaneously match the inner
structure of sense-data.” Wetz et al. (2014) state that the “[a]vailability of raw
[sensor] data can only be a first step, which has to be followed by enrichment
with contextual information and careful processing to extract relevant insights.”
The authors also note that “[m]eans to exploit the continuously generated data,
however, are still scarce.”

Accordingly, the problem has been approached by various authors. Liu and
Zhao (2005) and Whitehouse et al. (2006) present Semantic Streams, a framework
that allows “users to pose queries over semantic interpretations of sensor data,
such as ‘I want the ratio of cars to trucks in the parking garage’, without actu-
ally writing code to infer the existence of cars or trucks from the sensor data.”
In other words, “instead of querying raw magnetometer data, the user queries
whether vehicles are cars or trucks.” The key to the framework are inference
units, i.e. processes (applications) that operate on event streams. Event streams
flow through combinations of inference units. Events represent observed objects
and their properties, such as a detected vehicle and properties for time, location,
speed. Inference units can obtain semantic information about an observed en-
vironment from event streams and generate new event streams or enrich events
with new properties. Semantic Streams uses a logic-based markup language to
support the description of inference units, i.e. their input and output streams
and relationships between them. For example, “a vehicle detector unit could
be described as an inference unit that uses a magnetometer sensor to detect
vehicles, and creates an event stream with the time and location in which the
vehicles are detected.” Queries are first-order logic descriptions of event streams
and properties. For instance, a user query may ask for events that are cars in a
certain region. Given such a query, Semantic Streams attempts to compose infer-
ence units to answer the query. It is possible that a query cannot be answered,
in which case the system would have to be extended with new sensors or new
inference units. Query evaluation builds on the standard backward chaining al-
gorithm, whereby query predicates are matched with the consequent of a rule,
thereby triggering the matching of rule antecedents, or with a fact in the knowl-
edge base.

Gaglio et al. (2007) present a ‘cognitive architecture’ designed to extract in-
formation about the environment from raw data collected by a wireless sensor
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network. The architecture was developed for artificial vision (Chella et al., 1997),
adapted to wireless sensor networks, and extended (De Paola et al., 2009) in
the context of Ambient Intelligence (Remagnino and Foresti, 2005, AmI). The
architecture proposed by Gaglio et al. consists of three layers: subsymbolic, con-
ceptual, and symbolic. The subsymbolic layer involves sensors that collect raw
data for monitored properties of an observed environment and performs pre-
liminary data processing, which to some extent may be performed by the sensor
network. At the conceptual layer, processed data are described as vectors in a
conceptual space (Gärdenfors, 2004). A vector is a point and is called ‘knoxel’.
A conceptual space is a set of quality dimensions, e.g. temperature and mass,
or a set of spatial dimensions. It is a metric space in which the similarity of
knoxels can be defined. At the symbolic layer, the architecture produces descrip-
tions about the monitored environment in terms of a logical language. This is
achieved by mapping knoxel sequences onto assertions, i.e. by mapping struc-
tures of conceptual spaces onto symbolic constructs. Symbols at the symbolic
layer are grounded in the conceptual layer.

Ganguly et al. (2007) propose a framework for knowledge discovery on envi-
ronmental data in scientific applications, whereby the data are sourced from sen-
sors or repositories and are primarily intended for natural disaster early warning
systems. The framework consists of offline and online parts. The offline sub-
framework for predictive analysis integrates data from heterogeneous sources,
including remote sensors and in situ sensor networks, model output, and domain
knowledge. Integrated data serves in pattern and process detection, performed
offline using techniques in signal processing, data mining, statistics. The results
build a body of actionable knowledge. The online sub-framework for decision
making performs (near) real-time analysis of model and observation data and
utilizes the knowledge obtained from offline analysis to “facilitate short-term
decisions and longer-term policies.”

Heintz et al. (2010) propose a conceptual software framework for modelling
knowledge processing applications, called knowledge processing middleware.
The software framework is designed to bridge the gap between sensing and
reasoning in a physical agent, and is discussed for traffic monitoring by au-
tonomous unmanned aerial vehicles. The authors underscore that “[b]ridging
this gap is a challenging problem” and doing so “in a single step, using a sin-
gle technique, is only possible for the simplest of autonomous systems.” Heintz
et al. propose six design requirements for knowledge processing middleware.
First, the middleware should “permit the integration of information from dis-
tributed sources, allowing this information to be processed at many different
levels of abstraction and finally transformed into a suitable form to be used in
reasoning.” Wavellite addresses the integration of data and information from
distributed sources, in particular sensors and databases, but also files. Integra-
tion is achieved by aligning data and information to terms and semantics of an
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ontology framework. Wavellite supports processing data at different levels of
abstraction, namely at the observation and derivation layers of the architecture.
Finally, Wavellite supports the transformation of data into situational knowledge,
suitable for reasoning. The second design requirement suggested by Heintz et al.
is “to support both quantitative and qualitative processing.” Wavellite supports
quantitative processing of (sensor) data as well as the representation and pro-
cessing of qualitative relations among objects in situations. The third design re-
quirement is that “both bottom-up data processing and top-down model-based
processing should be supported.” As the applications presented in Chapter 4
clearly show, Wavellite is designed to support bottom-up data processing. The
applications also demonstrate examples of top-down model-based processing,
e.g. in form of situational knowledge processing, such as (rule-based) reason-
ing. The fourth design requirement is “support for management of uncertainty.”
This requirement is not addressed in Wavellite. In particular, the framework has
so far not investigated the representation of uncertainty at the various layers,
and uncertainty propagation between layers. The fifth design requirement is the
support for “flexible configuration and reconfiguration of knowledge process-
ing.” This requirement is not addressed by Wavellite. Initial Wavellite versions
used Apache Storm, and applications were implemented as Storm topologies.
Knowledge processing could thus be relatively flexibly configured (and recon-
figured) by specifying Storm topologies. However, Storm was later abandoned
and currently there is no supported flexible configuration approach. Finally, and
also not addressed by Wavellite, the sixth design requirement is “to provide a
declarative specification of the information being generated and the information
processing functionalities that are available.”

Moodley and Tapamo (2011) argue that sensor systems should “support
knowledge capture and use” in addition to dealing “with issues around the
provision, fusion and analysis of heterogeneous data” and note that “[w]hile it
has been acknowledged that abstractions are required to bridge the gap between
sensors and applications [...], the most effective mechanism [...] remains an open
issue.” Moodley and Tapamo present an ontological framework designed to sup-
port the representation of theme, space, time, and uncertainty of observations as
well as the agents involved in workflow tasks, such as sensors from which data
are collected, or algorithms that process data.

Conroy et al. (2011b) discuss the EventSense architecture, “a framework and
methodology for automated processing of sensor data so that it can be queried
using a standard query language.” Conroy et al. develop the system for the sport
and health domain where heterogeneous sensor networks are utilized to detect
“various biological and physiological properties in athletes during training activ-
ities” to identify “key intervals in exercise such as moments of stress or fatigue.”
The architecture is presented for cycling, and broadly consists of four compo-
nents: hardware, data management, metadata, and query processing. The data
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management component consists of three processors: sensor enablement, con-
textual enrichment, and integration. Sensor enablement converts heterogeneous
sensor data in plain text format to a standard XML format. This conversion pro-
cess is facilitated by user defined templates. The resulting data in XML can be
queried using XML query languages. However, not all user information-needs
can be directly translated into XML queries because the data lacks of seman-
tics. The contextual enrichment processor aims at reducing semantic gaps. The
processor is provided with event definitions, i.e. user defined descriptions for
what action applies under what conditions. Conditions can include complex
user defined functions. Actions update data and can enrich data with meta-
data. For instance, an event definition may state that a terrain is a ‘steep climb’
section of a race if GPS values match certain conditions. Thus, the contextual
enrichment processor annotates data with metadata required in user queries.
User information needs may require (enriched) data from multiple sensors. For
such queries, “multiple sources of evidence must be integrated.” This integra-
tion is addressed by the integration processor. The authors have discussed the
approach also for knowledge acquisition from sensor data in an equine envi-
ronment (Conroy et al., 2011a) where horses and jockeys were equipped with
sensors in order to identify the most energy demanding events and to classify
horse and jockey movement during horse-racing training exercises. Cappellari
et al. (2011) restructured the architecture into five modules: hardware, sensor en-
ablement, context enrichment, data transformation, and sensor data storage and
query. In contrast to Conroy et al., the Cappellari et al. architecture describes
the sensor enablement and contextual enrichment modules in more details and
includes data transformation as an additional module for computations, such as
rolling average.

Negru (2012) describes SemaKoDe, a system architecture that adopts seman-
tic web technologies “to automatically annotate, reason, classify and operate
with sensor data.” The architecture consists of five layers: knowledge base, net-
work management, database, discovery, and application. The knowledge base
layer manages terminological knowledge. The network management layer is
primarily responsible for the collection of data from sensors. The database layer
obtains data collected at the network management layer and performs standard
knowledge discovery in databases (Fayyad et al., 1996) operations as well as se-
mantic annotation of sensor data, persisted in a triple store. The discovery layer
encapsulates data mining and reasoning algorithms. Data mining is performed
on processed data while reasoning is performed on terminological knowledge of
the knowledge base layer and assertional knowledge of the triple store. Finally,
the application layer exposes query endpoints and services. The architecture is
briefly discussed for a scenario of fire hazard in a hospital.

Barnaghi et al. (2012) describe a “framework for perception creation from
sensor data.” The authors stress the importance of machine-interpretable ab-
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stractions created from processed data. The framework collects sensor data and
transforms sensor data into observations, semantically annotated according to
the SSN ontology. This transformation enriches sensor data with qualitative in-
formation. For instance, a period of measured temperature greater than 30 ◦C
is transformed into an observation of ‘high temperature’. The semantic anno-
tation with qualitative information is achieved by segmenting sensor data into
patterns, using the Symbolic Aggregate Approximation algorithm (Lin et al.,
2003, SAX). Patterns are then compared to labelled patterns using a similarity
function in order to derive the annotation for the observation. Given a set of
observations, the framework also “determines the best explanation for a set of
observations,” using domain knowledge and by means of the Parsimonious Cov-
ering Theory (Reggia and Peng, 1987, PCT). For instance, given an observation
annotated as being ‘cold temperature’ the framework may determine that the
window was left open. Henson et al. (2012) describe how the process of deter-
mining the best explanation for observations can be implemented using OWL
reasoners, and evaluate the proposed method for a use case in the health care
domain. Ganz et al. (2013) improve on various aspects of the framework. First,
the SAX algorithm for creating patterns from time series data is optimized for
sensor data with variable encoding rate in order to achieve higher compression
and better reconstruction. Second, PCT explanations for observations are ex-
tended with probabilities. Third, PCT is also extended with a Hidden Markov
Model (Rabiner and Juang, 1986, HMM) “in order to infer abstractions based on
time-dependent sensor data.” Building on this work, Ganz et al. (2014) present a
framework that constructs topical ontologies from sensor data and aims at data-
driven ontology construction. The framework utilizes clustering to group SAX
discretized sensor data, which is achieved by modifying the k-means algorithm
(MacQueen, 1967) for non-numerical SAX based patterns. Identified clusters
represent concepts of the topical ontology, and are unlabelled at this stage. The
labelling of clusters is achieved using a rule-based reasoning mechanism. Tem-
poral relations between clusters are obtained using a Markov model.

Highlighting the lack of “a layer specifying the transition from observation
data to [ontology] classes and relations” Janowicz (2012) proposes a framework
that builds on semantically described sensor observation data, and employs
methods in data mining and machine learning to construct ontological primi-
tives, i.e. atomic classes and relations. The mapping between data and primi-
tives is enabled by ‘semantic signatures’. Signatures can be mined from data, in
which case they represent data patterns over, e.g., temporal and spatial dimen-
sions. Following the example by Janowicz, plotting people density over time and
space shows that universities are attended during weekdays and working hours
whereas restaurants are visited during weekends and evenings. Thus, the classes
for university and restaurant are described by different primitives. Primitives are
then integrated following ontology design patterns (Gangemi, 2005).
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Myers and Trevathan (2013) present “a framework for integrating remotely
sensed data with web-available static data for use in observational hypothesis
testing and the analysis phase of research.” The framework consists of three
main components. First, a wireless sensor network is used to collect data about
some properties of a monitored environment. Coupled with this component is
an environmental model, which is updated with sensor data and is capable of re-
tasking sensors. A second component obtains data from heterogeneous sources,
including sensor data, executes a workflow to transform static and dynamic data
so that they conform with a hierarchy of ontologies, and persists the results in
a knowledge base. This component supports the formulation of hypotheses in
form of rules. The third component is a “platform for distributed data sharing
and processing that enables researchers, managers and decision-makers to col-
laborate around the data.” This third component is a ‘data hub’ and addresses
the collection, discovery and curation of data. Myers and Trevathan discuss the
framework for a uses case in which scientists can investigate the effects of human
coastal population density on algal blooms and seagrass.

Gorrepati et al. (2013) present an architecture for a system that utilizes acous-
tic sensors to monitor bird calls and processes the data in order “to recognize
bird calls, identify birds, classify species, and track bird behaviour in a bird’s
ecological environment.” Knowledge, extracted from data, about birds is rep-
resented according to an OWL ontology using semantic web technologies. The
architecture consists of five layers: physical, event, semantic, awareness, and ser-
vice. The physical layer is concerned with sensors and signal processing. The
event layer processes and classifies data. The semantic layer represents acquired
knowledge, such as the bird species and location. The awareness layer enriches
knowledge represented at the semantic layer by means of rules to, e.g., infer bird
flight direction, interaction, or health. Finally, the service layer consists of service
applications, such as for data management.

Alirezaie and Loutfi (2014) present a system that attempts to draw explana-
tions for changes detected in sensor data. The system is presented for a kitchen
equipped with a sensor network. A gas sensor monitors ambient air while other
sensors monitor motion, luminosity, temperature. Data from the sensors in-
stalled in the kitchen are processed to detect changes, which are modelled as
events. The system assists the interpretation of events of abnormal odour in air,
as detected in gas sensor data, and utilizes ontological knowledge about odours,
their causes, and relations to other phenomena. Specifically, the system attempts
to infer an explanation for detected abnormal odour, such as cooking or burn-
ing. Reasoning is achieved by means of Answer Set Programming (Baral, 2003,
ASP), domain knowledge and rules, and contextual information about the state
of appliances in the kitchen. Reasoning thus involves a conversion of OWL ax-
ioms and assertions into ASP rules. According to the authors, ASP is interesting
because it can handle incomplete sensor data as well as new observations that
invalidate existing knowledge, and it can operate incrementally.
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Roda and Musulin (2014) present a framework aimed at the extraction and
representation of temporal abstractions from sensor data, primarily univariate
time series. Temporal abstractions describe signal behaviour, such as a mono-
tonically increasing trend over time. The representation of sensor data and tem-
poral abstractions is achieved by means of ontology. The authors demonstrate
how rule-based reasoning can be utilized to test whether sensor observations
stated to be involved in a temporal abstraction are indeed within the time inter-
val corresponding to the abstraction. The authors also demonstrate how rules
can operate over temporal abstractions on multivariate sensor data to potentially
detect a fault in an industrial plant.

The surveyed approaches for closing the ‘semantic gap’ are diverse along
several dimensions. Some approaches envision the automated extraction of sym-
bolic descriptions about an environment perceived using sensors (Gaglio et al.,
2007; Negru, 2012; Ganz et al., 2014; Alirezaie and Loutfi, 2014). Automating the
problem is extremely challenging, and we share Heintz et al.’s concern that it is
only the simplest of autonomous systems that can be implemented using a single
technique. Furthermore, the human is arguably never truly out of the loop. For
instance, in rule-based systems, which can potentially operate autonomously
on symbolic knowledge, experts are still required in the formulation of rules.
Wavellite acknowledges the complexity of data processing and knowledge ex-
traction in non-trivial applications, and explicitly includes experts in roles such
as knowledge engineers, software engineers, and scientists.

Some surveyed architectures are layered similarly to Wavellite (Gaglio et al.,
2007; Negru, 2012; Gorrepati et al., 2013). Some utilize semantic web technolo-
gies (Negru, 2012; Barnaghi et al., 2012; Janowicz, 2012; Gorrepati et al., 2013;
Alirezaie and Loutfi, 2014) while other frameworks are based on XML (Conroy
et al., 2011a,b). Semantic web technologies support the formal description of
data semantics, and thus go beyond data structure. The resulting systems are
superior in their support for knowledge reasoning, query, and discovery. The
approaches have been evaluated in heterogeneous domains, some of which over-
lap with Wavellite applications, e.g. transportation systems (Liu and Zhao, 2005;
Whitehouse et al., 2006) and scientific applications (Ganguly et al., 2007; Myers
and Trevathan, 2013; Gorrepati et al., 2013). Compared to many surveyed archi-
tectures, Wavellite is meticulously evaluated on several non-trivial applications
for problems in heterogeneous domains. Wavellite is tailored for the acquisition
and representation of situational knowledge, i.e. the acquisition of assertional
knowledge. In contrast, Ganz et al. (2014) and Janowicz et al. (2015) describe
systems designed for the acquisition of terminological knowledge, i.e. designed
to construct classes and relations. Systems also adopt various methods in knowl-
edge acquisition, specifically similarity in metric spaces (Gaglio et al., 2007), data
mining and machine learning (Ganz et al., 2014; Janowicz, 2012), rules (Gorrepati
et al., 2013; Alirezaie and Loutfi, 2014), and techniques for explanation inference
(Barnaghi et al., 2012; Henson et al., 2012; Ganz et al., 2014).
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5.2 SITUATION ABSTRACTION

The concept of situation has been formalized in theories other than the situation
theory at the core of this dissertation. Laying the foundations of the situation
calculus, McCarthy and Hayes (1969) define situation as “the complete state of
the universe at an instant of time.” This definition is different from that of sit-
uation theory, where situations are parts of reality. Furthermore, McCarthy and
Hayes localize a situation at a time instant. However, as in situation theory, Mc-
Carthy and Hayes (1969) argue that agents can only know facts about situations,
i.e. agents cannot completely describe situations. The basic elements of the cal-
culus are the set Sit of all situations, fluents, and actions. Fluents are functions
whose domain is the set Sit. The fluent snowing(p, s) asserts that it is snowing
at place p in situation s. The range of a fluent can be (true, f alse) or Sit. In the
former case, the function is called a propositional fluent while fluents with range
Sit are called situational. Actions change a situation to another (Worboys, 2005)
and are performed by agents. McCarthy and Hayes model an action as part
of the situational fluent result(a, α, s) having the situation as value that results
when agent a carries out action α in situation s. According to McCarthy and
Hayes, the known facts about a situation can be “used to deduce further facts
about that situation, about future situations and about situations that [agents]
can bring about from that situation.” Levesque et al. (1998) propose a variant of
the situation calculus that defines situations as histories, i.e. “finite sequences
of primitive actions.” This interpretation stands in contrast to McCarthy and
Hayes, as well as situation theory, who understand situation as snapshots.

Gangemi and Mika (2003) offer an ontological analysis and formalization of
situations. The proposed Description and Situations (D&S) ontology provides
“a framework for representing [among other entities] situations at first-order,
thus allowing a partial specification of [situations].” Central to D&S are state of
affairs, descriptions, and situations. A state of affairs “is any non-empty set SoA
of assertions a1..n that are individually coherent with the axioms in a first-order
theory O,” the ground ontology. A description “is an entity that partly represents
a (possibly formalized) theory T (or one of its elements) that can be ‘conceived’
by an agent.” Finally, a situation “is constituted by the entities and the relations
among them that are mentioned in assertions a1..n from a SoA, and it is an entity
in O that partly represents a (possibly formalized) model M for T, according
to the axioms in O.” The intuition is that “when a description is applied to a
state of affairs, some structure (a ‘situation’) emerges.” Following an example
by Gangemi and Mika, a set of temperature values is a state of affairs, a climate
change theory is a description, and a climate change history is a situation. Given
a foundational ontology, such as DOLCE, D&S adds the two unary predicates D
for descriptions and S for situations and a binary predicate satisfies holding
between S and the set SD, subset of D, for situation descriptions. Notably, S
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and D are ‘social objects’, i.e. objects that exist within social communication.
In contrast, being structured parts of reality, situations in situation theory are
arguably physical objects.

Systems in which situation is the key abstraction have also been proposed.
Ye et al. (2012) review situation identification techniques in pervasive comput-
ing. The authors distinguish specification-based and learning-based approaches.
Specification-based approaches “represent expert knowledge in logic rules and
apply reasoning engines to infer proper situations from current sensor input.”
According to Ye et al., these approaches are particularly suitable for applications
with “few sensors whose data are easy to interpret and the relationships between
sensor data and situations are easy to establish.” Learning-based approaches uti-
lize “techniques in machine learning and data mining [...] to explore association
relations between sensor data and situations.” Ye et al. note that these ap-
proaches have the ability to analyse a large number of noisy sensor data, extract
patterns, and deal with uncertainty.

For context-aware pervasive computing, Loke (2004) presents the notion of
situation program. A situation program is a logic program, i.e. a set of rules.
Given an entity, a known situation, and contextual information about the entity,
the fundamental reasoning task is to determine whether the entity is in the sit-
uation. Entities can be persons, devices, or objects more generally. Contextual
information about entities is obtained from sensors. Sensors are represented as
sensor predicates, utilized in situation programs to query for contextual infor-
mation about entities. A situation program is evaluated for a given entity by
assuming “the situation and then explore its implications by forward chaining
on the rules.” In program evaluation, any constraints on sensor data are eval-
uated by querying the sensors and check the data against the constraints. If
all constraints are satisfied, then the entity is recognized to be in the situation
represented by the program.

Padovitz et al. (2004) present a reasoning engine that models context states
and situation subspaces as geometries. A context state is a vector indexed in
time consisting of context attribute values. A context attribute typically denotes
a sensor. Thus, an attribute value denotes a sensor measurement value, indexed
in time. A context state is a point, while a situation subspace is a region. A
context state can thus be within a situation subspace. Given two situation sub-
spaces, a context state can be closer (more similar) to one of them. As an ex-
ample, consider the context state to be a vector with measurement values for
heart rate, cadence, and stride length, and two situation subspaces for ‘walking’
and ‘running’. Greater values reflect running activity and thus the context state
vector falls within the ‘running’ situation subspace. The reasoning engine ob-
tains raw data or “basic reasoned context” which are first analysed for low-level
discrepancies (such as faulty measurement values) and then synthesized to basic
situations. The engine attempts to discover and resolve conflicts in basic situa-
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tions. Situations that are not discarded at this stage are finally composed into
complex situations. Complex situations are the result of merging or intersecting
situation subspaces.

For context-aware systems with persons as the entities in situations, and last-
generation personal devices (e.g. smart phones and laptops) and online services
(e.g. social networks and email services) as the sources from which context infor-
mation used to characterise situations is extracted, Attard et al. (2013) present an
adaptive situation recognition technique. Extracted context information is rep-
resented according to an ontology and matched against known situations using
similarity metrics. A feedback loop involving users allows for annotating con-
text information as positive or negative examples for recurring situations. Such
annotation amounts to gradual training and the technique is thus adaptive.

Pongpaichet et al. (2013) present EventShop, a computing framework aimed
at recognizing “evolving situations from massive web streams in real-time.” As
for other frameworks, at the core of EventShop is the challenge of bridging
the semantic gap between high-level concepts and low-level data streams. In
EventShop, the concept of situation is used as high-level abstraction and web
data form the low-level data streams. The framework consists of two main com-
ponents: data ingestor and stream processing engine. The data ingestor con-
sumes data from the web and translates data to an internal unified format. The
stream processing engine applies operators on translated data to detect situa-
tions. The relevant operators are determined by the situation recognition model
formulated by domain experts. A situation recognition model is a query plan
representing an ordered set of steps for processing data. Detected situations can
be used to notify interested users. Pongpaichet et al. demonstrate EventShop on
two use cases, flood alert and asthma relief. Dao et al. (2014) extend EventShop
with functionality to process archived historical data, in addition to data streams.

The approaches discussed in this section share the aim of closing the ‘seman-
tic gap’ with the approaches surveyed in the previous Section 5.1. However, the
adoption of the concept of situation as the key abstraction is a distinguishing
feature, one that is shared with Wavellite. By adopting both specification-based
and learning-based methods, Wavellite implements a hybrid approach (Ye et al.,
2012). Compared to the systems briefly discussed in this section, Wavellite also
adopts semantic web technologies and, in particular, the STO to represent ac-
quired situational knowledge.

5.3 EVENT ABSTRACTION

The ontological nature of the concept of event has been studied and formalized
in the literature. Kowalski and Sergot (1986) introduce the event calculus, a
classical logic formalization of time based on the notion of event, designed as
framework for reasoning. Similarly to the situation calculus, the event calculus
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models time-varying properties of the world as fluents. The basic statement of
the calculus is that a fluent is true at some time point if it has been initiated ear-
lier by an event and has not been terminated in the meantime by another event;
otherwise it is false (Worboys, 2005; Miller and Shanahan, 2002). A number of
alternative axiomatizations have been proposed in the literature and the event
and situation calculi have also been compared (Miller and Shanahan, 2002).

Galton (2006) and Galton and Mizoguchi (2009) distinguish between dura-
tive and punctual events. The former take time to occur while the latter take
no time to occur, and are thus instantaneous. Common to both event kinds is
that an event has a beginning and an end, which act as anchoring points. Events
have definite extension and are thus not open-ended; they are pieces of history.
Galton also notes that an event that occurs over an interval “does not occur over
any of the proper subintervals,” i.e. events are non-dissective. Furthermore,
events are not experienced directly. Rather, it is an event’s constituent processes
that are experienced, and events are described in terms of the constituent pro-
cesses. Finally, as discrete chunks of history “events cannot meaningfully be said
to undergo change.” Discussing the ontological nature of events, processes, and
objects Galton also presents some implications for a formal ontology, in particu-
lar for classification, and for logical representation and inference.

Worboys and Hornsby (2004) and Worboys (2005) propose the introduction
of events in object-based geospatial models. The authors argue that the intro-
duction of occurants, specifically events, in information systems and models is
“needed to capture the mechanisms of change” in time-varying continuants, e.g.
objects. In Worboys (2005), the author focuses on formal aspects of event specifi-
cation and proposes an event-oriented model of the world in which “everything
is event.” In Worboys and Hornsby (2004), the authors adopt a hybrid approach
with categories of entities other than events. Specifically, Worboys and Hornsby
propose that geospatial events (and objects) are situated in a setting, which may
be purely spatial (e.g. region), purely temporal (e.g. interval), or mixed spatio-
temporal. An event (or object) “cannot be situated in more than one setting at
the same time.”

Authors have used the concept of event as the key abstraction in systems that
process sensor data to acquire knowledge about the monitored environment. Al-
though in situation theory events are situations in time, in existing systems event
seems to stand in contrast to situation as the key abstraction and information ob-
ject.

Building on their previous work, in which Devaraju and Kauppinen (2012)
also highlight the “gap between low-level sensor observations and high-level
descriptions about geographic events,” Devaraju et al. (2014) develop an ontol-
ogy for the representation of relations between geographic events and obser-
vations, and use the ontology “with a reasoning and querying mechanism to
retrieve events and their sensing information.” Geographic events are inferred
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by means of rules expressed in terms of observed properties. Observed features
are participants in events. The proposed ontology is deployed in a system that
retrieves time series data, manages such data in an observational database, and
infers information about events by means of ontology and rule-based reason-
ing. The system is evaluated for a use case in which blizzard events are inferred
from weather observations. A blizzard is a geographic event and is described
in terms of property-threshold constraints, e.g. visibility ≤ 1 km. Given a rule
p→ q, with p a conjunction of constraints and q a concept assertion, it is possible
to infer blizzard events. Given the ontological relation between geographic and
observation events proposed by Devaraju et al., the system supports querying
for the observation values related to blizzard events.

Authors have suggested to use Complex Event Processing (CEP) in systems
aimed at detecting and representing events in sensor data. Taylor and Leidinger
(2011) present a system that utilizes ontology to drive a user interface for event
specification. The system translate such specifications into configurations for a
CEP engine. The CEP engine processes (streamed) sensor data and generates
events according to configurations, i.e. user-defined event specifications. Gener-
ated events can be utilized to alert users.

Llaves and Kuhn (2014) present a system that processes O&M observation
data to CEP objects processed by a CEP engine. The system supports the reg-
istration of event patterns within the CEP engine. An event pattern is a pair
consisting of a CEP statement (here encoded in Esper EPL) and an event type,
i.e. a URI corresponding to an ontology class. Given an event generated by
the CEP engine following a statement match, the system creates an individual,
instance of the event type corresponding to the statement. The resulting RDF
statements are persisted in an RDF database.

The concept of event and the use of ontologies to model event descriptions
with knowledge obtained from data has been advocated for various domains.
Wu (2012) present an ontology for the representation of tropical forest change
events, such as deforestation. The proposed ontology extends the SSN ontol-
ogy. The ‘forest transition’ observation is a central concept of the ontology, and
is modelled as a subclass of the SSN observation class. The ontology aims at
supporting the extraction of information about forest change events. For in-
stance, given two forest transition observations over two years, if the observed
deforested portion difference of a land unit is greater than zero, the land unit is
inferred to be a participant in a deforestation event. Wu demonstrates how the
extraction of such information about forest change events can be implemented
using SPARQL.

Yu and Taylor (2013) present the Event Dashboard, an ontology driven user
interface aimed at supporting users in the definition of event constraints over a
sensor network, e.g. property constraints over observations such as air tempera-
ture greater than 15 ◦C. Event Dashboard employs the SSN ontology. Specified
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event constraints can serve in the definition of complex event queries. In contrast
to systems that adopt rule languages, Event Dashboard encodes event constraints
as ontology assertions. The authors demonstrate Event Dashboard for the spec-
ification of a high nitrogen constraint, which is relevant to algal bloom events.
Building on Event Dashboard, Yu et al. (2014) propose an event detection system
that processes sensor data to detect failure in pressure sewers.

Zhang et al. (2014) present a methodology for the detection and classifica-
tion of anomalous events of salinity and turbidity in data collected from a water
quality monitoring system. The methodology is distinctively data driven as it
uses an adaptive trend model to detect anomalies in time series, agglomerative
hierarchical clustering to group temporally close detected anomalies into events,
and an additional clustering step to create groups of similar events. The result-
ing event clusters for salinity and turbidity are not semantically described, as it
is common practice in ontology-based systems. The methodology would clearly
benefit from machine interpretable descriptions of event clusters as it would en-
able a system to, e.g., create concept assertions for individual events detected
in real-time monitoring. The methodology is relatively laborious as it consists
of manual steps, whereas ontology-based systems are often argued to perform
automated reasoning, once the ontology and the rules are properly specified.
However, the methodology has also advantages over pure ontology-based ap-
proaches. The system can arguably support more complex event detection and
classification tasks. Furthermore, as highlighted by the authors, the method-
ology requires little computational resources and can potentially be performed
by the sensors, which can considerably reduce data transmission requirements.
Ontology-based systems generally demand greater computational resources for
their operation.

The approaches discussed in this section also share the aim of closing the
‘semantic gap’ with the approaches surveyed in the previous sections 5.1 and
5.2. However, the adoption of the concept of event as the key abstraction is
a distinguishing feature. As we noted earlier, in situation theory events are
situations in time, whereas scenes are situations in space. Therefore, it can be
argued that systems which adopt the concept of situation as abstraction are also
capable of representing events, similarly to the systems presented in this section.
However, the literature seems to be inconclusive on whether events are distinct
or subsumed by situations. Riker (1957) called situations “the boundaries of
events” and events the action occurring between situations. This suggests that
situations and events are entities of different character.

5.4 SITUATION AWARENESS

Systems designed to obtain, maintain, and improve situation awareness have
been developed for various application domains. For emergency response and
management, and building on previous work (Resch et al., 2007), Sagl et al.
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(2012) present the architecture of an emergency management information sys-
tem designed to acquire sensor data, integrate data into spatial decision sup-
port systems (e.g. GeoServer), apply geo-processing techniques (e.g. spatial
interpolation) to obtain emergency information, and disseminate information to
client devices that utilize map services (e.g. Google Earth) to visualize infor-
mation. To maximise interoperability, the service-oriented architecture utilizes
OGC standards, in particular the SOS for sensor data acquisition. A key factor
in emergency response and management information systems is the time-critical
decision-making process. Thus, sensor data must be acquired, processed, and
disseminated to client applications in (near) real-time in order to support timely
situation awareness. Based on the evaluation of their system, Sagl et al. highlight
that expert feedback confirms that “up-to-date situational knowledge [...] signif-
icantly enhanced the decision-making process.” The overall aim of such systems
is thus to enable “live [situation] awareness of rescue forces and decision makers
in emergency management.”

Baumgartner et al. (2010) present BeAware!, a framework for ontology-driven
information systems aimed at increased operator situation awareness. The au-
thors present the framework within the road traffic management context. The
framework obtains information from heterogeneous sources, and it is assumed
that such information is represented according to some conceptual model, e.g.
a domain ontology. The framework employs a domain independent situation
awareness core ontology, utilized to integrate domain ontologies via alignment
with the core ontology. Situation assessment in the framework is performed via
instantiation of rule-based situation types. Hence, situation types are defined by
means of rules, whereby the rule antecedent specifies the concept and relation
types that must hold in order to instantiate the situation type specified by the
rule consequent. In addition to enabling the integration of domain ontologies,
the core ontology also facilitates the formulation of situation types.

Ontology-driven systems for situation awareness have been proposed also
in the context of airport security. Tamea et al. (2014) sketch an architecture for
systems that collect data from a sensor middleware and process the data to infer
situations. The architecture includes standard OWL reasoning but the authors
acknowledge that such reasoning “may not be sufficient to assess situations.”
Thus, the architecture allows for additional pre-processing or post-processing
(programmatic) procedures. Tamea et al. propose a specialized ontology for
the modelling of events and situations for airport security, which the authors
compare to the domain independent STO. The authors evaluate the performance
of creating new events using the two ontologies and conclude that their ontology
for airport security has a better performance. This is attributed to the more
lightweight structure. However, the authors seem to mistake the infon as the
type of events while, in situation theory, events are more accurately a type of
situations.



SITUATION AWARENESS 105

Furno et al. (2011) describe an ontology-based situation awareness architec-
ture with three main components for perception, comprehension, and projection,
following thus the three level model by Endsley. The architecture is discussed
in the context of ambient intelligence, specifically for the problem of face detec-
tion. The authors underscore the importance of uncertainty management, and
use the Fuzzy Situation Theory Ontology (Furno et al., 2010, FSTO) to model
the uncertainty of infons and situations. In FSTO the polarity states the degree to
which infon objects stand in the relation. Its aim is to support the approximate
evaluation of situations.

In addition to land, air, or maritime situation awareness, environmental mon-
itoring and data analysis are relevant also to space situation awareness. Perron
(2014) discusses space weather situation awareness, in particular. Space weather
is primarily driven by the Sun and “encompasses several components of the
Sun-Earth system, such as the variable solar wind, sunspots, solar flares, coronal
mass ejections, interactions with the Earth’s magnetosphere and ionosphere, and
the production of the aurora.” Perron discusses space weather situation aware-
ness within the military context. However, space weather events can negatively
affect technology and humans, more generally. Hardware and software systems
play a key role in space weather situation awareness, including in the prediction
of space weather events.

Salmon et al. (2012) review road transport-related situation awareness re-
search applications. The authors note that situation awareness “has received
far less attention in a road transport context,” compared to domains including
aviation, military, air traffic control, rail, process control, and healthcare—even
though it is “highly applicable” and incontestable that situation awareness “is
required for different road user tasks.” However, the authors argue that the indi-
vidualistic driver centric approach to situation awareness is inadequate because
it overlooks important components other than the individual driver, “such as
pedestrians, motorcyclists, cyclists and infrastructure.” The authors thus advo-
cate for a systems approach to situation awareness in road transport.

Hasan et al. (2011) propose to enrich sensor data using semantic web (linked
data (Bizer et al., 2011)) technologies and utilize CEP as a means to achieve situa-
tion awareness. Situations are “expressed in the configuration of the CEP engine
in the form of an event pattern.” Enrichment of sensor data is dynamic, i.e. de-
termined at run-time, and includes translation from, e.g., O&M and SensorML
XML to RDF, and utilizes a semantic similarity measure between data and de-
fined situation patterns to guide enrichment. For instance, given data by an
energy usage sensor and a situation pattern for energy consumption on a floor,
an RDF statement relating the device to the floor on which it is installed is an en-
richment guided by semantic similarity. This is because both the RDF statement
and the situation pattern involve the term ’floor’. Candidate RDF statements are
obtained by dereferencing linked data. The method is briefly evaluated for an
energy management use case.
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Jakobson et al. (2006) present a framework for situation management. Ac-
cording to the authors, situation management is a process concerned with sens-
ing and information collection, perceiving and recognizing situations, analysing
past and predict future situations, as well as reasoning, planning and imple-
menting actions. Situation management is a goal-directed process. Jakobson
et al. discuss situation modelling and provide a definition for situation, noting
that “situation modelling is still in the process of establishment, where many
notions, including the notion of a situation itself, are still the subjects of ongoing
debate and study.” The authors cite “the need for an integrated management
of complex dynamic systems” to be an important driving force behind the ad-
vancement of situation management.

Salfinger et al. (2014) highlight that so far there has been little focus on “sup-
porting the different phases of knowledge management in [situation awareness]
systems, which encompasses the acquisition, representation, validation, mainte-
nance and reuse of knowledge gathered for and during the use of these systems.”
Salfinger et al. propose a tool suite for the management of situational knowledge
in situation awareness systems. The authors discuss the relevant tasks including
knowledge acquisition, representation, validation, adaption, exploration, and
exploitation. Salfinger et al. plan to evaluate the suite for traffic management.

For maritime situation awareness, Velikova et al. (2014) present a system ca-
pable of collecting, and reasoning on, data and information to provide human
operators with actionable knowledge, in real-time. The system uses heteroge-
neous data and information sources, e.g. automatic identification system trans-
mitters installed on ships and commercial ship databases, to assess the truth-
fulness of identification information transmitted by ships, and monitor ship be-
haviour in order to detect illegal or dangerous activities. Velikova et al. under-
score that “early [situation awareness] systems were only capable of collecting
low-level sensor data [...] to generate ship tracks,” leaving the recognition of ab-
normal patterns to operators, whereas newer systems are increasingly capable of
identifying abnormalities automatically. A consequence of this “shift from ‘men-
tal reasoning’ to ‘automated reasoning’ [...] is [operator] relief from the burden
of dealing with all ships to dealing with only those ships that really matter.”

As noted by Salmon et al. (2012), situation awareness has traditionally re-
ceived attention in domains such as aviation, military, and air traffic control. Far
less attention has been given to situation awareness in intelligent transportation
systems. Paper II is a contribution to this domain. Furthermore, we argue that
situation awareness has been applied even less to environmental monitoring in
scientific applications, even though it is arguably applicable. Traditionally, situ-
ation awareness systems include one or more operators, i.e. a person who typi-
cally operates machinery, such as aeroplanes or ships. We build on this work and
argue that in situation-aware environmental monitoring systems for research it
is scientists that can be the operators, receivers of knowledge about situations
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involving environmental phenomena, such as new particle formation, acquired
from environmental sensor network data processed by means of computational
models. Thus, the most important distinguishing feature between the systems
reviewed in this section, and arguably situation awareness systems more gen-
erally, and the systems in Wavellite applications discussed in Chapter 4 are the
operator and the elements in the environment for which situation awareness is
obtained and maintained.

5.5 DATA MANAGEMENT

In addition to the problem of knowledge extraction from processed data ac-
quired from environmental sensor networks, and the representation of acquired
knowledge, the Wavellite framework, and thus the applications presented in
Chapter 4, also faces the problem of data management, both raw sensor data and
processed datasets. This subtask is motivated at least by the facts that “[e]nabling
machine interpretability [...] requires a common approach to organise and struc-
ture the data” (Barnaghi et al., 2009) and that “integrating [data] into forms
usable for environmental analysis and modelling can be highly time-consuming
and challenging” (Hill et al., 2011).

Given the rapidly increasing use of sensors in various domains, and the con-
sequently growing amount of data generated by such devices, it is unsurprising
that sensor data management, too, is a research topic of continued and increasing
importance. Balazinska et al. (2007) note that “we have placed too much atten-
tion on the networking of distributed sensing and too little on tools to manage,
analyse, and understand the data.” While useful as a starting point, Balazin-
ska et al. underscore that conventional database management systems “have
several critical shortcomings that prevent using them directly to process live
sensor data.” The authors discuss data management challenges of the ‘world-
wide sensor web’ vision and present related recent advances in research. Chal-
lenges include the quality of collected data, which may be uncalibrated, missing,
faulty, and does generally not fit a uniform space-time grid; the management of
temporal and spatial data, which often requires programming skills to perform
calculations, visualization, or statistical analysis; the complexity of data analy-
sis workflows; the lack of integration between conventional data management
systems and modelling software; data uncertainty and provenance; distributed
streamed data and query processing.

Marascu et al. (2014) present TRISTAN, a “data management system for effi-
cient storage and real-time processing of fine-grained time series data.” The sys-
tem persists only the most informative parts of time series in an optimized com-
pressed representation and performs queries directly on the compressed repre-
sentation, avoiding thus having to decompress the data. As a result, TRISTAN
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achieves high compression ratios and query performance improvement within
one or two orders of magnitude.

Chang et al. (2006) present a “solution to data storage and management that
provides a uniform and consistent method for publishing and sharing [...] sen-
sor network data.” The system supports sending and retrieving data via stan-
dardized formats. Queries can be formulated to include search on geographic
location, sensor type, time intervals. The primary aim of the system is to hide
the complexity of retrieving and processing data of sensor networks with het-
erogeneous data storage and management mechanisms.

Addressing the challenges of accessing and integrating environmental sensor
network data for analysis and modelling, Hill et al. (2011) present a web-based
virtual sensor system that “creates real-time customized data streams from raw
sensor data,” using spatio-temporal and thematic transformations, and supports
“the publication of both the derived data products and the workflow [and prove-
nance] that created them.”

Horsburgh et al. (2011) describe the “architecture and functional require-
ments for an environmental observatory information system that supports col-
lection, organization, storage, analysis, and publication of hydrologic observa-
tions.” The architecture is designed to support time series data collected from
stationary sensors and is evaluated for a river in Utah. The supported function-
ality is closely aligned to ENVRI-RM functionality. The architecture includes
data analysis, which Horsburgh et al. describe as “the process by which data
are inspected, modelled, and visualized with the goal of increasing understand-
ing of hydrologic processes.” In the architecture, it is the scientist who searches
and retrieves relevant data from the information system, an exploratory task as
“[u]sers don’t always know exactly what they are looking for.” The scientist also
performs data analysis and interpretation. This can be understood as knowledge
extraction from data, and it typically involves software, e.g. for statistical com-
puting, but is otherwise performed manually. More importantly, the architecture
seems to not allow for feedback of knowledge obtained from data analysis and
interpretation into the environmental observatory information system.

Dow et al. (2014) provide a survey for the best practices in water data man-
agement and retrieval, sharing, and visualization in informatics platforms. Their
focus is on user and researcher “ability to access and analyse the data more ef-
fectively.” The authors discuss three core informatics functions. The first func-
tion is to provide data of value, meaning that the content is comprehensive and
“in sufficient quantities to derive statistically meaningful conclusions,” and the
“associated metadata contains enough detail for end users to assess reliability
and compatibility,” including provenance information. The second function is to
support the exchange of data, in order to make useful data accessible using web
services, machine-readable data conforming to standardized XML, and ontolog-
ical solutions for machine-interpretable environmental data interoperability. The
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third function is to help users analyse the data, which includes functionality for
data search and discovery as well as data visualization. The review seems to
suggest that state of the art water informatics platforms are (so far) not con-
cerned with integrating models for knowledge extraction. With the exception of
trivial alerts based on user-defined thresholds for parameters of interest, infor-
mation and knowledge extraction is generally left to the user, e.g. researcher.
Moreover, there seems to be no feedback loop for, manually or automatically,
extracted knowledge into informatics platforms which thus do not manage or
process knowledge.

The semantic description of sensors and their data using ontologies has re-
ceived considerable attention in the literature. Sheth et al. (2008) discuss the
semantic sensor web “in which sensor data [are] annotated with semantic meta-
data to increase interoperability as well as provide contextual information essen-
tial to situational knowledge.” Sheth et al. specify that such annotation involves,
in particular, spatial, temporal, and thematic semantic metadata. The aim is “to
provide enhanced descriptions and meaning to sensor data.”

The semantic sensor web extends the sensor web, which “refers to web ac-
cessible sensor networks and archived sensor data that can be discovered and
accessed using standard protocols and application program interfaces” (Botts
et al., 2007, 2008). Toward the sensor web vision, the Open Geospatial Consor-
tium (OGC) develops “a suite of specifications related to sensors, sensor data
models, and sensor web services” (Sheth et al., 2008). However, these XML-
based specifications are designed for syntactic interoperability between informa-
tion systems (Egenhofer, 2002); they cannot achieve semantic interoperability.

Addressing this limitation, Probst (2006) suggests to align key terms of OGC
O&M to the DOLCE foundational ontology (Masolo et al., 2002). With the se-
mantic sensor web, Sheth et al. (2008) extend the syntactic XML-based meta-
data standards of the OGC with OWL-based semantic metadata standards of
the W3C. Sheth et al. propose a mechanism whereby semantics are added into
XML documents by annotating (OGC) XML with terms defined in ontologies.
The authors demonstrate the mechanism by annotating a timestamp encoded in
O&M with the term OWL-Time Instant.

Ontologies were soon developed. Compton et al. (2009) provide a survey
of early efforts in the semantic specification of sensors. Some ontologies are
designed to primarily support the description of sensor types, others focus on
sensor data, and some support the description of sensor systems, their compo-
nents, structure, and processes. Today, the most notable result in the semantic
specification of sensors is arguably the SSN ontology.

The adoption of semantic web technologies for sensor data management has
been advocated. Lewis et al. (2006) argue that “semantics can enhance data man-
agement in sensor networks.” The system presented by Lewis et al. manages
sensor data in (daily) RDF files, a practice that, in light of state of the art RDF
databases, is arguably antiquate. However, the authors underscore the ability
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of the RDF (graph) data model to represent semantic associations between data,
and the possibility of using such relations in the formulation of queries.

Le-Phuoc et al. (2011) present a Linked Stream Middleware for the collec-
tion of heterogeneous sensor data, their translation into RDF data that conforms
with the SSN ontology, and the access of RDF data. The middleware architec-
ture consists of four layers. At the bottom, the “data acquisition layer provides
wrappers to collect sensor readings and transform them [to RDF].” The linked
data layer receives RDF data from the data acquisition layer and supports fur-
ther annotation and enrichment of sensor data in RDF by linking to external RDF
data sources. The data access layer supports declarative querying of RDF data
enriched by the linked data layer. Finally, at the top, the application layer is con-
cerned with application development. The middleware is designed to support
the collection and transformation of large volume data. The authors claim that
their instance was handling over 100,000 data sources. However, the middleware
does not address knowledge extraction from data and knowledge representation.

Wang et al. (2011) describe a “semantic technology-based approach to eco-
logical and environmental monitoring.” The authors develop an upper ontology
for monitoring, and deploy the approach in a system that “integrates environ-
mental monitoring and regulation data from multiple sources” using semantic
web technologies. They also argue that environmental monitoring systems must
at least model background environmental knowledge, observational data items
collected by sensors and humans, and environmental regulations. The third type
of domain knowledge, i.e. environmental regulations, is arguably not a neces-
sary part of environmental monitoring systems in arbitrary applications. For
instance, Paper III presents an application in which aerosol scientists are not
concerned with the ‘regulation’ of new particle formation.

Lefort et al. (2012) use the SSN ontology and the QB vocabulary to publish
temperature data released by the Australian Bureau of Meteorology as tabular
time series (tab-delimited data files) in RDF as a ‘Linked Sensor Data Cube’.

Ahmedi et al. (2013) present an ontology for water quality management. The
proposed ontology was “developed to support water quality classification based
on different regulation authorities.” The ontology is based on the SSN ontology
and supports the modelling of sensor data, regulations published by authorities,
sources of pollution, and expert knowledge about the water (quality) domain, in
particular rules.

Abecker et al. (2014) present a sensor and semantic data warehouse “able
to store and provide sensor, measurement and forecasting data, as well as se-
mantic knowledge about the water-supply chain.” The software architecture
separates sensor and semantic data into distinct stores. Specifically, sensor data
in form of OGC WaterML 2.0 (Taylor, 2014) is managed by a conventional rela-
tional database management system whereas data with irregular and complex
relationships is managed by a knowledge base. According to Abecker et al.,
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to manage the sensor data with the RDF database “seemed not feasible and
promising.” However, a drawback of the approach is the resulting ‘technology
gap’ which means that it is not possible to evaluate sensor data and semantic
data in a single query.

The semantic annotation of sensor data is a subtask of sensor data manage-
ment with semantic technologies, and is frequently discussed in the literature.
Studied for a building fire emergency scenario, Huang and Javed (2008) present
an architecture for a system that enriches sensor data with semantic informa-
tion such that the data can be understood and processed by applications with
different purposes.

Discussed for the transportation domain, Stewart Hornsby and King (2008)
demonstrate an approach for linking data about vehicles observed by a sensor
network, and managed by a database, with ontology classes. The work builds
on aligning database schema with ontologies, and proposes to link database
instance data with ontologies.

Wei and Barnaghi (2009) propose to annotate sensor data with concepts of
existing knowledge bases, such as DBpedia (Auer et al., 2007), following the
linked data principle, and utilize semantic reasoning over sensor data to infer
new knowledge and answer complex user queries. The authors argue that link-
ing sensor data with qualitative annotations, e.g. ‘cold’ for −15 ◦C measured
ambient air temperature, increases the value and usefulness of the data.

Müller et al. (2013) present an approach for transforming JSON formatted
sensor data to RDF using mappings between JSON document elements and on-
tology concepts and properties. For this purpose, the authors develop a mapping
language, which is used to create transformation scripts. The script language
also supports the invocation of functions designed to retrieve relevant data from
external sources. The feature can be used to further enrich RDF data with rele-
vant data that is not available in the original JSON data. The example provided
by Müller et al. is for a function that takes coordinate data available in JSON and
uses the Google Geocoding API to obtain an address. In addition to coordinate
data, the resulting RDF data will thus be enriched with address data.

Moraru and Mladenić (2012) present a framework for the semantic enrich-
ment of sensor data. The purpose of the framework is to support the automated
translation of sensor data to, and the querying of sensor data in, RDF. However,
the proposed framework is conceptual and seems to lack of an implementation.

Calbimonte et al. (2012) propose to learn semantic properties of observations
from sensor data. The approach uses linear approximations of time series slopes
and a similarity-based classification of slope distributions to learn the property
type observed in measurement.

Another subtask of sensor data management is data access. In order to ab-
stract from the heterogeneity of devices in sensor networks, service oriented
principles have been adopted to model sensors as services and thus enable ac-
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cess to sensor data through standard service technologies. With semantic sensor
service networks, Wang et al. (2012) propose a generic framework that mod-
els sensors as services and supports the semantic description, seamless service-
oriented connectivity, discovery and composition of sensor services. Of concern
to sensor services are, among other issues, semantic registries for sensor meta-
data (Chaves et al., 2013) and the matching of sensor characteristics and service
requirements for correct integration (Bröring et al., 2012). Some of the OGC ser-
vice specifications have been extended with semantic features. An example is
the semantically enabled SOS proposed by Henson et al. (2009).

Wavellite handles data management at the observation, derivation, persis-
tence, and access layers. It builds on semantic web technologies. Wavellite is
thus similar to the SSN ontology based systems presented in this section, and in
contrast to more traditional systems that rely on relational database management
systems and XML technologies for data interchange. However, the main distin-
guishing feature between Wavellite and other sensor data management systems
is the acquisition of situational knowledge from data, and the representation and
processing of knowledge. Especially in environmental science, informatics plat-
forms for data management tend to support classical ENVRI-RM functionality,
and are generally intended to be used by researchers as repositories for data
that serve analysis, and thus information and knowledge extraction. However,
these informatics platforms seem to not support the feedback of acquired knowl-
edge into the platform, and thus the management and processing of knowl-
edge. In contrast to informatics platforms for data management—which may
have good support for handling data, including import and export of data in
various formats—the Wavellite data management layers primarily serve the pur-
pose of situational knowledge acquisition. Hence, the functionality supported
by these layers is limited to those strictly required for knowledge acquisition in
various applications.

5.6 RELATED AREAS

We discuss related techniques in environmental monitoring, specifically remote
sensing; techniques in data management and processing, such as stream process-
ing and data fusion; methods in data processing, data analysis and mining, and
machine learning on sensor data; and other domains in which obtaining sym-
bolic descriptions about an environment perceived using sensors is a research
problem, such as robotics, context awareness, ambient intelligence.

Sensor networks have found diverse application in environmental monitor-
ing. Mainwaring et al. (2002) describe the core components of a sensor network
architecture for the domain of habitat monitoring, of which the authors present
an instance for monitoring seabird nesting environment and behaviour. The
authors are primarily concerned with hardware infrastructure, and related re-
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quirements, and mention that sensor data are managed by PostgreSQL. Moumen
et al. (2014) present a platform aimed at real-time groundwater monitoring. The
platform builds on OGC services and technologies, such as OGC SOS and the
52° North SOS server, and is evaluated for a region in Morocco.

In our work, we have generally assumed that monitoring occurs in situ by
means of environmental sensor networks. Remote sensing, in particular satel-
lite based techniques, is an alternative mode of environmental monitoring and
comes with the primary advantage of large scale spatial coverage. To highlight a
few studies, Ackland et al. (2012) use “remotely sensed data for the purpose of
flood monitoring in terms of measuring flood extent and estimating flood vol-
ume at continental scales.” Using remote sensing data, Xiao et al. (2014) present
an OGC-based system for dust storm detection and visualization.

Due to characteristics such as heterogeneity, volume, frequency, and noise,
data streams are notoriously challenging to process. Over the past decade, var-
ious stream processing and querying engines have been proposed (Babu and
Widom, 2001; Yao and Gehrke, 2002; Chandrasekaran et al., 2003; Madden et al.,
2005; Abadi et al., 2005). The use of CEP techniques to process data streams has
been advocated (Bonino and Corno, 2012).

Gaber et al. (2005) provide a review of data stream analysis and mining, re-
lated systems and techniques, and research challenges. Data stream mining is
concerned with extracting knowledge from data streams. Techniques in data
stream mining are thus arguably of interest to near real-time knowledge extrac-
tion from environmental sensor network data. The authors briefly review clus-
tering, classification, frequency counting, and time series analysis techniques.
Clustering and classification, in particular, are broad technique categories orig-
inally developed for static datasets. The static and the streamed contexts have
different demands on algorithms because in the latter case the view on data is
limited to a window, and algorithms thus operate incrementally. As for research
challenges, Gaber et al. note, among other, the poorly supported handling of
continuous data streams by traditional database management systems; the de-
sign of energy and memory efficient techniques that can operate on resource
constrained devices; the representation of data mining results and their transfer
over limited bandwidth communication links; and the visualization of results on
mobile devices.

Calbimonte et al. (2010) discuss the ontology-based access to data streams
and present a SPARQL extension for streaming data that supports operators
over RDF streams. An RDF stream is a sequence of pairs consisting of an RDF
triple and a timestamp. Similar extensions to SPARQL have been proposed in
the literature (Bolles et al., 2008; Barbieri et al., 2009). The efficient transmission
of RDF streams using data compression techniques has also been addressed
(Fernández et al., 2014). Stream reasoning, i.e. logical reasoning on data streams,
has also drawn interest recently (Della Valle et al., 2009; Barbieri et al., 2010;
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Margara et al., 2014) and Wetz et al. (2014) discuss the integration of RDF streams
in environmental information systems, noting that the blending of static data
sources and dynamic data streams “is non-trivial and major advances still need
to be made in this area.”

Historically developed primarily for military applications, sensor data fusion
has seen also non-military applications, e.g. in machinery condition maintenance
and robotics, and has also tackled some of the problems underlying this disser-
tation. Hall and Llinas (1997) describe how the detection of a target in sensor
data, e.g. an aircraft; the determination of its properties, such as position and
velocity; the estimation of target identity, e.g. F-16 aircraft; and the interpretation
of the target’s intent, require methods in signal processing, pattern recognition,
and knowledge-based methods. Such a process is clearly one of situation as-
sessment, and situation awareness models the perception, comprehension, and
projection of the aircraft. In this context, the fusion of sensor data “may in-
crease the accuracy with which a quantity can be observed and characterized.”
This constitutes an obvious benefit for tactical military systems. However, Hall
and Llinas acknowledge that the “actual implementation of effective data fusion
systems is far from simple.” The authors list environmental monitoring as one
of the non-military applications of sensor data fusion and highlight the use of
remote sensing image-based techniques to monitor weather and natural disaster.

Methods in data processing, data analysis and mining, and machine learning,
in particular methods applied to sensor data, are important to Wavellite applica-
tions. The framework borrows such methods from the literature, and implemen-
tations from existing software packages. Much work exists in the literature in
which authors have applied methods in data processing, analysis, mining, and
learning on sensor data to extract information.

Mahmood et al. (2013) review data mining techniques for wireless sensor
networks. The authors highlight how some of the inherent characteristics of
wireless sensor networks pose challenges to traditional data mining workflows.
According to the authors, “traditional data mining is centralized, computation-
ally expensive, and focused on disk-resident transactional data.” In contrast,
sensors are constrained in battery lifetime, memory, communication, and com-
putational resources; sensor networks are often sources of large amounts of fast
sampled data; sensor data are located in space-time; sensor networks are dis-
tributed systems with potentially dynamic topologies; applications may require
data mining to operate in real-time and models need to be updated as the un-
derlying phenomenon changes over time. Mahmood et al. discuss methods in
frequent pattern mining, utilized to discover groups of variables that co-occur
frequently in datasets; sequential pattern mining, utilized to discover frequent
subsequences in sequence databases such as time series; clustering, utilized to
group data so that the similarity of data in the same cluster is greater than the
similarity of data in different clusters; and classification, utilized to assign classes
to data objects.
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Fu (2011) and Esling and Agon (2012) provide reviews for time series data
mining. According to Fu, fundamental tasks in time series data mining include
representation, utilized to reduce the size of time series while retaining the fun-
damental shape characteristics; indexing, required to efficiently retrieve time
series; the computation of the similarity between time series or time series sub-
sequences; time series segmentation, utilized in preprocessing, trend analysis,
or discretization; time series visualization, utilized for user analysis; and min-
ing tasks such as pattern discovery, clustering, classification, rule discovery, and
summarization. Esling and Agon include query by content, anomaly detection,
and prediction as further tasks. Liao (2005) surveys clustering of time series
data, in particular. Similar techniques have also been proposed for spatial and
spatio-temporal data mining (Koperski et al., 1996; Roddick et al., 2001).

Lane and Georgiev (2015) utilize neural networks on mobile devices to map
(processed) sensor data to context, for tasks such as activity recognition. Com-
pared to desktop, server, or cloud computer systems, mobile devices operate
under various constraints, such as limited battery lifetime as well as constrained
processing and memory resources. Performing machine learning tasks directly
on mobile devices may require innovative algorithms. While the computational
resources available to mobile devices such as last-generation smart phones are
often more advanced than those available to sensors used in environmental
monitoring, research that aims at pushing advanced processing and analysis
algorithms into sensing devices with constrained computational and energy re-
sources is arguably relevant to sensor network applications, as devices could
perform advanced computational tasks lower in the infrastructure and reduce
the amount of data communicated to components at higher levels of the archi-
tecture. However, in scientific applications research communities are arguably
keen on retaining (raw) sensor data, as it may serve future research goals that
are unforeseen at the time of data acquisition.

Data mining methods have also been applied to data on the semantic web.
Rettinger et al. (2012) survey statistical approaches to mining the semantic web.
In contrast to deductive reasoning typically supported in knowledge-based sys-
tems, inductive methods better handle very large, noisy, inconsistent, uncertain
and missing data. Rettinger et al. underscore that “machine learning has been
mostly considered as a tool to enrich or extend ontologies on the schema level,”
i.e. to learn terminological axioms. The authors thus focus on using data min-
ing methods at instance level to learn assertions. Relevant tasks in this context
include the prediction of class membership and property values of instances, the
prediction of relations between individuals, as well as instance clustering and
relation classification.

Some authors argue that large quantities of data and methods in data min-
ing and machine learning provide “opportunities for the greatest scientific and
technological advances of the early 21st Century” (Peters et al., 2014). While



116 DISCUSSION

research has been addressing the collection, curation, access, and processing of
large quantities of data with hardware and software infrastructure, Peters et al.
underscore that “big data are not readily accepted or utilized by most ecologists
as an integral part of their research because the traditional scientific method is
not scalable to large, complex datasets.” The authors argue that “what is needed
is a knowledge-driven, open access system that ‘learns’ and becomes more effi-
cient and easier to use as streams of data, and the number and types of user in-
teractions, increase.” Peters et al. sketch the architecture of such a system, called
Knowledge Learning and Analysis System. The key feature of the system is
arguably the integration of hypothesis-driven and data-intensive machine learn-
ing scientific approaches. Interesting here is also the remark that “the current
focus [in environmental research infrastructure] is on open access source data
and metadata.” Peters et al. argue that “a more efficient use of resources will oc-
cur if the derived data products and analyses are also in the public domain and
continually modified as more scientists use and learn from the data.” A claim of
this dissertation is that not only derived data products should be accessible: also
knowledge products, i.e. the result of knowledge acquisition—possibly achieved
by means of machine learning methods—can, and perhaps should, be curated
by environmental research infrastructure, and thus be accessible.

The idea of representing knowledge derived from (geographic) datasets dates
back to at least Mennis and Peuquet (2003). The authors suggest that “geo-
graphic data models that support knowledge discovery must represent both ob-
servational data and derived knowledge.” Mennis and Peuquet stress the impor-
tance of incorporating aspects of knowledge representation into the knowledge
discovery in databases process. The authors discuss their approach for a case
study in which expert knowledge is used to create a typology of storm types
and their properties, represented in a database context. Storm individuals of a
given type are then extracted from meteorological (observational) data.

The problem of obtaining symbolic descriptions about an environment per-
ceived using sensors is common to several other domains. In video surveillance,
an important task is to automatically understand events occurring in scenes
monitored using video surveillance sensor networks. Of particular interest are
densely populated environments, e.g. cities, airports, subways. Doulaverakis
et al. (2011) stress that “manual observation of multiple camera feeds is not pos-
sible” and argue that “high-level intelligent reasoning for event inference” are
thus critical features. Applied to security surveillance environments, Doulaver-
akis et al. present a software architecture for a sensor information fusion system.
The architecture consists of four layers and includes monitoring with sensors,
signal processing of sensor data, and mapping of data to ontology concepts. The
authors use the STO and thus the concept of situation as the core abstraction for
information about events observed in surveilled environments.
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According to Fernández et al. (2013), video surveillance sensor networks suf-
fer from “an overabundance and overflow of data which does not directly trans-
late into information.” The emphasis is on directly, i.e. the data are captured
but systems do not process data to information in (near) real-time. As a result,
video surveillance data are predominantly used to understand scenes in the past,
e.g. to obtain evidence for a past crime, rather than for prevention. Fernández
et al. present the architecture of a surveillance platform. The employed visual
sensors natively detect movement in the monitored scene and transmit object
motion data as XML. XML data are then processed to detect ‘irregular activity’.
The system searches irregular activity by learning recurrent patterns in motion,
by semantic characterization (i.e. interpretation) of motion in the scene, and by
means of user-defined rules, which may include atoms that implement complex
functions on fused data from heterogeneous sources. Irregular activity is de-
tected if patterns are different from recurrent patterns or if a semantic reasoner
or a rule infer irregular activity. Upon detected irregular activity, an alarm mes-
sage is dispatched to first responders, e.g. the police, who can then request the
system for a live video stream on the scene.

Researchers in robotic systems have studied the problem of providing robots
with a symbolic representation of its environment perceived using heteroge-
neous sensors. In a robotics context, Coradeschi and Saffiotti (2000) discuss
the problem of anchoring symbols to sensor data. According to the authors,
“[a]nchoring is the process of creating and maintaining the correspondence be-
tween symbols and percepts that refer to the same physical objects.” Corade-
schi and Saffiotti (2003) also provide a definition for anchoring that substitutes
‘percepts’ with ‘sensor data’. Anchoring is thus the correspondence between
symbols and sensor data. Coradeschi and Saffiotti argue that, provided with a
symbol system utilized to reason about abstract knowledge, in order to execute
tasks a robot must be able to anchor the symbols for abstract knowledge to the
data generated by its sensors. The authors thus consider anchoring “a necessary
component of any physically embedded symbolic system.” Curiously, Corade-
schi and Saffiotti borrowed the term ‘anchor’ from Barwise and Perry’s situation
semantics.

Coradeschi and Saffiotti (2003) discuss various challenges of anchoring. Of
particular interest to environmental monitoring is the challenge of uncertainty
and ambiguity. The authors highlight three aspects. First, “[s]ymbolic properties
often do not have a precise definition in terms of measurable attributes.” Second,
there can be a “mismatch between what we would like to discriminate at the
symbolic level [...] and what can be actually discriminated by the sensors.”
Third, “at the symbolic level we can refer to objects with a specific identity [...]
while the perceptual system is not in general able to perceive the identity of an
object but only some of its properties.”
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Loutfi et al. (2008) discuss the inclusion of knowledge representation and
reasoning in perceptual anchoring. Objects anchored in data are described in
symbolic form in a knowledge base using appropriate concept assertions, and
role assertions to represent object properties. The authors conclude that such
integration can facilitate a natural and effective interaction between people and
robots, which is demonstrated in the context of an intelligent home environment.
The use of semantic web technologies for robot knowledge representation has
also been advocated (Gurău and Nüchter, 2013; Persson et al., 2013; D’Este et al.,
2014).

For robot perception, Shanahan (2005) present a “formal abductive account
of the means by which low-level sensor data [are] transformed into meaning-
ful representation.” Given a background theory (background knowledge) and
‘observation sentences’, abduction attempts to provide an explanation for the
observation sentences. Explanation is reasoning from effects to causes, whereby
observation sentences are the effects and physical phenomena are the causes.
Abduction has been used by various authors, in particular also for perception in
the semantic sensor web (Henson et al., 2012; Barnaghi et al., 2012; Ganz et al.,
2013). Shanahan underscores that, in general, the observation sentences are not
sensor data in its raw state but refined descriptions, such as object edges ex-
tracted from an image, possibly represented as logic formulas. In practice, such
refined descriptions may not be readily available to a system. Systems must thus
also address the problem of how to obtain refined descriptions. Furthermore,
the reasoning task in applications may be from causes to effects, i.e. predic-
tion, meaning that successful systems are required to support various reasoning
modes.

Maurelli et al. (2014) present a system, intended for marine cognitive robots,
that processes sensor data, identifies features such as lines and circles, and ac-
cordingly populates a knowledge base. Information for basic features are then
processed to information about more complex concepts, in particular underwa-
ter structures. The authors underscore that the use of robots in practice continues
to be hindered by “their limited ability to cope with unexpected events and en-
vironments.” Maurelli et al. argue that knowledge representation can at least
partially address this problem by enabling robots “to model and reason with the
uncertainty in the world,” such as unexpected obstacles along survey paths of
autonomous underwater vehicles.

Anchoring is a concrete aspect of symbol grounding (Harnad, 1990), which
is the problem of “how to give an interpretation to a formal symbol system that
is based on something that [...] is not just another symbol system” (Coradeschi
and Saffiotti, 2000). Symbol grounding is a more general problem than anchor-
ing. Cregan (2007) adapts the symbol grounding problem to the semantic web,
and notes that ontological entities have formal semantics but “lack a pragmatic
semantics linking them in a systematic and unambiguous way to the real world
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entities they represent.” Cregan argues that this constitutes a problem for the
semantic web in that it is possible for a symbolic system, such as the semantic
web or an ontology, to produce logically valid inferences which, however, have
no meaningful correspondence in the real world.

For information systems that utilize sensor data, Fiorini et al. (2013) adapt
the symbol grounding problem to the problem of grounding the symbols of
a domain ontology. Fiorini et al. study how to represent the grounding link
between sensor data and domain ontologies and argue for the explicit represen-
tation of this link. The proposed symbol grounding framework consists of three
levels: domain, quality, and signal. The domain level contains domain knowl-
edge, terms including concepts and qualities such as apple and colour. The
quality level uses attribute functions to specify the relations between qualities,
concepts, and quality values, for instance an attribute function that specifies the
quality of having a certain colour, such as the red colour of kinds of red apples.
Finally, the signal level uses symbol detector functions to link quality values to
patterns in raw data. Symbol detectors search data for the existence of qualities.
The framework can induce the existence of an individual of a particular con-
cept if enough qualities of the concept are found. Fiorini et al. clarify that the
proposed framework does not specify how symbol detectors are implemented
in practice and note that “they can be implemented as simple logic rules, as
well as more complex software systems, involving signal processing methods.”
In the application presented by the authors, “the link between the quality level
and the signal level is hard-coded” and symbol detectors are implemented as
programming libraries.

With shared aims and problems, context-awareness is another research area
related to this dissertation. Dey (2001) defined context as “any information that
can be used to characterise the situation of an entity.” Dey specifies that “[a]n
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and application them-
selves.” Dey further states that “[a] system is context-aware if it uses context
to provide relevant information and/or services to the user, where relevancy
depends on the user’s task.” According to Dey, a description of the states of
relevant entities is a situation abstraction.

Sensors can be a source of context and methods have been developed to
extract context from sensor data. Castelli et al. (2009) propose the W4 context
model, whereby a fact that occurs in the world is expressed as four-fields tuple
consisting of data or information for Who, What, Where, When. The authors
contend that “most information about the world can be [...] represented in terms
of [the] four ’W’s.” According to Castelli et al., sensors are one possible source of
data or information relevant to four-fields tuples of the W4 context model. The
authors envision the possibility of using ontology to represent four-fields tuples
such that the W4 model is “usable in open and dynamic scenarios.”
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Kessler et al. (2009) evaluate the use of semantic rules for context-aware ge-
ographical information retrieval. The authors remark that choosing a suitable
location, e.g. for sport activities, generally depends on various factors, such as
environmental conditions, personal skills and preferences, or social aspects. In-
formation for such factors can be used to characterise the situation of a user
and is thus context. Context information may be numeric data acquired from
sensors, such as a thermometer. Kessler et al. then propose to utilize SWRL
“for personalized mappings between the numeric sensor world and information
stored in ontologies.” In particular, the authors contend that SWRL built-ins play
a central role in the mapping, and discuss the design of a built-in that retrieves
the value of an observed property from a SOS.

Data of sensors typically included in mobile devices, such as accelerometers,
have been used to infer behaviour and context. Lane and Georgiev (2015) high-
light that to reliably infer “user behaviour and context from noisy and complex
sensor data collected under mobile device constraints remains an open prob-
lem.” Cricri et al. (2014) use the data of auxiliary sensors typically installed in
camera-enabled electronic devices to obtain contextual information about user
generated videos. Using a single camera, the authors demonstrate how such
sensor data can be used to detect and classify camera movement, shaking, or
orientation. Such contextual information can be useful to deciding if a video
sequence is of good quality. Using multiple cameras recording the same scene,
the authors demonstrate how data of auxiliary sensors can be utilized to obtain
contextual information about the scene, such as the angular region of interest
of a public happening. By correlating the movement of multiple cameras, Cricri
et al. show the extraction of contextual information about events, such as the
lifting of hands in an audience.

Related to context awareness, and the recognition of context, is the prob-
lem of activity recognition, in particular the recognition of user activity in smart
environments, such as smart homes, for ambient assisted living. A prominent
scenario is that of assisting the elderly in their homes in order to prolong inde-
pendent living. Assam and Seidl (2014) underscore that “[i]nferring high level
activity or context from low level sensor signals has sparked huge research inter-
est to discover emerging patterns and correlations from sensor data.” According
to Assam and Seidl, a challenging task in this problem space is to define the
signature feature vector corresponding to an activity and thus to “detect the dis-
similarity between signals of two different activities.” Assam and Seidl present
a model capable of predicting high level activity from low level accelerometer
sensor signals stemming from smart phones. The predicted activities include
jogging, walking, ascending stairs, descending stairs, sitting, and standing.

Ye et al. (2014) propose an unsupervised semantic mining activity recognition
technique, which the authors present “as a systematic way of deeply integrat-
ing knowledge- and data-driven techniques.” The technique includes a general
ontological framework consisting of object, location, sensor, and activity ontolo-
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gies. The sensor ontology is intended for the representation of sensor events
modelled as tuples consisting of values for time, sensor id, and reported value.
In their experiments, sensors observe state changes and values are either 0 or
1, e.g. for closed or open door. The monitored activities include, among other,
leaving the house, taking a shower, using the toilet, and going to bed. Thus, the
technique recognizes activity that involves user-object interaction. Based on the
object to which a sensor is attached and the location at which the sensor is in-
stalled, ontologies determine the key sensors associated to activities. Ontologies
also serve in the computation of the semantic similarity between sensor events,
a measure used in the segmentation of continuous sensor events. The result of
segmentation are sensor event sequences. Two consecutive sensor events that
are considered semantically similar are part of the same sequence. Sequences
are then mapped to activities based on key sensors in each sequence. For each
activity, the set of identified sequences is then clustered using k-means in order
to obtain the k most representative sensor event sequences for the activity. Given
a continuous stream of sensor events, the technique can segment the stream and
then classify the obtained sequences to activities by matching sequences with the
k representatives of each event.

Chen et al. (2014) present an approach to activity modelling that “combines
domain knowledge based model specification and data-driven model learning.”
Activity models go beyond activity recognition as they support more advanced
features such as activity prediction or abnormal activity detection. Chen et al. ar-
gue that the hybrid approach enables the formulation of generic activity models,
suitable for all users, using knowledge-driven methods, such as formal knowl-
edge acquisition about daily routine activities, and the creation of individual
activity models using data-driven incremental learning. The proposed process
consists of three phases. In the first phase, preliminary activity models are built
using prior knowledge. These preliminary models are used in the second phase
to classify sensor data and recognize activities. Preliminary models are incom-
plete and unable to recognize all activities, due to differences in how individual
users perform activities. In the third phase, the outputs of the second phase are
used to learn new activities and user activity profiles. New activities are those
not recognized in the second phase and reflecting frequent and semantically sim-
ilar sensor data sequences. User activity profiles model the specific way a user
performs activities, and include for instance the time it takes for an individual
user to perform a particular activity. Chen et al. demonstrate their approach
for single-user and single-activity scenarios, which are arguably simplistic com-
pared to real situations.

Sensors are also at the base of the Internet of Things (Atzori et al., 2010, IoT),
which thus faces similar challenges in sensor data processing as well as knowl-
edge extraction from data. Atzori et al. describe the various visions and defini-
tions that exist for the IoT paradigm, including semantic-oriented visions. The
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‘things’ are communication enabled objects such as sensors or mobile phones
capable of interaction and cooperation. These objects are expected to grow in
numbers and diversity to include ‘everyday things’ such as food packages, fur-
niture, or clothes. Semantic technologies could play a role in the representation,
persistence, organization, and search of information generated by the IoT. Atzori
et al. underscore that sensor networks will play an important role in the IoT, in-
cluding in environmental monitoring applications and intelligent transportation
systems. Semantic knowledge acquisition is of interest also to the IoT (Ganz
et al., 2014).

5.7 STRENGTHS

The Wavellite software framework and the discussed applications have several
strengths. Some are briefly described in this section. The following section will
present the limitations.

A strength of Wavellite is its support for situational knowledge acquisition
from the streams of numbers resulting in measurement, i.e. its support for pro-
cesses that begin with raw sensor data and end with represented situational
knowledge. In practice, the numbers resulting in measurement may not have
any associated metadata, including timestamps, and are arguably the most basic
output of (digital) sensing devices. Indeed, streams of numbers void of metadata
are precisely the output of the accelerometer sensing devices used in papers I
and II. The application discussed in Paper III builds on timestamped matrices of
numbers, available as text files. Only the application discussed in Paper IV re-
lies on data and rich metadata served by the INSPIRE (EU, 2007) compliant FMI
Open Data service. We think that systems and architectures designed to extract
knowledge from sensor data should avoid making assumptions about the input
data other than that such data are numbers. Some architectures we reviewed
assume that the input data are available annotated with rich metadata, encoded
using advanced XML or RDF data models, or as symbolic abstractions for events
of interest to the application (e.g. Loke (2004); Whitehouse et al. (2006); Janowicz
(2012); Llaves and Kuhn (2014)). Some applications may receive such input data
but this cannot be generalized. For applications that build on sensor network
data, the conservative assumption is that data are numbers. Therefore, we ar-
gue that architectures which do not make further assumptions and support the
representation of knowledge acquired from processed numbers obtained in mea-
surement are more credible in their attempt to close the gap between high-level
knowledge and low-level environmental monitoring data.

Another strength of the Wavellite software framework is that it does not pre-
scribe a particular set of techniques or models for data processing and knowl-
edge acquisition. Papers II and III employ methods in digital signal processing
and machine learning while Paper IV utilizes a physically-based environmental
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model. As it defers more program logic implementation to applications, this
design choice may be seen as a limitation. For applications in environmental
science we argue it is a strength and, to our understanding, a necessity as it
can hardly be circumvented, for at least the following two reasons. First, the
spectrum of possible knowledge acquisition problems on environmental sensor
network data, as well as the spectrum of data processing and knowledge acquisi-
tion techniques such problems rely on, is huge. It is arguably difficult to envision
an (automated) approach that fits them all. Second, program logic of software
libraries, such as the environmental model used in Paper IV, that implement one
or more, possibly complex, subtasks of the overall data processing and knowl-
edge acquisition workflow may exist and can thus be reused. We consider it a
strength if a framework supports the reuse of such program logic.

A further strength is the design choice of a hybrid approach that supports
both inductive data-driven and deductive knowledge-driven techniques. As the
discussed applications arguably demonstrate, both inductive and deductive tech-
niques can assume important roles in knowledge acquisition and processing.
Restricting the framework to one or the other set of techniques would inherently
limit its capabilities and thus its ability to support practical problems in environ-
mental monitoring. The hybrid approach has received support in the literature,
e.g. by Janowicz et al. (2015).

Further strengths of the framework are its clear separation of the three ab-
straction levels, and the shared set of technologies common to data and knowl-
edge curation and access. The discussed applications suggest that distinguishing
sensor observations, dataset observations, and situations is a reasonable design
choice. The three information objects are fundamental to systems designed to
process and manage raw sensor data, processed data, and acquired situational
knowledge. Together with associated ontologies, the three information objects
also reflect the progressive level of abstraction from raw sensor data to situa-
tional knowledge. Sharing a single data model for information objects as well
as the technologies common to data and knowledge curation and access are
also strengths of the Wavellite framework. Having one data model (RDF), one
knowledge representation language (OWL), one knowledge base (Stardog), and
one query language (SPARQL) greatly simplifies the overall architecture.

A strength of the applications discussed in Chapter 4 is that they include
challenging knowledge acquisition problems that rely on complex data process-
ing, involving techniques in digital signal processing as well data-driven and
physically-based modelling. Scientific applications arguably demand that soft-
ware systems are capable of supporting such complexity as well as the integra-
tion of diverse techniques and models used in knowledge acquisition workflows.
Knowledge acquisition by means of rules encoded in languages such as SWRL
and evaluated using off-the-shelf reasoners is elegant but unfortunately address
only a narrow band of relatively simplistic knowledge acquisition problems, in
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the spectrum of possible problems. For practical utility, frameworks should sup-
port the implementation of problems that span as wide a spectrum as possible.

5.8 LIMITATIONS

Little thought and development has been invested so far toward user friendli-
ness of the Wavellite framework. While setting up the development environment
and required software, such as an RDF database, are relatively trivial tasks, one
of the most important limitation of Wavellite in its current form is that in order
to implement a particular application users are required to extend the frame-
work with knowledge and program logic. Users are thus required to develop
(Java) program logic. For instance, after having created a training dataset and
evaluated the performance of a machine learning technique for a particular clas-
sification task, it is necessary to develop program logic that integrates the trained
classifier in a workflow for knowledge acquisition, as well as program logic that
implements and executes the workflow.

Writing such program logic is often expensive and cumbersome. Applica-
tion developers are required to be fluent in programming and familiar with
specialized methods in data processing, data mining, and knowledge represen-
tation and reasoning. Such a set of skills is arguably uncommon among domain
experts, such as environmental scientists. Thus, the development of Wavellite
applications currently requires collaboration between scientists and software en-
gineers. Writing program logic is also error prone and it does not scale well to
large numbers of knowledge acquisition problems. Furthermore, the knowledge
acquisition process is implicit in program code.

As hinted in sections 5.2 and 5.3, systems can adopt an abstract concept other
than that of situation, as understood in situation theory, to organize knowledge
acquired from data. Situation theory and its formalization of situation and infor-
mation about situations is arguably a reasonable candidate within the framework
of situation awareness, for at least two reasons. First, the notion of situation is
obviously central to situation awareness, in particular also the situation theo-
retic formalization (Kokar and Endsley, 2012). Second, in situation assessment
data and information are processed from perception to projection and situation
theory provides a needed formal framework for the representation of informa-
tion about situations. However, a comparative evaluation of the implications of
adopting one concept over the other is certainly interesting and this dissertation
has put little emphasis on this aspect.

Situational knowledge is generally situated in space and time: it is asser-
tional knowledge about individual situations. The acquisition of terminological
knowledge, currently not addressed by Wavellite, is also relevant to scientific
workflows. For instance, the discovery of new particle formation as a natural
phenomenon results in the definition of a new situation type for the class of new
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particle formation events. Stocker et al. (2011) discuss a case where the thresh-
old values in atoms of rules for the classification of nutrient rich and nutrient
poor lakes are acquired from sensor data. Rules are terminological knowledge.
Work by other authors focuses on terminological knowledge acquisition (Maed-
che and Staab, 2001; Janowicz, 2012). Findings in environmental research can
often be understood as terminological knowledge because findings are often for
categories. The statements (i) lakes with high productivity are eutrophic and (ii)
acute exposure of plants to ozone can induce cell death, involve categories and
are not about a particular lake or plant. Software support for the curation, ac-
cess, and processing of terminological knowledge acquired from processed data
is therefore of interest to environmental research. For environmental research
infrastructure it may be of interest to support both terminological and asser-
tional knowledge acquisition. Our focus in this dissertation is on assertional
knowledge.

In Wavellite applications, sensor observations, dataset observations, and sit-
uations are managed by the RDF database. An RDF database, or ‘triple store’,
is arguably not designed for the management of large volumes of sensor and
dataset observations. This concern was also highlighted by other authors, e.g.,
Le-Phuoc et al. (2011). Representing a sensor observation in RDF conforming
with the SSN ontology results in approximately a dozen triples (the actual num-
ber can vary). Converting a time and value pair into a sensor observation thus
results in a considerable increase of data. This increase can be attributed in part
to metadata about sensor, property, and feature being associated with individual
observations, and in part to the RDF data model—in particular also to the use of
URI, each of which can be of considerable length. Furthermore, queries for ob-
servations typically match a predictable pattern. For instance, a frequent query
for sensor observations specifies the sensor, property, feature, and a time inter-
val. Such a query can be evaluated efficiently on large data volumes provided
that the data are indexed effectively and organized along the temporal dimen-
sion. RDF databases are required to optimize the evaluation of arbitrary queries.
Hence, they maintain generic indexes on RDF subjects, predicates, and objects
(Weiss et al., 2008). While obviously necessary for SPARQL query evaluation, the
generic design is arguably suboptimal for sensor and dataset observation query
evaluation.

In building on ENVRI-RM, we have aligned this dissertation with environ-
mental research infrastructure and argued that some of the design choices, such
as the explicit representation of sensor observations and datasets, are relevant
to environmental research infrastructure more than to related areas, such as
robotics or ambient intelligence, in which knowledge acquisition from processed
sensor data is also studied. However, only Paper III on situational knowledge
for atmospheric phenomena is a clear case study in environmental research in-
frastructure. The case study of Paper IV on plant disease pressure situation
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modelling serves primarily two communities: farmers and agricultural advisers.
The latter community consists of researchers in agricultural science. Farmers, on
the other hand, are primarily consumers of situational knowledge. Hence, the
case study of Paper IV serves a more heterogeneous community. In contrast, the
case study of Paper II on road traffic is closer to civil engineering. The argued
alignment of this dissertation with environmental research infrastructure would
arguably benefit from further case studies with focus on environmental research
infrastructure.

The alignment with environmental research infrastructure occurred late in
the development of this dissertation. It is a consequence of our attempt to
ground the Wavellite architecture into an existing and suitable reference model,
an effort we deem valuable because it facilitates understanding and communica-
tion. Furthermore, the alignment is interesting because, compared to modelling
the data life-cycle, modelling the curation, access, and processing of (situational)
knowledge acquired from processed (sensor) data is relatively novel in environ-
mental research infrastructure. With the alignment we underscore that environ-
mental research infrastructures may go beyond data life-cycle management to
also support information and knowledge life-cycle management.

However, the systems of primary interest to the research question are en-
vironmental monitoring systems. Environmental monitoring is fundamental to
environmental research as well as to applications in other domains, such as civil
engineering. The discussed case studies are thus within the scope of the research
question, and provide evidence that situation theory and methods in ontology
engineering can be utilized by environmental monitoring systems in heteroge-
neous applications, possibly applications of environmental research infrastruc-
ture.

The focus of this work on in situ environmental sensor networks, and sensor
observations with observation value corresponding to a number, is a further
limitation. Remote sensing is an important alternative to in situ sensor networks
in environmental monitoring. Furthermore, the observation value may be data
other than a number. For instance, a sensing device attached to a satellite may
perform remote sensing, and observation values are multidimensional arrays of
numbers.

5.9 FUTURE WORK

There exist several directions for future work, which may be guided by the limi-
tations discussed in the previous section. In this section, we propose and discuss
in further details five directions, namely (1) the development of a database man-
agement system for the persistence of RDF sensor and dataset observations; (2)
the possibility of utilizing (semantic) workflow systems to describe data pro-
cessing and knowledge acquisition and representation in Wavellite; (3) the ex-
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tension of the knowledge layer with types other than situation; (4) advancing
knowledge-based environmental research infrastructure; and (5) developing the
approach in industry trends such as smart homes, smart grids, and smart cities.

RDF databases are ill-suited for the management of RDF data that are or-
dered in time, such as sensor observations. This is because a triple store is
fundamentally an unordered set of RDF statements, i.e. triples. The evaluation
of a typical SSN observation query that constrains the sensor, property, feature,
and time interval, is an expensive operation for RDF databases, and quickly pro-
hibitive for time series with a few million sensor observations. This is the case
also for dataset observations, though it is less expensive to evaluate a query for
multidimensional QB observations than to evaluate a comparable query for SSN
observations with properties and features corresponding to the dimensions of
the queried QB observations. This is because the values of several dimensions
are directly related to QB observations whereas the values of different properties
and features are related to different SSN observations.

The inability of RDF databases to scale to large time series arguably consti-
tutes a practical engineering problem in management of sensor and dataset ob-
servations encoded in RDF, possibly according to the SSN ontology and the QB
vocabulary, respectively. We are currently developing a database management
system, called Emrooz (Stocker et al., 2015c), designed to consume and return
SSN observations, and expected to support fast evaluation of SSN observation
queries on time series with several billion sensor observations. Database man-
agement systems that support the curation of and access to very large time series
represented in RDF, specifically following the SSN ontology, are of crucial im-
portance to applications, in particular also Wavellite applications. Emrooz builds
on Apache Cassandra to persist temporally ordered SSN observations and eval-
uates SSN observation queries formulated in SPARQL. NoSQL databases, such
as Cassandra, have been advocated and developed for the management of RDF
data (Cudré-Mauroux et al., 2013), including Cassandra (Ladwig and Harth,
2011). Our aim is different from such efforts because we tailor Emrooz for SSN
observations, rather than for generic RDF data.

We also envision Emrooz support for datasets and dataset observations en-
coded in RDF following the QB vocabulary. Emrooz could thus support the
efficient persistence and retrieval of large volumes of sensor and dataset obser-
vations in (Wavellite) applications. In addition to data ordered in time, it will
be interesting to also explore the possibility of managing data ordered in space
using Cassandra. Finally, the current Emrooz API could be expended to support
functionality beyond adding and querying observations to include functionality
for processing observations. Examples include simple operations such as com-
puting hourly average of dataset observations.

The second direction for future work is to study the possibility of adopting
a semantic workflow system for the declarative formulation of data process-
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ing and knowledge acquisition and representation, as well as the processing
of knowledge, in Wavellite applications. Considerable research effort has been
devoted toward semantic workflow systems. The resulting literature is interest-
ing to Wavellite workflow modelling, and the modelling of workflows for data
processing and knowledge acquisition and representation in situation-aware en-
vironmental monitoring systems more generally. To name a few examples, Deel-
man et al. (2005) and Gil et al. (2011) present the Wings/Pegasus intelligent
workflow system, which aims at assisting users with designing computational
experiments as workflow. The system supports both workflow creation and exe-
cution and addresses concerns such as workflow validation and workflow map-
ping to computing resources. Ludäscher et al. (2006) present the Kepler system
for web service-based scientific workflow management. Wings/Pegasus and Ke-
pler are potentially interesting for the user-friendly formulation of data flow and
processing in Wavellite layers, particularly at the derivation layer where chained
derivation engines transform the data of input datasets into output datasets. As
in these scientific workflow systems, Wavellite components can be modelled as
the computational nodes of a directed acyclic graph, with directed edges repre-
senting data flow.

The third direction is to extend the knowledge layer of the Wavellite archi-
tecture with conceptual types other than situation. Of particular interest is the
concept of process, and Galton and Mizoguchi (2009) provide a useful starting
point with a discussion on ontological modelling of processes. The extension of
the knowledge layer with further abstract types could improve the applicabil-
ity of the proposed framework to new problems and domains. For instance, in
greenhouse gas monitoring, devices measure surface-atmosphere fluxes of en-
ergy and trace gases. It is arguably more appropriate to understand such flux as
a process, open-ended and able to undergo change, rather than a situation or an
event. Knowledge obtained from data about CO2 fluxes between the canopy of
a forest and the atmosphere is thus knowledge about a process. Extending the
knowledge layer with support for this kind could enable the representation of
such knowledge and the application of the framework to new problems.

The fourth direction is to evolve state of the art environmental research in-
frastructure into knowledge-based systems. Based on ENVRI-RM and related
research, we have highlighted that state of the art environmental research in-
frastructure is primarily concerned with data life-cycle management. Though
the data processing subsystem includes functionality for data analysis and min-
ing, ENVRI-RM does not specify what occurs to information and knowledge
obtained in such data processing. In other words, ENVRI-RM does not model
the knowledge life-cycle in environmental research infrastructure and is not con-
cerned with information and knowledge life-cycle management. In Paper V, we
have made the case for knowledge-based environmental research infrastructure,
i.e. infrastructure that manages the life-cycles of data required in interpretation
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and information and knowledge gained from data. This dissertation highlights
situational knowledge as one possible knowledge type of interest to environ-
mental research infrastructure. It also details technologies, and their integration
in systems, that may be of interest to knowledge-based environmental research
infrastructure.

However, significantly more work is needed to evolve state of the art environ-
mental research infrastructure into knowledge-based systems. Such an endeav-
our relies on strong collaboration between environmental research infrastructure
projects and research groups with expertise in knowledge-based systems, artifi-
cial intelligence, and semantic web technologies. We have recently initiated a col-
laboration with ICOS Carbon Portal and plan to collaborate with other projects
in the future. If successful, next generation environmental research infrastruc-
ture could be more than mere web portals for downloading or visualizing data,
as is typical today. In addition to observational data, ICOS Carbon Portal aims
at managing also elaborated data products, such as map visualizations for CO2
fluxes, which the science community can submit to the platform. These are in-
teresting steps toward environmental research infrastructure with functionality
beyond data download. However, information remains implicit in maps and is
thus not accessible and unavailable for automated management and processing
by the infrastructure. Looking at a European map for greenhouse gas fluxes, a
trained scientist may instantly recognize major European cities as strong green-
house gas sources. As this information is implicit in the colour scale and map
features, this inference is non-trivial for the software components of environmen-
tal research infrastructure. Ideally, these components would also have access to
such information and would be able to interact with the science community of
environmental research infrastructure using high level concepts such as city or
strong source.

This dissertation, in particular Paper III and Paper IV, has demonstrated how
information about monitored phenomena extracted from data managed by en-
vironmental research infrastructure can be modelled as situational knowledge,
and how such knowledge can be represented explicitly in infrastructure. Ex-
plicit representation enables management, processing, visualization, reasoning,
integration, and sharing of situational knowledge.

The collaboration with existing environmental research infrastructures will
also provide interesting new case studies. They will highlight new requirements
and demonstrate the modelling of situational knowledge with more complex
structure and information extracted from multiple knowledge acquisition pro-
cesses on heterogeneous data.

Finally, as a fifth direction for future work, we propose that the ideas dis-
cussed in this dissertation can also be applied to industry trends such as smart
homes, smart grids, and smart cities. Systems in these domains often build on
sensor networks to monitor environments and infrastructure. Such monitoring
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results in (streamed) data, typically of considerable volume and heterogeneity.
Common with the applications discussed in Chapter 4 is the need to obtain
from sensor data symbolic knowledge about the monitored environment and in-
frastructure, represented using the high level concepts and relations familiar to
agents, in particular human agents. A smart home could thus schedule a laundry
turn according to water and electricity price considerations of home inhabitants;
a smart grid could help building and maintaining the situation awareness of
technicians for the state of the grid; a smart city with commuting modes rang-
ing from bicycle to car pooling may inform inhabitants about, and automatically
schedule, the ideal means of transportation depending on current and projected
situation awareness, formed by information about the weather, neighbours trav-
elling on a similar route, route safety, etc.



6 Conclusion

We set forth with the aim of demonstrating how environmental monitoring sys-
tems can utilize situation theory to model observed situations, and utilize on-
tology and related technologies in knowledge representation and reasoning to
represent situational knowledge obtained from data processed by means of com-
putational models.

Building on existing concepts and technologies in environmental monitor-
ing, situation awareness, situation theory, ontology, and modelling we have pro-
posed an architecture and implementation for a software framework designed to
support the development of environmental monitoring systems that process en-
vironmental sensor network data, acquire situational knowledge from data, and
curate and process situational knowledge. The software framework served in
the development of applications in case studies for environmental monitoring in
intelligent transportation systems, atmospheric science, and agricultural science.

Each application is for an environmental monitoring system consisting of a
monitored environment, hardware and software components, and human ex-
perts. They are thus physical-socio-technical systems with the monitored en-
vironment as the physical subsystem, human experts as the social subsystem,
and hardware and software components as the technical subsystem. Each envi-
ronmental monitoring system observes situations of the monitored environment
and uses situation theory to model observed situations. The applications thus
validate Claim C1.

The environmental monitoring systems process data acquired from envi-
ronmental sensor networks using computational models, and utilize the STO,
OWL-Time, and GeoSPARQL ontologies as well as ontology languages, soft-
ware libraries for knowledge representation and reasoning, and knowledge base
technologies to represent situational knowledge obtained from processed data.
The applications thus validate Claim C2.

The development of the environmental monitoring system in each applica-
tion is supported by a software framework for situation awareness in environ-
mental monitoring. The layered framework architecture supports fundamental
functionality for the perception, comprehension, and projection of situations and
involved phenomena. Perception builds on environmental sensor networks, and
is implemented at the measurement layer. Comprehension builds on compu-
tational data processing at the observation and derivation layers, and is imple-
mented at the situation layer using computational knowledge acquisition. Sit-
uation projection in the near future builds on processed data and represented
situational knowledge, and is implemented at the situation or processing layers
using knowledge acquisition or reasoning. The environmental monitoring sys-
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tems thus obtain and maintain situation awareness via the process of situation
assessment. We speak of situation-aware environmental monitoring systems.
The applications thus support Claim C3.

The software framework architecture is grounded in the ENVRI reference
model for ‘archetypical’ environmental research infrastructure extended with a
model for the acquisition of knowledge from data, and the curation, access, and
processing of knowledge. The case studies in atmospheric science and in agricul-
tural science include environmental monitoring systems with social subsystems
consisting of science communities. The systems are examples of knowledge-
based environmental research infrastructure designed to acquire data from envi-
ronmental sensor networks, curate and process data, acquire situational knowl-
edge from processed data, and curate and process situational knowledge. The
applications thus support Claim C4.

The main contributions are the ENVRI reference model extension; the archi-
tecture of a software framework for situation awareness in environmental moni-
toring; the open source implementation for the software framework architecture;
and the evaluation and discussion of the software framework implementation
for three case studies with environmental monitoring systems for situational
knowledge acquisition and processing in intelligent transportation systems, at-
mospheric science, and agricultural science.

An important strength of the proposed software framework is its ability to
support the development of systems that are required to implement complete
data and knowledge life-cycles, starting with the digital numbers collected from
sensing devices and ending with processed situational knowledge curated by
knowledge bases. A second important strength is the adoption of a hybrid
approach that supports both inductive data-driven and deductive knowledge-
driven techniques. A third strength of this work is the demonstration of the pro-
posed approach in case studies with non-trivial data processing and knowledge
acquisition problems. The main limitations of the software framework are the
considerable resources and expertise required to develop applications, the omis-
sion of terminological knowledge acquisition, and the disregard of techniques in
environmental monitoring other than in situ environmental sensor networks.

The future is bright for further work along the lines drawn by this disserta-
tion. Much research and development can be pursued to evolve state of the art
data-based environmental research infrastructure toward knowledge-based sys-
tems. This multidisciplinary endeavour is interesting and challenging, and rests
on strong collaboration between disciplines and state of the art environmen-
tal research infrastructure projects. Such endeavour will highlight the technical
components that require further development in order to meet expectations, such
as the efficient persistence and retrieval of large volumes of sensor and dataset
observations encoded in RDF. The effort will also highlight the potential of the
approach in large scale environmental research infrastructure.
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Tollefson (2011) underscores that NEON has battled scepticism. He refers to
Steven Wofsy, “a pioneer of carbon studies [who] remains sceptical of big science
projects,” and recollects that Wofsy “feared that NEON would generate more
data than value.” The systems for data acquisition, curation, access, and pro-
cessing aimed at in projects such as ICOS and NEON build an invaluable foun-
dation for big science research. After all, the data are arguably a precondition
to addressing the “really big ecological questions” referred to by Wofsy. How-
ever, the systems and models such as the ENVRI reference model need to push
the boundary beyond data, beyond web portals from which science communities
can download data. The systems should actively support science communities in
knowledge acquisition, attempt to automate such tasks, and handle knowledge
curation and access. Systems can then automatically process curated knowledge,
a capability that may enable systems to also support science communities in hy-
pothesis formulation and testing. To get there, the disciplines need to team up.
Unless computer scientists and software engineers with expertise in computa-
tional intelligence and knowledge engineering, and artificial intelligence more
broadly, join the efforts embarked by projects such as ICOS and NEON to de-
velop next generation knowledge-based environmental research infrastructure,
the systems will likely remain at the stage of web portals from which science
communities can download data. In such event, Wofsy may then correctly claim
“I told you so.”
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Environmental Software Systems. Frameworks of eEnvironment, volume 359 of IFIP Advances in

Information and Communication Technology, pages 445–453. Springer Berlin Heidelberg.

Stocker, M., Shurpali, N., Taylor, K., Burba, G., Rönkkö, M., and Kolehmainen, M. (2015c). Emrooz:

A Scalable Database for SSN Observations. In Kyzirakos, K., Henson, C., Perry, M., Varanka,

D., and Grütter, R., editors, Joint Proceedings of the 1st Joint International Workshop on Semantic

Sensor Networks and Terra Cognita (SSN-TC 2015) and the 4th International Workshop on Ordering

and Reasoning (OrdRing 2015) co-located with the 14th International Semantic Web Conference (ISWC

2015), volume 1488, pages 1–12, Bethlehem, PA, USA. CEUR-WS.



155

Studer, R., Benjamins, V., and Fensel, D. (1998). Knowledge engineering: Principles and methods.

Data & Knowledge Engineering, 25(1–2):161–197.

Swartout, B., Patil, R., Knight, K., and Russ, T. (1996). Toward Distributed Use of Large-Scale

Ontologies. In Procedings of the 10th Knowledge Acquisition for Knowledge-Based Systems Workshop,

Banff, Canada.

Swartout, W. and Tate, A. (1999). Ontologies. Intelligent Systems and their Applications, IEEE,

14(1):18–19.

Tamea, G., Cusmai, M., Palo, A., Priscoli, F., and Cimmino, A. (2014). Situation awareness in

airport environment based on Semantic Web technologies. In Cognitive Methods in Situation

Awareness and Decision Support (CogSIMA), 2014 IEEE International Inter-Disciplinary Conference

on, pages 174–180.

Taylor, K. and Leidinger, L. (2011). Ontology-Driven Complex Event Processing in Heterogeneous

Sensor Networks. In Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D.,

Leenheer, P., and Pan, J., editors, The Semanic Web: Research and Applications, volume 6644 of

Lecture Notes in Computer Science, pages 285–299. Springer Berlin Heidelberg.

Taylor, P. (2014). OGC WaterML 2.0: Part 1 – Timeseries. OGC Implementation Standard - Corri-

gendum OGC 10-126r4, Open Geospatial Consortium Inc.

Thessler, S., Kooistra, L., Teye, F., Huitu, H., and Bregt, A. K. (2011). Geosensors to Support Crop

Production: Current Applications and User Requirements. Sensors, 11(7):6656–6684.

Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson, T., Buon-

adonna, P., Gay, D., and Hong, W. (2005). A Macroscope in the Redwoods. In Proceedings of

the 3rd International Conference on Embedded Networked Sensor Systems, SenSys ’05, pages 51–63,

New York, NY, USA. ACM.

Tollefson, J. (2011). US launches eco-network. Nature, 476(135).

Uddling, J., Hogg, A. J., Teclaw, R. M., Carroll, M. A., and Ellsworth, D. S. (2010). Stomatal uptake

of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment. Environmental

Pollution, 158(6):2023–2031.

Velikova, M., Novák, P., Huijbrechts, B., Laarhuis, J., Hoeksma, J., and Michels, S. (2014). An

Integrated Reconfigurable System for Maritime Situational Awareness. In Schaub, T., Friedrich,

G., and O’Sullivan, B., editors, Proceedings of the 21st European Conference on Artificial Intelligence,

volume 263 of Frontiers in Artificial Intelligence and Applications, pages 1197–1202, Prague, Czech

Republic. IOS Press.

Wang, P., Zheng, J. G., Fu, L., Patton, E. W., Lebo, T., Ding, L., Liu, Q., Luciano, J. S., and

McGuinness, D. L. (2011). A Semantic Portal for Next Generation Monitoring Systems. In

Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., and Blomqvist, E.,



156

editors, The Semantic Web – ISWC 2011, volume 7032 of Lecture Notes in Computer Science, pages

253–268. Springer Berlin Heidelberg.

Wang, W., Barnaghi, P., Cassar, G., Ganz, F., and Navaratnam, P. (2012). Semantic Sensor Service

Networks. In Sensors, 2012 IEEE, pages 1–4.

Wei, W. and Barnaghi, P. (2009). Semantic Annotation and Reasoning for Sensor Data. In Barnaghi,

P., Moessner, K., Presser, M., and Meissner, S., editors, Smart Sensing and Context, volume 5741

of Lecture Notes in Computer Science, pages 66–76. Springer Berlin Heidelberg.

Weiss, C., Karras, P., and Bernstein, A. (2008). Hexastore: Sextuple Indexing for Semantic Web

Data Management. Proc. VLDB Endow., 1(1):1008–1019.

Wetz, P., Trinh, T.-D., Do, B.-L., Anjomshoaa, A., Kiesling, E., and Tjoa, A. M. (2014). Towards

an Environmental Information System for Semantic Stream Data. In Proceedings of the 28th

International Conference on Informatics for Environmental Protection, pages 637–644, Oldenburg,

Germany. BIS-Verlag.

Whitehouse, K., Zhao, F., and Liu, J. (2006). Semantic Streams: A Framework for Composable

Semantic Interpretation of Sensor Data. In Römer, K., Karl, H., and Mattern, F., editors, Wireless

Sensor Networks, volume 3868 of Lecture Notes in Computer Science, pages 5–20. Springer Berlin

Heidelberg.

Worboys, M. (2005). Event-oriented approaches to geographic phenomena. International Journal of

Geographical Information Science, 19(1):1–28.

Worboys, M. and Hornsby, K. (2004). From Objects to Events: GEM, the Geospatial Event Model.

In Egenhofer, M. J., Freksa, C., and Miller, H. J., editors, Geographic Information Science, volume

3234 of Lecture Notes in Computer Science, pages 327–343. Springer Berlin Heidelberg.

Wu, L. (2012). Representing and Inferring Events from Deforestation Observations. In Gensel, J.,

Josselin, D., and Vandenbroucke, D., editors, Proceedings of the AGILE’2012 International Confer-

ence on Geographic Information Science, pages 80/392–85/392, Avignon, France.

Xiao, F., Shea, G. Y. K., Wong, M. S., and Campbell, J. (2014). An automated and integrated frame-

work for dust storm detection based on OGC web processing services. ISPRS - International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2:151–156.

Yao, Y. and Gehrke, J. (2002). The Cougar Approach to In-network Query Processing in Sensor

Networks. SIGMOD Rec., 31(3):9–18.

Ye, J., Dobson, S., and McKeever, S. (2012). Situation identification techniques in pervasive com-

puting: A review. Pervasive and Mobile Computing, 8(1):36–66.

Ye, J., Stevenson, G., and Dobson, S. (2014). USMART: An Unsupervised Semantic Mining Activity

Recognition Technique. ACM Trans. Interact. Intell. Syst., 4(4):16:1–16:27.



157

Yu, J., Davis, P., Gould, S., and Taylor, K. (2014). Linked Data Approach For Automated Failure

Detection In Pressure Sewers Using Real-Time Sensor Data. In Proceedings of the 11th Interna-

tional Conference on Hydroinformatics, New York City, USA.

Yu, J. and Taylor, K. (2013). Event dashboard: Capturing user-defined semantics events for event

detection over real-time sensor data. In Corcho, O., Henson, C., and Barnaghi, P., editors,

Proceedings of the 6th International Workshop on Semantic Sensor Networks, volume 1063, pages

19–34, Sydney, Australia. CEUR-WS.

Zhang, D., Sullivan, T., Briciu-Burghina, C., Murphy, K., McGuinness, K., O’Connor, N. E.,

Smeaton, A., and Regan, F. (2014). Detection and Classification of Anomalous Events in Water

Quality Datasets Within a Smart City-Smart Bay Project. International Journal on Advances in

Intelligent Systems, 7(1&2):167–178.



Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences No 192

Publications of the University of Eastern Finland

Dissertations in Forestry and Natural Sciences

isbn: 978-952-61-1907-6 (print)

isbn: 978-952-61-1908-3 (pdf)

issn: 1798-5668 (print)

issn: 1798-5676 (pdf)

Markus Stocker

Situation Awareness in
Environmental Monitoring

Environmental monitoring data contribute 

to advancing our understanding of natural 

and human-made systems. Monitoring 

data are increasingly often voluminous 

sensor data. To turn data into actionable 

knowledge, software systems need to 

integrate advanced techniques in data 

processing, information acquisition, 

and knowledge representation. For case 

studies in intelligent transportation 

systems, atmospheric science, and 

agricultural science this dissertation 

proposes to model observed phenomena 

as objects in situations and discusses 

the representation and processing of 

situational knowledge acquired from 

data in situation-aware environmental 

monitoring systems.

d
isser

tatio
n

s | 192 | M
a

r
k

u
s S

to
ck

er | S
itu

a
tio

n
 A

w
a

ren
ess in

 E
n

viro
n

m
en

ta
l M

o
n

ito
rin

g

Markus Stocker
Situation Awareness in

Environmental Monitoring


